数据分析基础测试题及答案
数据分析基础测试题含答案

数据分析基础测试题含答案一、选择题1.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是.()A.3,2 B.3,4 C.5,2 D.5,4【答案】B【解析】试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.考点:平均数;方差.2.甲、乙、丙三个不同品种的苹果树在同一地区进行对比试验,从每个品种的苹果树中随机各抽取10棵,对它们的产量进行统计,绘制统计表如下:品种甲乙丙平均产量/(千克/棵)9090方差10.224.88.5若从这三个品种中选择一个在该地区推广,则应选择的品种是()A.甲B.乙C.丙D.甲、乙中任选一个【答案】A【解析】【分析】根据平均数、方差等数据的进行判断即可.【详解】根据平均数、方差等数据的比较可以得出甲品种更适在该地区推广.故选:A【点睛】本题考查了平均数、方差,掌握平均数、方差的定义是解题的关键.3.某射击俱乐部将11名成员在某次射击训练中取得的成绩制成如图所示的条形统计图,由图可知,11名成员射击成绩的众数和中位数分别是()A.8,9 B.8,8 C.8,10 D.9,8【答案】B【解析】分析:中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的那个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.详解:由条形统计图知8环的人数最多,所以众数为8环,由于共有11个数据,所以中位数为第6个数据,即中位数为8环,故选B.点睛:本题主要考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个,则找中间两个数的平均数.4.已知一组数据a、b、c的平均数为5,方差为4,那么数据a+2、b+2、c+2的平均数和方差分别为()A.7,6 B.7,4 C.5,4 D.以上都不对【答案】B【解析】【分析】根据数据a,b,c的平均数为5可知a+b+c=5×3,据此可得出13(-2+b-2+c-2)的值;再由方差为4可得出数据a-2,b-2,c-2的方差.【详解】解:∵数据a,b,c的平均数为5,∴a+b+c=5×3=15,∴13(a-2+b-2+c-2)=3,∴数据a-2,b-2,c-2的平均数是3;∵数据a,b,c的方差为4,∴13[(a-5)2+(b-5)2+(c-5)2]=4,∴a-2,b-2,c-2的方差=13[(a-2-3)2+(b-2-3)2+(c--2-3)2]= 13[(a-5)2+(b-5)2+(c-5)2]=4,故选B.【点睛】本题考查了平均数、方差,熟练掌握平均数以及方差的计算公式是解题的关键.5.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A.极差是47 B.众数是42C.中位数是58 D.每月阅读数量超过40的有4个月【答案】C【解析】【分析】根据统计图可得出最大值和最小值,即可求得极差;出现次数最多的数据是众数;将这8个数按大小顺序排列,中间两个数的平均数为中位数;每月阅读数量超过40的有2、3、4、5、7、8,共六个月.【详解】A、极差为:83-28=55,故本选项错误;B、∵58出现的次数最多,是2次,∴众数为:58,故本选项错误;C、中位数为:(58+58)÷2=58,故本选项正确;D、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误;故选C.6.某青年排球队12名队员的年龄情况如下:年龄(单位:岁)1819202122人数14322则12名队员的年龄()A.众数是20岁,中位数是19岁B.众数是19岁,中位数是19岁C.众数是19岁,中位数是20.5岁D.众数是19岁,中位数是20岁【答案】D【解析】【分析】中位数是指将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数;众数是指在统计分布上具有明显集中趋势点的数值,代表数据的一般水平(众数可以不存在或多于一个).【详解】解:在这一组数据中19岁是出现次数最多的,故众数是19岁;将这组数据从小到大的顺序排列后,处于中间位置的数是20岁,那么由中位数的定义可知,这组数据中的中位数是20岁.故选:D.【点睛】理解中位数和众数的定义是解题的关键.7.小明参加射击比赛,10次射击的成绩如表:若小明再射击2次,分别命中7环、9环,与前10次相比,小明12次射击的成绩()A.平均数变大,方差不变B.平均数不变,方差不变C.平均数不变,方差变大D.平均数不变,方差变小【答案】D【解析】【分析】首先利用计算出前10次射击的平均数,再计算出方差,然后计算出再射击2次后的平均数和方差,进而可得答案.【详解】前10次平均数:(6×3+7×1+8×2+9×1+10×3)÷10=8,方差:S2=110[(6﹣8)2×3+(7﹣8)2+(8﹣8)2×2+(9﹣8)2+3×(10﹣8)2]=2.6,再射击2次后的平均数::(6×3+7×1+8×2+9×1+10×3+7+9)÷12=8,方差:S2=112[(6﹣8)2×3+(7﹣8)2×2+(8﹣8)2×2+(9﹣8)2×2+3×(10﹣8)2]=73,平均数不变,方差变小,故选:D.【点睛】此题主要考查了方差和平均数,关键是掌握方差计算公式:S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2].8.甲、乙两名同学分别进行6次射击训练,训练成绩(单位:环)如下表对他们的训练成绩作如下分析,其中说法正确的是()A.他们训练成绩的平均数相同B.他们训练成绩的中位数不同C.他们训练成绩的众数不同D.他们训练成绩的方差不同【答案】D【解析】【分析】利用方差的定义、以及众数和中位数的定义分别计算即可得出答案.【详解】∵甲6次射击的成绩从小到大排列为6、7、8、8、9、10,∴甲成绩的平均数为67889106+++++=8,中位数为882+=8、众数为8,方差为16×[(6﹣8)2+(7﹣8)2+2×(8﹣8)2+(9﹣8)2+(10﹣8)2]=53,∵乙6次射击的成绩从小到大排列为:7、7、8、8、8、9,∴乙成绩的平均数为7788896+++++=476,中位数为882+=8、众数为8,方差为16×[2×(7﹣476)2+3×(8﹣476)2+(9﹣476)2]=1736,则甲、乙两人的平均成绩不相同、中位数和众数均相同,而方差不相同,故选D.【点睛】本题考查了中位数、方差以及众数的定义等知识,熟练掌握相关定义以及求解方法是解题的关键.9.一组数据5,4,2,5,6的中位数是()A.5 B.4 C.2 D.6【答案】A【解析】试题分析:将题目中数据按照从小到大排列是: 2,4,5,5,6,故这组数据的中位数是5,故选A.考点:中位数;统计与概率.10.某车间需加工一批零件,车间20名工人每天加工零件数如表所示:每天加工零件数的中位数和众数为( )A.6,5 B.6,6 C.5,5 D.5,6【答案】A【解析】【分析】根据众数、中位数的定义分别进行解答即可.【详解】由表知数据5出现了6次,次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为662=6,故选A.【点睛】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.11.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5【答案】A 【解析】试题分析:根据众数和中位数的定义求解可得. 解:由表可知25出现次数最多,故众数为25;12个数据的中位数为第6、7个数据的平均数,故中位数为25252+=25, 故选:A .12.已知一组数据2a -,42a +,6,83a -,9,其中a 为任意实数,若增加一个数据5,则该组数据的方差一定() A .减小 B .不变 C .增大 D .不确定【答案】A 【解析】 【分析】先把原来数据的平均数算出来,再把方差算出来,接着把增加数据5以后的平均数算出来,从而可以算出方差,再把两数进行比较可得到答案. 【详解】解:原来数据的平均数=242683925555a a a -++++-+==,原来数据的方差=222222(25)(45)(265)(835)(95)5a a a S --+-++-+--+-=,增加数据5后的平均数=2426839530565a a a -++++-++==(平均数没变化),增加数据5后的方差=22222221(25)(45)(265)(835)(95)(55)6a a a S --+-++-+--+-+-=, 比较2S ,21S 发现两式子分子相同,因此2S >21S (两个正数分子相同,分母大的反而小), 故答案为A. 【点睛】本题主要考查了方差的基本概念,熟记方差的公式是解本题的关键,要比较增加数据后的方差的变化,可分别求出原来的方差和改变数据后的方差,再进行比较.13.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:则下列叙述正确的是()A.这些运动员成绩的众数是 5B.这些运动员成绩的中位数是 2.30C.这些运动员的平均成绩是 2.25D.这些运动员成绩的方差是 0.0725【答案】B【解析】【分析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.【详解】由表格中数据可得:A、这些运动员成绩的众数是2.35,错误;B、这些运动员成绩的中位数是2.30,正确;C、这些运动员的平均成绩是 2.30,错误;D、这些运动员成绩的方差不是0.0725,错误;故选B.【点睛】考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.14.为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是()A.小明的成绩比小强稳定B.小明、小强两人成绩一样稳定C.小强的成绩比小明稳定D.无法确定小明、小强的成绩谁更稳定【答案】A【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.平均成绩一样,小明的方差小,成绩稳定,故选A.【点睛】本题考查方差、平均数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.错因分析容易题.失分原因是方差的意义掌握不牢.15.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为()A.1.70,1.75 B.1.70,1.70 C.1.65,1.75 D.1.65,1.70【答案】A【解析】分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.详解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选A.点睛:本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.16.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲26778乙23488关于以上数据,说法正确的是()A.甲、乙的众数相同B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7, 排序后最中间的数是7,所以中位数是7,26778==65x ++++甲,()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4,乙:数据8出现了2次,次数最多,所以众数为8, 排序后最中间的数是4,所以中位数是4,23488==55x 乙++++,()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4,所以只有D 选项正确, 故选D. 【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.17.在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是( )A .96分,98分B .97分,98分C .98分,96分D .97分,96分【答案】A 【解析】 【分析】利用众数和中位数的定义求解. 【详解】98出现了9次,出现次数最多,所以数据的众数为98分;共有25个数,最中间的数为第13个数,是96,所以数据的中位数为96分. 故选A . 【点睛】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.18.有一组数据如下:3,a ,4,6,7,它们的平均数是5,那么这组数据的方差是( )A.10 B.10C.2D.2【答案】D【解析】【分析】【详解】∵3、a、4、6、7,它们的平均数是5,∴15(3+a+4+6+7)=5,解得,a=5S2=15[(3-5)2+(5-5)2+(4-5)2+(6-5)2+(7-5)2]=2,故选D.19.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30 B.25和29 C.28和30 D.28和29【答案】D【解析】【分析】根据中位数和众数的定义进行求解即可得答案.【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中,29出现的次数最多,∴这组数据的众数是29,故选D.【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.20.下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是()A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定【答案】B【解析】【分析】【详解】通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,故选B.。
数据分析基础测试题附答案解析

