三效并流蒸发器的设计讲解

合集下载

三效并流蒸发器的设计讲解

三效并流蒸发器的设计讲解

三效并流蒸发器的设计:处理量(㎏/h )4500,初始温度为20℃,初始浓度5%,完成液浓度为40%,加热蒸汽压强为5at(绝压),末效真空度为600mmHg(表压),试计算所需的蒸发器的传热面积。

解:1、 计算总蒸发量:W=F(1-X 0/X 3=4500(1-0.05/0.40)=3937.5㎏/h 2、 估算各效蒸发量: 假设:W 1:W 2:W 3=1:1.1:1.2 W=W 1+W 2+W 3=3.3W 1=3937.5 W 1=1193㎏/h W 2=1312㎏/h W 3=1432㎏/h3、 估算各效浓度: X 1=1W -F X F ⨯=(4500×0.05)/(4500-1193)=0.068X 2=4500×0.05/(4500-1193-1312)=0.113 X 3=0.44、 分配各效压强 假设各效间压降相等P 1=5×98.07+101.33=592KPaP K =101.33-600×133.32×10-3=21KPa ΔP=(592-21)/3=571/3=190KPa则各效蒸发室的压强(二次蒸汽压强)为: P 1/=P 1-ΔP=592-190=402KPaP 2/=P 1-2ΔP=592-2×190=212KPa P 3/=P K =21KPa由各效二次蒸汽压强查水蒸汽表可得相应的二次蒸汽温度和气化潜热如下表:5、 计算各效传热温度差损失 (一)、由于蒸汽压下降引起的温度差损失Δ/ 根据二次蒸汽温度和各效完成液的浓度,由氢氧化钠的杜林线图可查的各效溶液的沸点分别为:沸点:t a1=146℃ t a2=125℃ t a3=87℃ 由于溶液蒸汽压下降引起的温度差损失为: Δ1/=146-143.6=2.4℃ Δ2/=125-121.9=3.1℃ Δ3/=87-60.7=26.3℃∑∆/=2.4+3.1+26.3=31.8℃(二)、由于静压强引起的温度差损失P m =p /+ρg L/2取液位高度为2米(即加热蒸汽管长度)由溶液的沸点和各效完成液的浓度查表可得各效溶液的密度ρ1=991㎏/m 3ρ21056㎏/m 3ρ31366㎏/m 3P 1=402+991×9.81×2/2/1000=412KPa P 2=212+1056×9.81×2/2/1000=222kpa P 3=21+1366×9.81×2/2/1000=34kpa对应的各效溶液(水)的温度分别为:144.4℃ 123.3℃ 69.9℃∑∆//=t m /-t pΔ1///=144.4-143.6=0.8℃ Δ2///=123.3-121.9=1.4℃ Δ3///=69.9-60.7=9.2℃∑∆//=0.8+1.4+9.2=11.4℃(三)、流动阻力引起的温度差损失Δ///∑∆///=06、 计算总温度差损失∑∆=31.8+11.4=43.2℃7、 计算总传热温度差∆t=T 1-T K -∑∆=158.1-60.7-43.2=54.2℃8、 计算各效溶液的沸点及各效加热蒸汽的温度 一效:t 1=T I /+ΔI =143.6+2.4+0.8=146.8℃ : t 2=121.9+3.1+1.4=126.4℃:t 3=60.7+26.3+9.2=96.2℃T2=t 1-(△1/+△1//+△1///)=146.8-3.2=143.6 T3=△t 3+t 39、 计算加热蒸汽消耗量及各效蒸发水分量 解方程组: W 1=1428㎏/h W 2=1420㎏/h W 3=1091㎏/h D 1=1508㎏/h 10、 估算蒸发器的传热面积it ∆⨯=i ik Q SiΔt 1=T 1-t 1=158.1-146.8=11.3℃ 假设各效传热系数:K 1=1800W/(m 2k) K 2=1200 W/(m 2k) K 3=600 W/(m 2k)Q 1=D 1×R 1=15.8×2093×103/3600=8.77×105WQ 2=1428×2138×103/3600=8.48×105WQ 3=8.68×105WS 1=43.1m 2S 2=41.1m 2S 3=56.3m 211、 有效温度差再分配∑∆∆+∆+∆=tt S t S t 332211S S =48.7m 2=∆1t 43.1/48.7×11.3=10℃ =∆2t 41.1/48.7×17.2=14.5℃ =∆3t 56.3/48.7×25.7=29.7℃12、 重新计算各效浓度 X 1=0.073 X 2=0.136 X 3=0.414、 计算各效蒸发量 解方程组: W 1=1444㎏/h W 2=1393㎏/h W 3=1101㎏/h D=1523㎏/h 15、 计算各效传热面积Q 1=8.85×105 S 1=49.2m 2Q 2=8.54×105 S 2=49.1M 2Q 3=8.47×105 S 3=47.5M 2m axm inS S -1=1-47.5/49.2=0.0346<0.05 取平均面积S=(49.2+49.1+47.5)/3=48.6M 2 取S=1.1S=53.46=[54M 2]。

KNO3水溶液三效并流蒸发系统设计书

KNO3水溶液三效并流蒸发系统设计书

KNO3水溶液三效并流蒸发系统设计书第一章. 概述1.1蒸发操作的特点从上述对蒸发过程的简单介绍可知,常见的蒸发时间壁两侧分别为蒸汽冷凝和液体沸腾的传热过程,蒸发器也就是一种换热器。

但和一般的传热过程相比,蒸发操作又有如下特点 :(1)沸点升高蒸发的溶液中含有不挥发性的溶质,在港台压力下溶液的蒸气压较同温度下纯溶剂的蒸汽压低,使溶液