数据分析基础测试题附答案解析一、选择题1.一组数据1,5,7,x的众数与中位数相等,则这组数据的平均数是()A.6 B.5 C.4.5 D.3.5【答案】C【解析】若众数为1,则数据为1、1、5、7,此时中位数为3,不符合题意;若众数为5,则数据为1、5、5、7,中位数为5,符合题意,此时平均数为15574+++= 4.5;若众数为7,则数据为1、5、7、7,中位数为6,不符合题意;故选C.2.已知一组数据:6,2,8,x,7,它们的平均数是6.则这组数据的中位数是()A.7 B.6 C.5 D.4【答案】A【解析】分析:首先根据平均数为6求出x的值,然后根据中位数的概念求解.详解:由题意得:6+2+8+x+7=6×5,解得:x=7,这组数据按照从小到大的顺序排列为:2,6,7,7,8,则中位数为7.故选A.点睛:本题考查了中位数和平均数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.3.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A.极差是47 B.众数是42C.中位数是58 D.每月阅读数量超过40的有4个月【答案】C【解析】【分析】根据统计图可得出最大值和最小值,即可求得极差;出现次数最多的数据是众数;将这8个数按大小顺序排列,中间两个数的平均数为中位数;每月阅读数量超过40的有2、3、4、5、7、8,共六个月.【详解】A、极差为:83-28=55,故本选项错误;B、∵58出现的次数最多,是2次,∴众数为:58,故本选项错误;C、中位数为:(58+58)÷2=58,故本选项正确;D、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误;故选C.4.在只有15人参加的演讲比赛中,参赛选手的成绩各不相同,若选手要想知道自己是否进入前8名,只需要了解自己的成绩以及全部成绩的( )A.平均数B.中位数C.众数D.以上都不对【答案】B【解析】【分析】此题是中位数在生活中的运用,知道自己的成绩以及全部成绩的中位数就可知道自己是否进入前8名.【详解】15名参赛选手的成绩各不相同,第8名的成绩就是这组数据的中位数,所以选手知道自己的成绩和中位数就可知道自己是否进入前8名.故选B.【点睛】理解平均数,中位数,众数的意义.5.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:那么20名学生决赛成绩的众数和中位数分别是( )A.85,90 B.85,87.5 C.90,85 D.95,90【答案】B【解析】试题解析:85分的有8人,人数最多,故众数为85分;处于中间位置的数为第10、11两个数,为85分,90分,中位数为87.5分.故选B.考点:1.众数;2.中位数6.某单位招考技术人员,考试分笔试和面试两部分,笔试成绩与面试成绩按6:4记入总成绩,若小李笔试成绩为80分,面试成绩为90分,则他的总成绩为()A.84分B.85分C.86分D.87分【答案】A【解析】【分析】按照笔试与面试所占比例求出总成绩即可.【详解】根据题意,按照笔试与面试所占比例求出总成绩:64⨯+⨯=(分)8090841010故选A【点睛】本题主要考查了加权平均数的计算,解题关键是正确理解题目含义.7.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是()A.9.7m,9.9m B.9.7m,9.8m C.9.8m,9.7m D.9.8m,9.9m【答案】B【解析】【分析】将这7个数据从小到大排序后处在第4位的数是中位数,利用算术平均数的计算公式进行计算即可.【详解】把这7个数据从小到大排列处于第4位的数是9.7m,因此中位数是9.7m,++++++÷=m,平均数为:(9.59.69.79.79.810.110.2)79.8故选:B.【点睛】考查中位数、算术平均数的计算方法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数就是这组数据的中位数,平均数则是反映一组数据的集中水平.8.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②经过有交通信号灯的路口,遇到红灯是必然事件;③若甲组数据的方差是0.3,乙组数据的方差是0.1,则甲数据比乙组数据稳定;④圆内接正六边形的边长等于这个圆的半径,其中正确说法的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】根据平行四边形的判定去判断①;根据必然事件的定义去判断②;根据方差的意义去判断③;根据圆内接正多边形的相关角度去计算④.【详解】一组对边平行,另一组对边相等的四边形也有可能是等腰梯形,①错误;必然事件是一定会发生的事件,遇到红灯是随机事件,②错误;方差越大越不稳定,越小越稳定,乙比甲更稳定,③错误;正六边形的边所对的圆心角是60︒,所以构成等边三角形,④结论正确.所以正确1个,答案选A.【点睛】本题涉及的知识点较多,要熟悉平行四边形的常见判定;随机事件、必然事件、不可能事件等的区分;掌握方差的意义;会计算圆内接正多边形相关.9.一组数据5,4,2,5,6的中位数是()A.5 B.4 C.2 D.6【答案】A【解析】试题分析:将题目中数据按照从小到大排列是: 2,4,5,5,6,故这组数据的中位数是5,故选A.考点:中位数;统计与概率.10.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次s=.后来小亮进行了补测,集体测试,因此计算其他39人的平均分为90分,方差239成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变【答案】B【解析】【分析】根据平均数,方差的定义计算即可.【详解】解:∵小亮的成绩和其他39人的平均数相同,都是90分,∴该班40人的测试成绩的平均分为90分,方差变小,故选:B.【点睛】本题考查方差,算术平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.11.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30 B.25和29 C.28和30 D.28和29【答案】D【解析】【分析】根据中位数和众数的定义进行求解即可得答案.【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中,29出现的次数最多,∴这组数据的众数是29,故选D.【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.12.样本数据3,a,4,b,8的平均数是5,众数是3,则这组数据的中位数是()A.2 B.3 C.4 D.8【答案】C【解析】【分析】+=,由众数是3知a、b中一个数据为3、另一个数据为先根据平均数为5得出a b107,再根据中位数的定义求解可得.【详解】解:数据3,a,4,b,8的平均数是5,3a4b825∴++++=,即a b10+=,又众数是3,a∴、b中一个数据为3、另一个数据为7,则数据从小到大为3、3、4、7、8,∴这组数据的中位数为4,故选C.【点睛】此题考查了平均数、众数和中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数.13.在去年的体育中考中,某校6名学生的体育成绩统计如下表:则下列关于这组数据的说法错误的是()A.众数是18 B.中位数是18 C.平均数是18 D.方差是2【答案】D【解析】【分析】根据众数、中位数的定义和平均数、方差的计算公式分别进行解答即可.【详解】A、这组数据中18出现了3次,次数最多,则这组数据的众数是18.故本选项说法正确;B、把这组数据从小到大排列,最中间两个数的平均数是(18+18)÷2=18,则中位数是18.故本选项说法正确;C、这组数据的平均数是:(17×2+18×3+20)÷6=18.故本选项说法正确;D、这组数据的方差是:16[2×(17﹣18)2+3×(18﹣18)2+(20﹣18)2]=1.故本选项说法错误.故选D.【点睛】本题考查了众数、中位数、平均数和方差,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);平均数是所有数据的和除以数据总数;一般地设n个数据,x1,x2,…x n的平均数为x ,则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2].14.甲、乙两位运动员在相同条件下各射击10次,成绩如下: 甲:9,10,8,5,7,8,10,8,8,7; 乙:5,7,8,7,8,9,7,9,10,10.根据上述信息,下列结论错误的是( ) A .甲、乙的众数分别是8,7 B .甲、乙的中位数分别是8,8 C .乙的成绩比较稳定 D .甲、乙的平均数分别是8,8【答案】C 【解析】 【分析】分别根据众数,平均数,中位数和方差的概念以及计算方法计算出结果,然后进行判断. 【详解】在甲的10次射击成绩中8环出现次数最多,有4次,故众数是8,而乙的10次射击成绩中7环出现次数最多,故众数是7,因此选项A 说法正确,不符合题意;甲的10次射击成绩按大小顺序排列为:5,7,7,8,8,8,8,9,10,10,故其中位数为:8+8=82; 乙的10次射击成绩按大小顺序排列为:5,7,7,7,8,8,9,9,10,10,故其中位数为:8+8=82,所以甲、乙的中位数分别是8,8,故选项B 说法正确,不符合题意; 甲的平均数为:5+72+84+9+102=810⨯⨯⨯;乙的平均数:5+73+82+92+102=810⨯⨯⨯⨯,所以,甲、乙的平均数分别是8,8,故选项D 不符合题意;甲组数据的方差为:2222221=[(58)2(78)4(88)(98)2(108)]10S -+⨯-+⨯-+-+⨯-甲=2; 乙组数据的方差为:2222221=[(58)3(78)2(88)2(98)2(108)]10S -+⨯-+⨯-+⨯-+⨯-乙=2.2;所以甲乙两组数据的方差不相等,甲的成绩更稳定,故选项C 符合题意. 故选:C. 【点睛】本题考查了平均数、中位数、众数和方差的定义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.某校九年级数学模拟测试中,六名学生的数学成绩如下表所示,下列关于这组数据描述正确的是()A.众数是110 B.方差是16C.平均数是109.5 D.中位数是109【答案】A【解析】【分析】根据众数、中位数的概念求出众数和中位数,根据平均数和方差的计算公式求出平均数和方差.【详解】解:这组数据的众数是110,A正确;16x=×(110+106+109+111+108+110)=109,C错误;21S6= [(110﹣109)2+(106﹣109)2+(109﹣109)2+(111﹣109)2+(108﹣109)2+(110﹣109)2]=83,B错误;中位数是109.5,D错误;故选A.【点睛】本题考查的是众数、平均数、方差、中位数,掌握它们的概念和计算公式是解题的关键.16.在一次体检中,甲、乙、丙、丁四位同学的平均身高为1.65米,而甲、乙、丙三位同学的平均身高为1.63米,下列说法一定正确的是()A.四位同学身高的中位数一定是其中一位同学的身高B.丁同学的身高一定高于其他三位同学的身高C.丁同学的身高为1.71米D.四位同学身高的众数一定是1.65【答案】C【解析】【分析】根据平均数,中位数,众数的定义求解即可.【详解】解:A、四位同学身高的中位数可能是某两个同学身高的平均数,故错误;B、丁同学的身高一定高于其他三位同学的身高,错误;C、丁同学的身高为1.654 1.633 1.71⨯-⨯=米,正确;D.四位同学身高的众数一定是1.65,错误.故选:C.【点睛】本题考查的是平均数,中位数和众数,熟练掌握平均数,中位数和众数是解题的关键. 17.为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是()A.小明的成绩比小强稳定B.小明、小强两人成绩一样稳定C.小强的成绩比小明稳定D.无法确定小明、小强的成绩谁更稳定【答案】A【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.平均成绩一样,小明的方差小,成绩稳定,故选A.【点睛】本题考查方差、平均数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.错因分析容易题.失分原因是方差的意义掌握不牢.18.某校九年级开展“光盘行动”宣传活动,各班级参加该活动的人数统计结果如下表,对于这组统计数据,下列说法中正确的是()A.平均数是58 B.中位数是58 C.极差是40 D.众数是60【答案】A【解析】分别根据平均数,中位数,极差,众数的计算方法计算即可作出判断平均数是指在一组数据中所有数据之和再除以数据的个数,因此,这组数据的平均数是:526062545862586+++++=.中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为52,54,58,60,62,62,∴中位数是按从小到大排列后第3,4个数的平均数为:59.根据一组数据中的最大数据与最小数据的差叫做这组数据的极差的定义,这组数据的极差是: 62-52=10.众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是62,故这组数据的众数为62.综上所述,说法正确的是:平均数是58.故选A .19.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表: 比赛成绩/分 9.5 9.6 9.7 9.8 9.9 参赛队个数98643则这30个参赛队决赛成绩的中位数和众数分别是( ) A .9.7,9.5 B .9.7,9.9C .9.6,9.5D .9.6,9.6【答案】C 【解析】 【分析】根据众数和中位数的定义求解可得. 【详解】解:由表知,众数为9.5分,中位数为=9.6(分),故选:C . 【点睛】考查了众数和中位数的定义,一组数据中出现次数最多的数据叫做众数;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.20.为全力抗战疫情,响应政府“停课不停学”号召,东营市教育局发布关于疫情防控期间开展在线课程教学的通知:从2月10日开始,全市中小学按照教学计划,开展在线课程教学和答疑.据互联网后台数据显示,某中学九年级七科老师2月10日在线答疑问题总个数如下表所示则2月10日该中学九年级七科老师在线答疑问题总个数的平均数是( )A.22 B.24 C.25 D.26【答案】C【解析】【分析】把7个数相加再除以7即可求得其平均数.【详解】由题意得,九年级七科老师在线答疑问题总个数的平均数是1++++++=,(26282826242122)257故选:C【点睛】此题考查了平均数的计算,掌握计算方法是解答此题的关键.。
数据分析经典测试题含答案解析

95
90
85
80
人数
4
6
8
2
那么20名学生决赛成绩的众数和中位数分别是( )
A.85,90B.85,87.5C.90,85D.95,90
【答案】B
【解析】
试题解析:85分的有8人,人数最多,故众数为85分;
处于中间位置的数为第10、11两个数,
为85分,90分,中位数为87.5分.
故选B.
故选A.
【点睛】
此题考查了中位数、众数和平均数的概念等知识,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.
4.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:
D、方差为 ×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;
故选:D.
【点睛】
本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.
14.立定跳远是体育中考选考项目之一,体育课上老师记录了某同学的一组立定跳远成绩如表:
考点:1.众数;2.中位数
5.甲、乙两名同学分别进行6次射击训练,训练成绩(单位:环)如下表
第一次
第二次
第三次
第四次
第五次
第六交
甲
9
8
6
7
8
10
乙
8
7
9
7
8
8
第3章 数据分析初步检测题(有答案)

浙教版2018-2019学年度下学期八年级数学(下册)第3章数据分析初步检测题(有答案)(时间:100分钟满分:120分)题号 1 2 3 4 5 6 7 8 9 10 答案一、选择题(共10小题每3分共30分)1、在运动会上,八年级组有6位男同学进入铅球决赛,他们的成绩(单位:米)分别是:6.7,6.6,6.8,7.0,6.8,7.5,则这组数据的极差和众数是( )A.0.9和6.6 B.0.8和6.7 C.0.9和6.8 D.0.9和6.92、八年级学生学完数据分析初步后,数学老师让各学习小组调查了解自己家的节约用水情况,然后从中选出10名学生各自家庭一个月的节水情况统计成下表:节水量(m3) 0.3 0.36 0.38 0.46 0.52家庭数(个) 2 1 2 3 2 那么这组数据的中位数和平均数分别是A.0.38和0.414 B.0.42和0.414 C.0.46和0.414 D.2和0.4143、已知x1,x2,…,x12的平均数为a,x13,x14,…,x18的平均数为b,则x1,x2,…,x18的平均数为( )A.1()18a b+B.1()9a b+C.1()2a b+D.1(2)3a b+4、某次跳水锦标赛(男子)由来自世界各地的25名选手参加角逐,他们最终得分各不相同.其中前12名进入决赛,若一名选手想要知道自己能否进入决赛,不仅要了解自己的得分,还要了解这25名选手得分的( )A.众数B.中位数C.平均数D.方差5、某单元楼10户业主7月份用水情况统计如下,该单元楼10户业主6月份用水情况的众数和中位数分别是()用水量(吨) 26 27 29 32户数(户) 1 4 3 2A.27吨和28吨B.27吨和27吨C.29吨和28吨D.27吨和29吨6、有6位大学生到某公司参加应聘考试(满分50分),已知他们的得分的平均成绩是46分.其中四位女生的方差为7,两位男生的成绩分别为45分,47分.则这6位大学生应聘分数的标准差为()A .6B .30C .6D .57、下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是( )A .甲比乙的成绩稳定B .乙比甲的成绩稳定C .甲、乙两人的成绩一样稳定D .无法确定谁的成绩更稳定8、若一组数据-1,0,2,4,x 的极差为6,则这组数据额方差是( )A . 26或 23.2B .26或 22C .22或 23.2D .22或 26 9、甲、乙、丙、丁四人的数学测验成绩分别为92分、92分、x 分、86分,若这组数据的众数与平均数恰好相等,则这组数据的中位数是( )A .98分B .95分C .92分D .89分10、对于数据2,2,3,2,5,2,5,2,5,2,3,有如下的结论:①众数是2;②众数与中位数的数值相等;③极差与平均数的数值相等;④平均数与众数的数值相等. 这些结论正确的有( ) A .1个 B .2个 C .3个 D .4个 二、填空题(共10小题 每题3分 共30分)11、若一组数据6,4,0,6,4,a 有唯一的众数,则这组数据的标准差为 . 12、如果球星姚明到某小学与6名小学生做游戏,那么在姚明和这6名小学生的身高数据中,能反映 这组数据的集中趋势的是 .13、已知一组自然数1,2,3…k ,去掉其中一个数后剩下的数的平均数为16,则去掉的数是_____ . 14、某样本方差的计算公式是222212181(6)(6)(6)18S x x x ⎡⎤=-+-++-⎣⎦,则它的样本容量是 , 样本的平均数是 .15、已知数据1a ,2a ,…,n a 的平均数为x ,方差为2S ,则数据3a 1-5, 3a 2-5,…, 3a n -5 的平均数是 ,方差为 .16、若a 1,a 2,…,a 15这15个数据的平均数为3,方差为32,那么数据a 1,a 2,…,a 15,3这16个数据的方差为 .17、5个正整数从小到大排序,其中中位数是8,如果这组数据的唯一众数是9,则这5个正整数的第7题图和的最小值和最大值分别为.18、元旦欢会,班长对全班学生爱吃哪几种水果作了调查,为了确定买什么水果,最值得关注的应该是统计调查数据的________ (填“中位数”、“平均数”或“众数”)19、四个自然数数据中的三个数分别是1、3、5,若它们的中位数也是整数,那么这四个自然数的和的最小值是.20、在调研玉米长势情况,科研小组随意抽取了一块地的5株玉米,测得它们的高为(单位:cm)78、85、77、76、109.这组成绩的平均分是x= ,中位数是m= ;若去掉最高的一株后的平均分x'= .那么所求的x,m,x'这三个数据中,你认为能描述这5株玉米高度的一般水平的数据是.三、解答题(共6题共60分)21、王亮学习数据分析初步知识后,连续记录了他家的每天用情况:时间(天) 第1天第2天第3天第4天第5天第6天第7天用电量(千瓦时) 1.6 1.7 1.6 1.5 1.6 2.0 2.6请你用学过的统计知识解决下面的问题:(1)王亮家每月(按30天计算)用电量的多少千瓦时?(2)若用电费用是每千瓦时0.5469元,请你算出王亮家一年(按12个月计算)的电费用大约是多少元?22、已知A组数据如下:4,2,-2,-1,3,-1,2;(1)求A组数据的众数和平均数;(2)从A组数据中选取5个数据,记这5个数据为B组数据,要求B组数据满足两个条件:①它的平均数与A组数据的平均数相等;②它的方差比A组数据的方差大.请你选取B组的数据,并请说明理由.23、甲、乙两名战士在相同条件下各射靶6次,每次命中的环数分别是:(单位:环)甲:5,9,10,7,7,10;乙:7,9,10,8,6,8.(1)分别计算甲、乙两名战士的平均数和方差;(2)哪名战士的成绩比较稳定.24、某厂为了解工人在单位时间内加工同一种零件的技能水平,随机抽取了50名工人加工的零件进行检测,统计出他们各自加工的合格品数是1到8这八个整数,现提供统计图的部分信息如图,请解答下列问题:(1)根据统计图,求这50名工人加工出的合格品数的中位数;(2)设加工出的合格品数5件和6件的人数分别为x和y人,且这50名工人加工出的合格品数的平均数为4件,求出x、y的值第24题图和加工出合格品数的众数;(3)厂方认定,工人在单位时间内加工出的合格品数不低于3件为技能合格,否则,将接受技能再培训.已知该厂有同类工人550名,请估计该厂将接受技能再培训的人数.25、为了让同学们了解自己的体育水平,初二1班的体育刘老师对全班45名学生进行了一次体育模拟测试(得分均为整数),成绩满分为10分,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表平均分方差中位数众数男生 2 8 7女生7.92 1.99 8根据以上信息,解答下列问题:(1)这个班共有男生人,共有女生人;(2)补全初二1班体育模拟测试成绩分析表;(3)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并写出一条支持你的看法的理由.26、甲、乙两家电器商场以相同价格试销同一种品牌冰箱.在10天中,两家商场的每天销售量分别统计如表:第1 第2 第3 第4 第5 第6 第7 第8 第9 第10天天天天天天天天天天甲商场销0 3 2 1 4 3 6 5 7 9售量(台)乙商场销1 2 3 4 3 4 5 5 6 7售量(台)(1)求甲、乙两家商场的每天平均销量;(2)甲、乙两家商场每天销售的中位数分别是多少?(3)在10天中,哪家商场的销售量更稳定?为什么?参考答案一、选择题(共10小题每3分共30分)题号 1 2 3 4 5 6 7 8 9 10答案C BD B A C B A C C11、62或5.64 12、中位数和平均数 13、1或16或32 14、18,6 15、3x -5,92S . 16、30 17、29或39 18、众数 19、9或10或12或14 20、85,77,79,79. 三、解答题(共6题 共60分)21、王亮学习数据分析初步知识后,连续记录了他家的每天用情况:时间(天) 第1天 第2天 第3天 第4天 第5天 第6天 第7天 用电量(千瓦时)1.61.71.61.51.62.02.6请你用学过的统计知识解决下面的问题:(1)王亮家每月(按30天计算)用电量的多少千瓦时?(2)若用电费用是每千瓦时0.5469元,请你算出王亮家一年(按12个月计算)的电费用大约是多少元? 解:(1)根据题意得:71(1.6+1.7+1.6+1.5+1.6+2+2.6)=71×12.6=1.8(千瓦时), 1.8×30=54(千瓦时),答:王亮家每月(按30天计算)用电量的54千瓦时; (2)根据题意得:54×12×0.5469≈354(元).答:若电每千瓦时0.5469元,请你算出王亮家一年(按12个月计算)的电费用大约是354元. 22、 已知A 组数据如下:4,2,-2,-1,3,-1,2; (1)求A 组数据的众数和平均数;(2)从A 组数据中选取5个数据,记这5个数据为B 组数据,要求B 组数据满足两个条件:①它 的平均数与A 组数据的平均数相等;②它的方差比A 组数据的方差大.请你选取B 组的数据, 并请说明理由. 22.(1)解:众数为-1和2; ∵平均数72131224+-+--+=1,∴A 组数据的平均数是1.(2)所选B 组数据为4,2,-1,- 2, 2; 理由:则B 组数据的平均数为522124+--+=1,A 组数据的方差为2A S =71[(4-1)2+2×(2-1)2+(-2-1)2+2×(-1-1)2+(3-1)2]=732, B 组数据的方差为2B S =51 [(4-1)2+2×(2-1)2+(-2-1)2+(-1-1)2]= 524.∵524>732, ∴22B AS S > 故选取B 组的数据可以是:4,2,-1,- 2, 2.(答案不唯一)23、甲、乙两名战士在相同条件下各射靶6次,每次命中的环数分别是:(单位:环) 甲:5,9,10,7,7,10; 乙:7,9,10,8,6,8.(1)分别计算甲、乙两名战士的平均数和方差;(2)哪名战士的成绩比较稳定. 解:(1)由题意知,甲的平均数=61(5+9+10+7+7+10)=8, 乙的平均数=61(7+9+10+8+6+8)=8. 2S 甲=61[(5-8)2+(9-8)2+(10-8)2+(7-8)2+(7-8)2+(10-8)2]= 310, 2S 乙=61 [(7-8)2+(9-8)2+(10-8)2+(8-8)2+(6-8)2+(8-8)2]= 35. (2)∵2S 甲>2S 乙 ,∴乙战士比甲战士射击情况稳定.24、某厂为了解工人在单位时间内加工同一种零件的技能水平,随机抽取了50名工人加工的零件进行检测,统计出他们各自加工的合格品数是1到8这八个整数,现提供统计图的部分信息如图, 请解答下列问题:(1)根据统计图,求这50名工人加工出的合 格品数的中位数;(2)设加工出的合格品数5件和6件的人数 分别为x 和y 人,且这50名工人加工出的 合格品数的平均数为4件,求出x 、y 的值 和加工出合格品数的众数;(3)厂方认定,工人在单位时间内加工出的合格品数不低于3件为技能合格,否则,将接受技能再培训.已知该厂有同类工人550名,请估计该厂将接受技能再培训的人数. (1)∵把合格品数从小到大排列,第25,26个数都为4, ∴中位数为4;(2)根据题意,得⎩⎨⎧=+=+786518y x y x ,解方程,得⎩⎨⎧==126y x .故众数6.第24题图(3)这50名工人中,合格品低于3件的人数为2+6=8(人), 故该厂将接受再培训的人数约有550×508=88(人). 25、为了让同学们了解自己的体育水平,初二1班的体育刘老师对全班45名学生进行了一次体育模拟测试(得分均为整数),成绩满分为10分,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表平均分 方差 中位数 众数 男生2 8 7 女生7.921.998根据以上信息,解答下列问题:(1)这个班共有男生 人,共有女生 人; (2)补全初二1班体育模拟测试成绩分析表;(4)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并写出一条支持你的看法的理由.解:(1)这个班共有男生1+2+6+3+5+3=20人,共有女生45-20=25人, 故答案为:20、25; (2)甲的平均分为201(5+6×2+7×6+8×3+9×5+10×3)=7.9, 由扇形统计图得出,8分的占28%,所以女生的众数为8, 补全表格如下:平均分 方差 中位数 众数 男生 7.9 2 8 7 女生7.921.9988(3)从方差看,女生队的方差低于男生队的方差,所以女生队表现更突出.第25题图26、甲、乙两家电器商场以相同价格试销同一种品牌冰箱.在10天中,两家商场的每天销售量分别统计如表:第1 天 第2 天 第3 天 第4 天 第5 天 第6 天 第7 天 第8 天 第9 天 第10 天 甲商场销 售量(台) 0 3 2 1 4 3 6 5 7 9 乙商场销 售量(台) 1234345567(1)求甲、乙两家商场的每天平均销量;(2)甲、乙两家商场每天销售的中位数分别是多少? (3)在10天中,哪家商场的销售量更稳定?为什么? 26.解:(1)甲商场的每天平均销量为:101(0+3×2+2+1+4+6+5+7+9)=4, 乙商场的每天平均销量为:101(1+2+3×2+4×2+5×2+6+7)=4 ; (2)把甲商场的每天销量从小到大排列为:0,1,2,3,3,4,5,6,7,9,最中间两个数的平均数是(3+4)÷2=3.5(台), 则中位数是3.5台;把乙商场的每天销量从小到大排列为:1,2,3,3,4,4,5,5,6,7,最中间两个数的平均数是(4+4)÷2=4(台),则中位数是4台; (3)乙商场的销售量更稳定. 甲商场的每天销售量的方差为:101[(0-4)2+2×(3-4)2+(2-4)2+(1-4)2+(4-4)2+(6-4)2+(5-4)2+(7-4)2+(9-4)2]=5.4, 乙商场的每天销售量的方差为:101[(1-4)2+(2-4)2+2×(3-4)2+2×(4-4)2+2×(4-5)2+(6-4)2+2×(7-4)2]=3.9; ∵3.9<5.4,∴乙商场的销售量更稳定.。
数据分析经典测试题附答案

数据分析经典测试题附答案一、选择题1.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加一些41码的衬衫,影响该店主决策的统计量是( )A.平均数B.方差C.中位数D.众数【答案】D【解析】【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选D.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.2.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:那么20名学生决赛成绩的众数和中位数分别是( )A.85,90 B.85,87.5 C.90,85 D.95,90【答案】B【解析】试题解析:85分的有8人,人数最多,故众数为85分;处于中间位置的数为第10、11两个数,为85分,90分,中位数为87.5分.故选B.考点:1.众数;2.中位数3.在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①22s s >甲乙;②22s s <甲乙;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定.由统计图可知正确的结论是( )A .①③B .①④C .②③D .②④【答案】C 【解析】 【分析】从折线图中得出甲乙的射击成绩,再利用方差的公式计算,即可得出答案. 【详解】由图中知,甲的成绩为7,7,8,9,8,9,10,9,9,9, 乙的成绩为8,9,7,8,10,7,9,10,7,10,x 甲=(7+7+8+9+8+9+10+9+9+9)÷10=8.5, x 乙=(8+9+7+8+10+7+9+10+7+10)÷10=8.5,甲的方差S 甲2=[2×(7-8.5)2+2×(8-8.5)2+(10-8.5)2+5×(9-8.5)2]÷10=0.85, 乙的方差S 乙2=[3×(7-8.5)2+2×(8-8.5)2+2×(9-8.5)2+3×(10-8.5)2]÷10=1.45, ∴S 2甲<S 2乙,∴甲的射击成绩比乙稳定; 故选:C . 【点睛】本题考查方差的定义与意义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4.有甲、乙两种糖果,原价分别为每千克a 元和b 元.根据调查,将两种糖果按甲种糖果x 千克与乙种糖果y 千克的比例混合,取得了较好的销售效果.现在糖果价格有了调整:甲种糖果单价下降15%,乙种糖果单价上涨20%,但按原比例混合的糖果单价恰好不变,则xy等于( ) A .34a b B .43a bC .34b aD .43b a【答案】D【解析】【分析】根据已知条件表示出价格变化前后两种糖果的平均价格,进而得出等式求出即可.【详解】解:∵甲、乙两种糖果,原价分别为每千克a元和b元,两种糖果按甲种糖果x千克与乙种糖果y千克的比例混合,∴两种糖果的平均价格为:ax byx y++,∵甲种糖果单价下降15%,乙种糖果单价上涨20%,∴两种糖果的平均价格为:1520 (1)(1)100100a xb yx y-•+++,∵按原比例混合的糖果单价恰好不变,∴ax byx y++=1520(1)(1)100100a xb yx y-•+++,整理,得15ax=20by∴43x by a =,故选:D.【点睛】本题考查了加权平均数,解决本题的关键是表示出价格变化前后两种糖果的平均价格.5.为全力抗战疫情,响应政府“停课不停学”号召,东营市教育局发布关于疫情防控期间开展在线课程教学的通知:从2月10日开始,全市中小学按照教学计划,开展在线课程教学和答疑.据互联网后台数据显示,某中学九年级七科老师2月10日在线答疑问题总个数如下表所示则2月10日该中学九年级七科老师在线答疑问题总个数的平均数是()A.22 B.24 C.25 D.26【答案】C【解析】【分析】把7个数相加再除以7即可求得其平均数.【详解】由题意得,九年级七科老师在线答疑问题总个数的平均数是1(26282826242122)257++++++=,故选:C【点睛】此题考查了平均数的计算,掌握计算方法是解答此题的关键.6.某小组长统计组内6人一天在课堂上的发言次数分別为3,3,4,6,5,0.则这组数据的众数是()A.3 B.3.5 C.4 D.5【答案】A【解析】【分析】根据众数的定义,找数据中出现次数最多的数据即可.【详解】在3,3,4,6,5,0这组数据中,数字3出现了2次,为出现次数最多的数,故众数为3.故选A.【点睛】本题考查了众数的概念.众数是一组数据中出现次数最多的数据.7.在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是()A.中位数是90 B.平均数是90 C.众数是87 D.极差是9【答案】C【解析】【分析】根据中位数、平均数、众数、极差的概念求解.【详解】解:这组数据按照从小到大的顺序排列为:87,87,91,93,96,97,则中位数是(91+93)÷2=92,平均数是(87+87+91+93+96+97)÷6=9156,众数是87,极差是97﹣87=10.故选C.【点睛】本题考查了中位数、平均数、众数、极差的知识,掌握各知识点的概念是解答本题的关键.8.某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选()A.丁B.丙C.乙D.甲【答案】B【解析】【分析】先比较平均数得到甲和丙成绩较好,然后比较方差得到丙的状态稳定,即可决定选丙去参赛.【详解】∵甲、丙的平均数比乙、丁大,∴甲和丙成绩较好,∵丙的方差比甲的小,∴丙的成绩比较稳定,∴丙的成绩较好且状态稳定,应选的是丙,故选:B.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.9.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A.极差是47 B.众数是42C.中位数是58 D.每月阅读数量超过40的有4个月【答案】C【解析】【分析】根据统计图可得出最大值和最小值,即可求得极差;出现次数最多的数据是众数;将这8个数按大小顺序排列,中间两个数的平均数为中位数;每月阅读数量超过40的有2、3、4、5、7、8,共六个月.【详解】A、极差为:83-28=55,故本选项错误;B、∵58出现的次数最多,是2次,∴众数为:58,故本选项错误;C、中位数为:(58+58)÷2=58,故本选项正确;D、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误;故选C.10.某兴趣小组为了解我市气温变化情况,记录了今年月份连续6天的最低气温(单----,关于这组数据,下列结论不正确的是()位:℃):7,4,2,1,2,2A.平均数是B.中位数是C.众数是D.方差是【答案】D【解析】【分析】一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].【详解】解:有题意可得,这组数据的众数为-2,中位数为-2,平均数为-2,方差是9故选D.11.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5【答案】A【解析】试题分析:根据众数和中位数的定义求解可得.解:由表可知25出现次数最多,故众数为25;12个数据的中位数为第6、7个数据的平均数,故中位数为25252=25,故选:A.12.校团委组织开展“医助武汉捐款”活动,小慧所在的九年级(1)班共40名同学进行了捐款,已知该班同学捐款的平均金额为10元,二小慧捐款11元,下列说法错误的是( ) A.10元是该班同学捐款金额的平均水平B.班上比小慧捐款金额多的人数可能超过20人C.班上捐款金额的中位数一定是10元D.班上捐款金额数据的众数不一定是10元【答案】C【解析】【分析】根据平均数,中位数及众数的定义依次判断.【详解】∵该班同学捐款的平均金额为10元,∴10元是该班同学捐款金额的平均水平,故A正确;∵九年级(1)班共40名同学进行了捐款,捐款的平均金额为10元,∴班上比小慧捐款金额多的人数可能超过20人,故B正确;班上捐款金额的中位数不一定是10元,故C错误;班上捐款金额数据的众数不一定是10元,故D正确,故选:C.【点睛】此题考查数据统计中的平均数,中位数及众数的定义,正确理解定义是解题的关键.13.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6【答案】D【解析】【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可.【详解】A、数据中5出现2次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.14.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:则下列叙述正确的是()A.这些运动员成绩的众数是 5B.这些运动员成绩的中位数是 2.30C.这些运动员的平均成绩是 2.25D.这些运动员成绩的方差是 0.0725【答案】B【解析】【分析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.【详解】由表格中数据可得:A、这些运动员成绩的众数是2.35,错误;B、这些运动员成绩的中位数是2.30,正确;C、这些运动员的平均成绩是 2.30,错误;D、这些运动员成绩的方差不是0.0725,错误;故选B.【点睛】考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.15.关于数据-4,1,2,-1,2,下面结果中,错误的是( ) A .中位数为1 B .方差为26C .众数为2D .平均数为0【答案】B 【解析】 【分析】 【详解】A .∵从小到大排序为-4,-1,,1,2,2,∴中位数为1 ,故正确;B .4121205x -++-+== ,()()()()222224010102022655s --+--+-+-⨯==,故不正确;C .∵众数是2,故正确;D .4121205x -++-+==,故正确;故选B.16.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:关于以上数据,说法正确的是( ) A .甲、乙的众数相同 B .甲、乙的中位数相同 C .甲的平均数小于乙的平均数 D .甲的方差小于乙的方差【答案】D 【解析】 【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得. 【详解】甲:数据7出现了2次,次数最多,所以众数为7, 排序后最中间的数是7,所以中位数是7,26778==65x ++++甲,()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4,乙:数据8出现了2次,次数最多,所以众数为8, 排序后最中间的数是4,所以中位数是4,23488==55x 乙++++,()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4,所以只有D 选项正确, 故选D. 【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.17.在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是( )A .96分,98分B .97分,98分C .98分,96分D .97分,96分【答案】A 【解析】 【分析】利用众数和中位数的定义求解. 【详解】98出现了9次,出现次数最多,所以数据的众数为98分;共有25个数,最中间的数为第13个数,是96,所以数据的中位数为96分. 故选A . 【点睛】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.18.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表: 比赛成绩/分9.59.69.79.89.9参赛队个数98643则这30个参赛队决赛成绩的中位数和众数分别是()A.9.7,9.5 B.9.7,9.9 C.9.6,9.5 D.9.6,9.6【答案】C【解析】【分析】根据众数和中位数的定义求解可得.【详解】解:由表知,众数为9.5分,中位数为=9.6(分),故选:C.【点睛】考查了众数和中位数的定义,一组数据中出现次数最多的数据叫做众数;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.19.下列说法正确的是()A.对角线相等的四边形一定是矩形B.任意掷一枚质地均匀的硬币10次,一定有5次正面向上C.如果有一组数据为5,3,6,4,2,那么它的中位数是6D.“用长分别为5cm、12cm、6cm的三条线段可以围成三角形”这一事件是不可能事件【答案】D【解析】【分析】根据矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义依次判断即可.【详解】A.对角线相等的平行四边形是矩形,故该项错误;B. 任意掷一枚质地均匀的硬币10次,不一定有5次正面向上,故该项错误;C. 一组数据为5,3,6,4,2,它的中位数是4,故该项错误;D. “用长分别为5cm、12cm、6cm的三条线段可以围成三角形” 这一事件是不可能事件,正确,故选:D.【点睛】此题矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义,综合掌握各知识点是解题的关键.20.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是()A.甲队员成绩的平均数比乙队员的大B.乙队员成绩的平均数比甲队员的大C.甲队员成绩的中位数比乙队员的大D.甲队员成绩的方差比乙队员的大【答案】D【解析】【分析】根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案.【详解】甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数882=8,甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数是8,乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷9=8(环),甲队员成绩的方差=110×[(6-8)2+3×(7-8)2+2×(8-8)3+3×(9-8)2+(10-8)2]=1.4;乙队员成绩的方差=110×[(6-8)2+2×(7-8)2+4×(8-8)3+2×(9-8)2+(10-8)2]=1.2,综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差,故选D.【点睛】本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.。
数据分析经典测试题附答案

数据分析经典测试题附答案一、选择题1.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:衬衫尺码3940414243平均每天销售件1012201212数该店主决定本周进货时,增加一些41码的衬衫,影响该店主决策的统计量是( )A.平均数B.方差C.中位数D.众数【答案】D【解析】【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】由于众数是数据中浮现次数最多的数,故影响该店主决策的统计量是众数.故选D.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.2.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:决赛成绩/分95908580人数4682那末20名学生决赛成绩的众数和中位数分别是( )A.85,90 B.85,87.5 C.90,85 D.95,90【答案】B【解析】试题解析:85分的有8人,人数最多,故众数为85分;处于中间位置的数为第10、11两个数,为85分,90分,中位数为87.5分.故选B.考点:1.众数;2.中位数3.在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①22s s >甲乙;②22s s <甲乙;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定.由统计图可知正确的结论是( )A .①③B .①④C .②③D .②④【答案】C 【解析】 【分析】从折线图中得出甲乙的射击成绩,再利用方差的公式计算,即可得出答案. 【详解】由图中知,甲的成绩为7,7,8,9,8,9,10,9,9,9, 乙的成绩为8,9,7,8,10,7,9,10,7,10,x 甲=(7+7+8+9+8+9+10+9+9+9)÷10=8.5,x 乙=(8+9+7+8+10+7+9+10+7+10)÷10=8.5,甲的方差S 甲2=[2×(7-8.5)2+2×(8-8.5)2+(10-8.5)2+5×(9-8.5)2]÷10=0.85, 乙的方差S 乙2=[3×(7-8.5)2+2×(8-8.5)2+2×(9-8.5)2+3×(10-8.5)2]÷10=1.45, ∴S 2甲<S 2乙,∴甲的射击成绩比乙稳定; 故选:C . 【点睛】本题考查方差的定义与意义:普通地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4.有甲、乙两种糖果,原价分别为每千克a 元和b 元.根据调查,将两种糖果按甲种糖果x 千克与乙种糖果y 千克的比例混合,取得了较好的销售效果.现在糖果价格有了调整:甲种糖果单价下降15%,乙种糖果单价上涨20%,但按原比例混合的糖果单价恰好不变,则xy等于( )A .34a bB .43a bC .34b aD .43b a【答案】D【解析】【分析】根据已知条件表示出价格变化先后两种糖果的平均价格,进而得出等式求出即可.【详解】解:∵甲、乙两种糖果,原价分别为每千克a元和b元,两种糖果按甲种糖果x千克与乙种糖果y千克的比例混合,∴两种糖果的平均价格为:ax byx y++,∵甲种糖果单价下降15%,乙种糖果单价上涨20%,∴两种糖果的平均价格为:1520 (1)(1)100100a xb yx y-•+++,∵按原比例混合的糖果单价恰好不变,∴ax byx y++=1520(1)(1)100100a xb yx y-•+++,整理,得15ax=20by∴43x by a =,故选:D.【点睛】本题考查了加权平均数,解决本题的关键是表示出价格变化先后两种糖果的平均价格.5.为全力抗战疫情,响应政府“停课不停学”号召,东营市教育局发布关于疫情防控期间开展在线课程教学的通知:从2月10日开始,全市中小学按照教学计划,开展在线课程教学和答疑.据互联网后台数据显示,某中学九年级七科老师2月10日在线答疑问题总个数如下表所示则2月10日该中学九年级七科老师在线答疑问题总个数的平均数是()A.22 B.24 C.25 D.26【答案】C【解析】【分析】把7个数相加再除以7即可求得其平均数.【详解】由题意得,九年级七科老师在线答疑问题总个数的平均数是1(26282826242122)257++++++=,故选:C【点睛】此题考查了平均数的计算,掌握计算方法是解答此题的关键.6.某小组长统计组内6人一天在课堂上的发言次数分別为3,3,4,6,5,0.则这组数据的众数是()A.3 B.3.5 C.4 D.5【答案】A【解析】【分析】根据众数的定义,找数据中浮现次数最多的数据即可.【详解】在3,3,4,6,5,0这组数据中,数字3浮现了2次,为浮现次数最多的数,故众数为3.故选A.【点睛】本题考查了众数的概念.众数是一组数据中浮现次数最多的数据.7.在创建安全校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是( )A.中位数是90 B.平均数是90 C.众数是87 D.极差是9【答案】C【解析】【分析】根据中位数、平均数、众数、极差的概念求解.【详解】解:这组数据按照从小到大的顺序罗列为:87,87,91,93,96,97,则中位数是(91+93)÷2=92,平均数是(87+87+91+93+96+97)÷6=9156,众数是87,极差是97﹣87=10.故选C.【点睛】本题考查了中位数、平均数、众数、极差的知识,掌握各知识点的概念是解答本题的关键.8.某校在中国学生核心素质知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:甲乙丙丁平均分8.58.28.58.2方差 1.8 1.2 1.2 1.1最高分9.89.89.89.7如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选()A.丁B.丙C.乙D.甲【答案】B【解析】【分析】先比较平均数得到甲和丙成绩较好,然后比较方差得到丙的状态稳定,即可决定选丙去参赛.【详解】∵甲、丙的平均数比乙、丁大,∴甲和丙成绩较好,∵丙的方差比甲的小,∴丙的成绩比较稳定,∴丙的成绩较好且状态稳定,应选的是丙,故选:B.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.9.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A .极差是47B .众数是42C .中位数是58D .每月阅读数量超过40的有4个月【答案】C 【解析】 【分析】根据统计图可得出最大值和最小值,即可求得极差;浮现次数最多的数据是众数;将这8个数按大小顺序罗列,中间两个数的平均数为中位数;每月阅读数量超过40的有2、3、4、5、7、8,共六个月. 【详解】A 、极差为:83-28=55,故本选项错误;B 、∵58浮现的次数最多,是2次, ∴众数为:58,故本选项错误;C 、中位数为:(58+58)÷2=58,故本选项正确;D 、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误; 故选C .10.某兴趣小组为了解我市气温变化情况,记录了今年月份连续6天的最低气温(单位:℃):7,4,2,1,2,2----,关于这组数据,下列结论不正确的是( ) A .平均数是B .中位数是C .众数是D .方差是【答案】D 【解析】 【分析】一组数据中浮现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或者从大到小)的顺序罗列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.普通地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2]. 【详解】解:有题意可得,这组数据的众数为-2,中位数为-2,平均数为-2,方差是9 故选D .11.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是( )码(cm)23.52424.52525.5销售量(双)12252A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5【答案】A【解析】试题分析:根据众数和中位数的定义求解可得.解:由表可知25浮现次数最多,故众数为25;12个数据的中位数为第6、7个数据的平均数,故中位数为25252=25,故选:A.12.校团委组织开展“医助武汉捐款”活动,小慧所在的九年级(1)班共40名同学进行了捐款,已知该班同学捐款的平均金额为10元,二小慧捐款11元,下列说法错误的是( ) A.10元是该班同学捐款金额的平均水平B.班上比小慧捐款金额多的人数可能超过20人C.班上捐款金额的中位数一定是10元D.班上捐款金额数据的众数不一定是10元【答案】C【解析】【分析】根据平均数,中位数及众数的定义挨次判断.【详解】∵该班同学捐款的平均金额为10元,∴10元是该班同学捐款金额的平均水平,故A正确;∵九年级(1)班共40名同学进行了捐款,捐款的平均金额为10元,∴班上比小慧捐款金额多的人数可能超过20人,故B正确;班上捐款金额的中位数不一定是10元,故C错误;班上捐款金额数据的众数不一定是10元,故D正确,故选:C.【点睛】此题考查数据统计中的平均数,中位数及众数的定义,正确理解定义是解题的关键.13.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是( )A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6【答案】D【解析】【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可.【详解】A、数据中5浮现2次,所以众数为5,此选项正确;B、数据重新罗列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.14.郑州某中学在备考2022河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:成绩(单位:米) 2.10 2.20 2.25 2.30 2.35 2.40 2.45 2.50人数23245211则下列叙述正确的是( )A.这些运动员成绩的众数是 5B.这些运动员成绩的中位数是 2.30C.这些运动员的平均成绩是 2.25D.这些运动员成绩的方差是 0.0725【答案】B【解析】【分析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.【详解】由表格中数据可得:A、这些运动员成绩的众数是2.35,错误;B、这些运动员成绩的中位数是2.30,正确;C、这些运动员的平均成绩是 2.30,错误;D、这些运动员成绩的方差不是0.0725,错误;故选B.【点睛】考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或者从大到小)重新罗列后,最中间的那个数(或者最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.15.关于数据-4,1,2,-1,2,下面结果中,错误的是( )A.中位数为1 B.方差为26 C.众数为2 D.平均数为0【答案】B【解析】【分析】【详解】A.∵从小到大排序为-4,-1,,1,2,2,∴中位数为1 ,故正确;B.412125x-++-+==,()()()() 222224010102022655s--+--+-+-⨯==,故不正确;C.∵众数是2,故正确;D.412125x-++-+==,故正确;故选B.16.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲26778乙23488关于以上数据,说法正确的是()A.甲、乙的众数相同B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7浮现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,26778==65x ++++甲, ()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4,乙:数据8浮现了2次,次数最多,所以众数为8, 排序后最中间的数是4,所以中位数是4,23488==55x 乙++++, ()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4,所以惟独D 选项正确, 故选D. 【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.17.在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是( )A .96分,98分B .97分,98分C .98分,96分D .97分,96分【答案】A 【解析】 【分析】利用众数和中位数的定义求解. 【详解】98浮现了9次,浮现次数最多,所以数据的众数为98分;共有25个数,最中间的数为第13个数,是96,所以数据的中位数为96分. 故选A . 【点睛】本题考查了众数:一组数据中浮现次数最多的数据叫做众数.也考查了中位数.18.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表: 比赛成绩/分9.59.69.79.89.9参赛队个数98643则这30个参赛队决赛成绩的中位数和众数分别是( )A.9.7,9.5 B.9.7,9.9 C.9.6,9.5 D.9.6,9.6【答案】C【解析】【分析】根据众数和中位数的定义求解可得.【详解】解:由表知,众数为9.5分,中位数为=9.6(分),故选:C.【点睛】考查了众数和中位数的定义,一组数据中浮现次数最多的数据叫做众数;找中位数要把数据按从小到大的顺序罗列,位于最中间的一个数(或者两个数的平均数)为中位数;众数是一组数据中浮现次数最多的数据,注意众数可以不止一个.19.下列说法正确的是()A.对角线相等的四边形一定是矩形B.任意掷一枚质地均匀的硬币10次,一定有5次正面向上C.如果有一组数据为5,3,6,4,2,那末它的中位数是6D.“用长分别为5cm、12cm、6cm的三条线段可以围成三角形”这一事件是不可能事件【答案】D【解析】【分析】根据矩形的判定定理,数据浮现的可能性的大小,中位数的计算方法,不可能事件的定义挨次判断即可.【详解】A.对角线相等的平行四边形是矩形,故该项错误;B. 任意掷一枚质地均匀的硬币10次,不一定有5次正面向上,故该项错误;C. 一组数据为5,3,6,4,2,它的中位数是4,故该项错误;D. “用长分别为5cm、12cm、6cm的三条线段可以围成三角形” 这一事件是不可能事件,正确,故选:D.【点睛】此题矩形的判定定理,数据浮现的可能性的大小,中位数的计算方法,不可能事件的定义,综合掌握各知识点是解题的关键.20.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是( )A.甲队员成绩的平均数比乙队员的大B.乙队员成绩的平均数比甲队员的大C.甲队员成绩的中位数比乙队员的大D.甲队员成绩的方差比乙队员的大【答案】D【解析】【分析】根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案.【详解】甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数882=8,甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数是8,乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷9=8(环),甲队员成绩的方差=110×[(6-8)2+3×(7-8)2+2×(8-8)3+3×(9-8)2+(10-8)2]=1.4;乙队员成绩的方差=110×[(6-8)2+2×(7-8)2+4×(8-8)3+2×(9-8)2+(10-8)2]=1.2,综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差,故选D.【点睛】本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.。
第二十章 数据的初步分析 单元测试题(含答案)

数据的初步分析单元测试题一、单选题1.(本题3分)益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表:文化程度高中大专本科硕士博士人数9 17 20 9 5关于这组文化程度的人数数据,以下说法正确的是:()A.众数是20 B.中位数是17 C.平均数是12 D.方差是262.(本题3分)在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是()A.中位数是90 B.平均数是90 C.众数是87 D.极差是93.(本题3分)已知A组数据为2、3、6、6、7、8、8、8,B组数据为4、5、8、8、9、10、10、10,则描述A、B两组数据的统计量中相等的是()A.众数 B.中位数 C.平均数 D.方差4.(本题3分)下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩根据统计图中的信息可得,下列结论正确的是A.甲队员成绩的平均数比乙队员的大 B.甲队员成绩的方差比乙队员的大C.甲队员成绩的中位数比乙队员的大 D.乙队员成绩的方差比甲队员的大5.(本题3分)在一次“我的青春,我的梦”演讲比赛中,五名选手的成绩及部分统计信息如下表,其中被遮住的两个数据依次是组员及项目甲乙丙丁戊方差平均成绩试卷第1页,总6页试卷第2页,总6页A . 88,B . 88,2C . 90,D . 90,26.(本题3分)朗读者是中央电视台推出的大型文化情感类节目,节目旨在实现文化感染人、鼓舞人、教育人的引导作用为此,某校举办演讲比赛,李华根据演讲比赛时九位评委所给的分数制作了如下表格:平均数 中位数 众数 方差对9位评委所给的分数,去掉一个最高分和一个最低分后,表格中数据一定不发生变化的是A . 平均数B . 中位数C . 众数D . 方差7.(本题3分)某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产量分别是x 甲=610千克,x 乙=609千克,亩产量的方差分别是2S 甲=29.6, 2S 乙=2.则关于两种小麦推广种植的合理决策是( )A . 甲的平均亩产量较高,应推广甲B . 甲、乙的平均亩产量相差不多,均可推广C . 甲的平均亩产量较高,且亩产量比较稳定,应推广甲D . 甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙8.(本题3分)如图是某单元楼居民六月份的用电(单位:度)情况,则关于用电量的描述不正确的是( )A . 众数为30B . 中位数为25C . 平均数为24D . 方差为839.(本题3分)X,X,…X的平均数为4,X,X…X的平均数为6,则X,X,…X,X…X的平均数为( )A . 5B . 4C . 3D . 8得分918992909010.(本题3分)某地区某月前两周从周一至周五每天的最低气温是单位:,和,若第一周这五天的平均气温为,则第二周这五天的平均气温为A. B. C. D.二、填空题11.(本题4分)一组数据2、4、x、2、4、3、5的众数是2,则这组数据的中位数为______.12.(本题4分)某中学规定学生的学期总评成绩满分为100分,其中平时成绩占20%,期中考试成绩占30%,期末考试成绩占50%,小明的数学三项成绩(百分制)依次为85分,80分,90分,则小明这学期的数学总评成绩是______分.13.(本题4分)某市近8日每日最高气温折线统计图如图所示,这组每日最高气温数据的位数是_____度.14.(本题4分)某班进行个人投篮比赛,受污损的下表记录了在规定时间内投进几个球的人数分布情况,已知进球3个或3个以上的人平均每人投进3.5个球,进球4个或4个以下的人平均每人投进2.5个球,则投进3个球的有____人,投进4个球的有___人.进球数n(个) 0 1 2 3 4 5投进n个球的人数 1 2 7 215.(本题4分)某校八年级学生开展踢毽子比赛活动,每班派5名学生参加.按团体总分多少排列名次,在规定时间每人踢100个以上(含100个)为优秀,下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个),经统计发现两班总分相等,此时有学生建议,可通过考查数据中的其他信息作为参考.请你回答下列问题:1号2号3号4号5号总分甲班100 98 110 89 103 500乙班86 100 98 119 97 500(1)根据上表提供的数据填写下表:优秀率中位数方差试卷第3页,总6页三、解答题16.(本题10分)某市举行一次少年滑冰比赛,各年龄组的参赛人数如下表所示:(1)求全体参赛选手年龄的众数、中位数;(2)小明说,他所在年龄组的参赛人数占全体参赛人数的28%.你认为小明是哪个年龄组的选手?请说明理由.17.(本题10分)某校欲招聘一名数学教师,学校对甲乙丙三位候选人进行三项能力测试,各项成绩满分均为100分,根据结果择优录用,三位候选人测试成绩如下表:(1)如果根据三项测试成绩的平均成绩,谁将被录用?为什么?(2)根据实际需要学校将三项能力测试得分按8:2:2的比例确定每人的成绩,谁将被录用?为什么?18.(本题10分)18.(本题10分)春节联欢晚会往往对"最喜欢的节目"进行调查,下面表中是戏曲类节目收集的数据试卷第4页,总6页试卷第5页,总6页名 称ABCDE喜爱(人数) 1870万 728万 12405万 68万 520万(1)调查收集的数据有用吗?(2)最受欢迎的戏曲是哪个?说明你的理由?(3)能说戏曲D不好吗?19.(本题10分)甲、乙两名队员参加射击训练,成绩分别绘制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩(环) 中位数(环) 众数(环) 方差甲 a 7 7 1.2乙 7 b 8 c(1)写出表格中a ,b ,c 的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击成绩,若选派其中一名参赛,你认为应选哪名队员?20.(本题10分)某班为了从甲、乙两位同学中选出班长,进行了一次演讲答辩与民主测评,A 、B 、C 、D 、E 五位老师作为评委,对“演讲答辩”情况进行评价,全班50位同学参与了民主测评结果如表所示:表1演讲答辩得分表单位:分A B C D E甲90 92 94 95 88乙89 86 87 94 91表2民主测评票数统计表单位:张“好”票数“较好”票数“一般”票数甲40 7 3乙42 4 4规定:演讲答辩得分按“去掉一个最高分和一个最低分再算平均分”的方法确定;民主测评得分“好”票数分“较好”票数分“一般”票数分;综合得分演讲答辩得分民主测评得分;当时,甲的综合得分是多少?如果以综合得分来确定班长,试问:甲、乙两位同学哪一位当选为班长?并说明理由.试卷第6页,总6页本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
数据分析基础测试题含答案

数据分析基础测试题含答案一、选择题1.已知一组数据a, b, c的平均数为5,方差为4,那么数据a-2, b・2, c-2的平均数和方差分别是.( )A.3, 2B. 3, 4C. 5, 2D. 5, 4【答案】B【解析】试题分析:平均数为2 (a-2 + b-2 + c-2 ) =- (3x5-6) =3;原来的方差:3 3|[(dr-5)2 + (* -5)2 + (c -5)2] = 4 ;新的方差:—2—3)'+3 —2—3): + (c —2—= —尸 + @ —» +5)*二斗,故选B.考点:平均数:方差.2.甲、乙、丙三个不同品种的苹果树在同一地区进行对比试验,从每个品种的苹果树中随机各抽取10棵,对它们的产量进行统计,绘制统计表如下:若从这三个品种中选择一个在该地区推广,则应选择的品种是()A.甲B.乙C.丙D.甲、乙中任选一个【答案】A【解析】【分析】根据平均数、方差等数据的进行判断即可.【详解】根据平均数、方差等数据的比较可以得出甲品种更适在该地区推广.故选:A【点睛】本题考查了平均数、方差,掌握平均数、方差的定义是解题的关键.3.某射击俱乐部将11名成员在某次射击训练中取得的成绩制成如图所示的条形统计图,由图可知,□名成员射击成绩的众数和中位数分别是( )【答案】B【解析】分析:中位数,因图中是按从小到人的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的那个数:对于众数可由条形统计图中出现频数最人或条形最高的数据写出.详解:由条形统计图知8环的人数最多,所以众数为8坏,由于共有口个数据,所以中位数为第6个数据,即中位数为8环,故选B.点睛:本题主要考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如呆数据有奇数个,则正中间的数字即为所求.如果是偶数个,则找中间两个数的平均数.4.已知一组数据a、b、c的平均数为5,方差为4,那么数据a+2、b+2、c+2的平均数和方差分别为( )A.7, 6B. 7, 4C. 5, 4D.以上都不对【答案】B【解析】【分析】根据数据a, b, c的平均数为5可知a+b+c=5x3,据此可得出扌(-2+b-2+c-2)的值;再由方差为4可得出数据a・2, b-2, c-2的方差.【详解】解:•・•数据a, b, c的平均数为5, Aa+b+c=5x3=15,— (a-2+b-2+c-2) =3,3・•・数据a・2, b-2, c-2的平均数是3;•・•数据a, b, c的方差为4,・•・*[ (a-5) 2+ (b-5) 2+ (c-5) 2]=4,a-2, b-2, c-2 的方差=§[ (a-2-3) 2+ (b-2-3) 2+ (c—2-3) 2]=—[(a-5) 2+ (b-5) 2+ (c-5) 2]=4> 3故选B. 【点睛】本题考查了平均数、方差,熟练掌握平均数以及方差的计算公式是解题的关键.5.多多班长统计去年1〜8月“书香校园"活动中全班同学的课外阅读数量(单位:本), 绘制了如图折线统计图,下列说法正确的是()A. 极差是47B.众数是42B.中位数是58 D.每月阅读数量超过40的有4个月【答案】C 【解析】 【分析】根据统计图可得出最人值和最小值,即可求得极差;出现次数最多的数据是众数:将这8 个数按人小顺序排列,中间两个数的平均数为中位数;每月阅读数量超过40的有2、3、 4、5、7、8,共六个月. 【详解】A 、 极差为:83-28=55,故本选项错误;B 、 ・・・58出现的次数最多,是2次,・••众数为:58,故本选项错误;C 、 中位数为:(58+58) 4-2=58,故本选项正确:D 、 每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选 项错误; 故选C.则12名队员的年龄()A.众数是20岁,中位数是19岁 B.众数是19岁,中位数是19岁刃8DTOo)a)403D2DlDoC.众数是19岁,中位数是20.5岁D.众数是19岁,中位数是20岁【答案】D【解析】【分析】中位数是指将统计总体当中的各个变量值按人小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数;众数是指在统计分布上具有明显集中趋势点的数值,代表数据的一般水平(众数可以不存在或多于一个).【详解】解:在这一组数据中19岁是出现次数最多的,故众数是19岁;将这组数据从小到人的顺序排列后,处于中间位置的数是20岁,那么由中位数的定义口I知,这组数据中的中位数是20岁.故选:D.【点睛】理解中位数和众数的定义是解题的关键.7.小明参加射击比赛,10次射击的成绩如表:若小明再射击2次,分别命中7坏、9环,与前10次相比,小明12次射击的成绩( )A.平均数变大,方差不变B.平均数不变,方差不变C.平均数不变,方差变大D.平均数不变,方差变小【答案】D【解析】【分析】首先利用计算出前10次射击的平均数,再计算出方差,然后计算出再射击2次后的平均数和方差,进而可得答案.【详解】前10 次平均数:(6x3+7x1+8x2+9x1+10x3) 4-10 = 8,方差:S2=^[ (6 - 8) 2x3+ (7 - 8) 2+ (8-8) 2x2+ (9-8) 2+3x (10-8) 2] = 2.6, 再射击2 次后的平均数::(6x3+7x1+8x2+9x1+10x3+7+9) 4-12 = 8,1 7方差:导=迈[(6-8)2x3+ (7-8) 2x2+ (8-8) 2x2+ (9・8) 2x2+3x (10-8) 2]=y , 平均数不变,方差变小,故选:D.【点睛】此题主要考查了方差和平均数,关键是掌握方差计算公式:S2=-[(XI- X)2+(X2 - X)II&甲、乙两名同学分别进行次射击训练,训练成绩(单位:坏)如下表对他们的训练成绩作如卞分析,其中说法正确的是()A.他们训练成绩的平均数相同B.他们训练成绩的中位数不同C.他们训练成绩的众数不同D.他们训练成绩的方差不同【答案】D【解析】【分析】利用方差的定义、以及众数和中位数的定义分别计算即可得出答案.【详解】•・•甲6次射击的成绩从小到大排列为6、7、8、8、9、10,・•・甲成绩的平均数为6+7 + 8 + 8-9 + 10=8,中位数为三之、众数为&6 2方差为[刈(6-8)2+ (7・ 8)2+2x (8 - 8)2+ (9 - 8)2+ (10-8)2]=-,6 3•・•乙6次射击的成绩从小到大排列为:7、7、8、8、8、9,4心打7 + 7 + 8 + 8 + 8 + 9 47 . “ 8 + 8.• •乙成绩制平b)故.丿、J--------- =—,中位数为-------- =8、众数为8,6 6 21 47 47 47 17方差为一刈2x (7 - —)2+3x(8 ——)2+(9 ——)牛一,6 6 6 6 36则甲、乙两人的平均成绩不相同、中位数和众数均相同,而方差不相同,故选D.【点睛】本题考查了中位数、方差以及众数的定义等知识,熟练掌握相关定义以及求解方法是解题的关键.9. 一组数据5, 4, 2, 5, 6的中位数是()A. 5B. 4C. 2D. 6【答案】A【解析】试题分析:将题目中数据按照从小到大排列是:2, 4, 5, 5, 6,故这组数据的中位数是5,故选A.考点:中位数;统计与概率.每天加工零件数的中位数和众数为()A. 6, 5B. 6, 6C. 5, 5D. 5, 6【答案】A 【解析】 【分析】根据众数、中位数的定义分别进行解答即可. 【详解】由表知数据5出现了 6次,次数最多,所以众数为5; 因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为— =6,2故选A. 【点睛】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这 组数据的众数.将一组数据按照从小到大(或从人到小)的顺序排列,如果数据的个数是 奇数,则处于中间位置的数就是这组数据的中位数;如呆这组数据的个数是偶数,则中间 两个数据的平均数就是这组数据的中位数.11. 某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺 码组成的一组数据中,众数和中位数分别是( )A. 25, 25B. 24.5, 25C. 25, 24.5D. 24.5, 24.5【答案】A【解析】试题分析:根据众数和中位数的定义求解可得.解:由表可知25出现次数最多,故众数为25:12个数据的中位数为第6、7个数据的平均数,故中位数为—4—=25,2故选:A.12.已知一组数据d—2, 4+2a, 6, 8 —3a, 9,其中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据分析基础测试题及答案一、选择题1.某地区汉字听写大赛中,10名学生得分情况如下表:分数50859095人数3421那么这10名学生所得分数的中位数和众数分别是()A.85和85 B.85.5和85 C.85和82.5 D.85.5和80【答案】A【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.【详解】把这组数据从小到大排列,处于中间位置的两个数都是85,那么由中位数的定义可知,这组数据的中位数是85;在这一组数据中85出现的次数最多,则众数是85;故选:A.【点睛】此题考查众数与中位数的意义.解题关键在于掌握众数是一组数据中出现次数最多的数据;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.2.某实验学校女子排球队12名队员的年龄分布如图所示,则这12名队员的年龄的众数、平均数分别是()A.15岁,14岁B.15岁,15岁C.15岁,156岁D.14岁,15岁【答案】A 【解析】【分析】根据众数、平均数的定义进行计算即即可.【详解】观察图表可知:人数最多的是5人,年龄是15岁,故众数是15.这12名队员的年龄的平均数是:1231311421551611412⨯+⨯+⨯+⨯+⨯=故选:A【点睛】本题主要考查众数、平均数,熟练掌握众数、平均数的定义是解题的关键.3.已知一组数据a、b、c的平均数为5,方差为4,那么数据a+2、b+2、c+2的平均数和方差分别为()A.7,6 B.7,4 C.5,4 D.以上都不对【答案】B【解析】【分析】根据数据a,b,c的平均数为5可知a+b+c=5×3,据此可得出13(-2+b-2+c-2)的值;再由方差为4可得出数据a-2,b-2,c-2的方差.【详解】解:∵数据a,b,c的平均数为5,∴a+b+c=5×3=15,∴13(a-2+b-2+c-2)=3,∴数据a-2,b-2,c-2的平均数是3;∵数据a,b,c的方差为4,∴13[(a-5)2+(b-5)2+(c-5)2]=4,∴a-2,b-2,c-2的方差=13[(a-2-3)2+(b-2-3)2+(c--2-3)2]= 13[(a-5)2+(b-5)2+(c-5)2]=4,故选B.【点睛】本题考查了平均数、方差,熟练掌握平均数以及方差的计算公式是解题的关键.4.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A.极差是47 B.众数是42C.中位数是58 D.每月阅读数量超过40的有4个月【答案】C【解析】【分析】根据统计图可得出最大值和最小值,即可求得极差;出现次数最多的数据是众数;将这8个数按大小顺序排列,中间两个数的平均数为中位数;每月阅读数量超过40的有2、3、4、5、7、8,共六个月.【详解】A、极差为:83-28=55,故本选项错误;B、∵58出现的次数最多,是2次,∴众数为:58,故本选项错误;C、中位数为:(58+58)÷2=58,故本选项正确;D、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误;故选C.5.某校四个绿化小组一天植树的棵数如下:10,x,10,8,已知这组数据的众数与平均数相等,则这组数据的中位数是( )A.8 B.9 C.10 D.12【答案】C【解析】【分析】根据这组数据的众数与平均数相等,可知这组数据的众数(因10出现了2次)与平均数都是10;再根据平均数是10,可求出这四个数的和是40,进而求出x的数值;然后把这四个数据按照从大到小的顺序排列,由于是偶数个数据,则中间两个数的平均数就是中位数.【详解】当x=8时,有两个众数,而平均数只有一个,不合题意舍去.当众数为10,根据题意得(10+10+x+8)÷4=10,解得x=12,将这组数据按从小到大的顺序排列为8,10,10,12,处于中间位置的是10,10,所以这组数据的中位数是(10+10)÷2=10. 故选C . 【点睛】本题为统计题,考查平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.6.在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①22s s >甲乙;②22s s <甲乙;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定.由统计图可知正确的结论是( )A .①③B .①④C .②③D .②④【答案】C 【解析】 【分析】从折线图中得出甲乙的射击成绩,再利用方差的公式计算,即可得出答案. 【详解】由图中知,甲的成绩为7,7,8,9,8,9,10,9,9,9, 乙的成绩为8,9,7,8,10,7,9,10,7,10,x 甲=(7+7+8+9+8+9+10+9+9+9)÷10=8.5, x 乙=(8+9+7+8+10+7+9+10+7+10)÷10=8.5,甲的方差S 甲2=[2×(7-8.5)2+2×(8-8.5)2+(10-8.5)2+5×(9-8.5)2]÷10=0.85, 乙的方差S 乙2=[3×(7-8.5)2+2×(8-8.5)2+2×(9-8.5)2+3×(10-8.5)2]÷10=1.45, ∴S 2甲<S 2乙,∴甲的射击成绩比乙稳定; 故选:C . 【点睛】本题考查方差的定义与意义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.7.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②经过有交通信号灯的路口,遇到红灯是必然事件;③若甲组数据的方差是0.3,乙组数据的方差是0.1,则甲数据比乙组数据稳定;④圆内接正六边形的边长等于这个圆的半径,其中正确说法的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】根据平行四边形的判定去判断①;根据必然事件的定义去判断②;根据方差的意义去判断③;根据圆内接正多边形的相关角度去计算④.【详解】一组对边平行,另一组对边相等的四边形也有可能是等腰梯形,①错误;必然事件是一定会发生的事件,遇到红灯是随机事件,②错误;方差越大越不稳定,越小越稳定,乙比甲更稳定,③错误;正六边形的边所对的圆心角是60︒,所以构成等边三角形,④结论正确.所以正确1个,答案选A.【点睛】本题涉及的知识点较多,要熟悉平行四边形的常见判定;随机事件、必然事件、不可能事件等的区分;掌握方差的意义;会计算圆内接正多边形相关.8.一组数据1,5,7,x的众数与中位数相等,则这组数据的平均数是()A.6 B.5 C.4.5 D.3.5【答案】C【解析】若众数为1,则数据为1、1、5、7,此时中位数为3,不符合题意;若众数为5,则数据为1、5、5、7,中位数为5,符合题意,此时平均数为15574+++= 4.5;若众数为7,则数据为1、5、7、7,中位数为6,不符合题意;故选C.9.一组数据5,4,2,5,6的中位数是()A.5 B.4 C.2 D.6【答案】A【解析】试题分析:将题目中数据按照从小到大排列是: 2,4,5,5,6,故这组数据的中位数是5,故选A.考点:中位数;统计与概率.10.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩的方差是3,下列说法正确的是( ) A .甲的成绩比乙的成绩稳定 B .乙的成绩比甲的成绩稳定 C .甲、乙两人的成绩一样稳定 D .无法确定甲、乙的成绩谁更稳定【答案】B 【解析】 【分析】根据方差的意义求解可得. 【详解】∵乙的成绩方差<甲成绩的方差, ∴乙的成绩比甲的成绩稳定, 故选B. 【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.11.为了迎接2022年的冬奥会,中小学都积极开展冰上运动,小乙和小丁进行500米短道速滑比赛,他们的五次成绩(单位:秒)如表所示:设两人的五次成绩的平均数依次为x 乙,x 丁,成绩的方差一次为2S 乙,2S 丁,则下列判断中正确的是( )A .x x =乙丁,22S S <乙丁B .x x =乙丁,22S S >乙丁 C .x x >乙丁,22S S >乙丁D .x x <乙丁,22S S <乙丁【答案】B 【解析】 【分析】根据平均数的计算公式先求出甲和乙的平均数,再根据方差的意义即可得出答案. 【详解】4563555260555x ++++==乙,则()()()()()2222221455563555555525560555S ⎡⎤=⨯-+-+-+-+-⎣⎦乙39.6=,5153585657555x ++++==丁,则()()()()()2222221515553555855565557555S ⎡⎤=⨯-+-+-+-+-⎣⎦丁 6.8=,所以x x =乙丁,22S S >乙丁,故选B . 【点睛】本题考查方差的定义与意义:一般地设n 个数据,1x ,2x ,…n x 的平均数为x ,则方差()()()2222121n S x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.关于数据-4,1,2,-1,2,下面结果中,错误的是( ) A .中位数为1 B .方差为26C .众数为2D .平均数为0【答案】B 【解析】 【分析】 【详解】A .∵从小到大排序为-4,-1,,1,2,2,∴中位数为1 ,故正确;B .4121205x -++-+== ,()()()()222224010102022655s --+--+-+-⨯==,故不正确;C .∵众数是2,故正确;D .4121205x -++-+==,故正确;故选B.13.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为( ) A .1.70,1.75B .1.70,1.70C .1.65,1.75D .1.65,1.70【答案】A【解析】分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.详解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选A.点睛:本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.14.一组数据,6、4、a、3、2的平均数是5,这组数据的方差为()A.8 B.5 C.6 D.3【答案】A【解析】【分析】先由平均数的公式计算出a的值,再根据方差的公式计算即可.【详解】∵数据6、4、a、3、2平均数为5,∴(6+4+2+3+a)÷5=5,解得:a=10,∴这组数据的方差是15[(6-5)2+(4-5)2+(10-5)2+(2-5)2+(3-5)2]=8.故选:A.【点睛】此题考查平均数,方差,解题关键在于掌握它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差【答案】D【解析】【详解】解:A.原来数据的平均数是2,添加数字2后平均数仍为2,故A与要求不符;B.原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;C.原来数据的众数是2,添加数字2后众数仍为2,故C与要求不符;D.原来数据的方差=222 (12)2(22)(32)4-+⨯-+-=12,添加数字2后的方差=222 (12)3(22)(32)5-+⨯-+-=25,故方差发生了变化.故选D.16.下列说法中正确的是().A.“打开电视,正在播放《新闻联播》”是必然事件B.一组数据的波动越大,方差越小C.数据1,1,2,2,3的众数是3D.想了解某种饮料中含色素的情况,宜采用抽样调查【答案】D【解析】试题分析:分别根据必然事件的定义,方差的性质,众数的定义及抽样调查的定义进行判断,、“打开电视,正在播放《新闻联播》”是随机事件,故本选项错误;B、一组数据的波动越大,方差越大,故本选项错误;C、数据1,1,2,2,3的众数是1和2,故本选项错误;D、想了解某种饮料中含色素的情况,宜采用抽样调查,故本选项正确.故选D.考点:全面调查与抽样调查;众数;方差;随机事件.17.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的()A.平均数B.方差C.众数D.中位数【答案】B【解析】【分析】平均数、众数、中位数反映的是数据的集中趋势,方差反映的是数据的离散程度,方差越大,说明这组数据越不稳定,方差越小,说明这组数据越稳定.【详解】解:由于方差能反映数据的稳定性,故需要比较这两名同学5次短跑训练成绩的方差.故选B.【点睛】考核知识点:均数、众数、中位数、方差的意义.18.若数据 4,x,2,8 ,的平均数是 4,则这组数据的中位数和众数是()A.3 和 2 B.2 和 3 C.2 和 2 D.2 和4【答案】A【解析】【分析】根据平均数的计算公式先求出x的值,再根据中位数和众数的概念进行求解即可.【详解】∵数据2,x,4,8的平均数是4,∴这组数的平均数为2484x+++=4,解得:x=2;所以这组数据是:2,2,4,8,则中位数是242+=3.∵2在这组数据中出现2次,出现的次数最多,∴众数是2.故选A.【点睛】本题考查了平均数、中位数和众数,平均数的计算方法是求出所有数据的和,然后除以数据的总个数;据此先求得x的值,再将数据按从小到大排列,将中间的两个数求平均值即可得到中位数,众数是出现次数最多的数.19.下列说法正确的是( )A.打开电视机,正在播放“张家界新闻”是必然事件B.天气预报说“明天的降水概率为65%”,意味着明天一定下雨C.两组数据平均数相同,则方差大的更稳定D.数据5,6,7,7,8的中位数与众数均为7【答案】D【解析】【分析】根据必然事件的意义、概率的意义、方差的意义、中位数和众数的概念逐一进行判断即可.【详解】A.打开电视机,正在播放“张家界新闻”是随机事件,故A选项错误;B.天气预报说“明天的降水概率为65%”,意味着明天可能下雨,故B选项错误;C.两组数据平均数相同,则方差大的更不稳定,故C选项错误;D,数据5,6,7,7,8的中位数与众数均为7,正确,故选D.【点睛】本题考查了概率、方差、众数和中位数等知识,熟练掌握相关知识的概念、意义以及求解方法是解题的关键.20.为了解九(1)班学生的体温情况,对这个班所有学生测量了一次体温(单位:℃),小明将测量结果绘制成如下统计表和如图所示的扇形统计图.下列说法错误的是()A.这些体温的众数是8 B.这些体温的中位数是36.35 C.这个班有40名学生D.x=8【答案】A【解析】【分析】【详解】解:由扇形统计图可知:体温为36.1℃所占的百分数为36360×100%=10%,则九(1)班学生总数为410%=40,故C正确;则x=40﹣(4+8+8+10+2)=8,故D正确;由表可知这些体温的众数是36.4℃,故A错误;由表可知这些体温的中位数是36.336.42=36.35(℃),故B正确.故选A.考点:①扇形统计图;②众数;③中位数.。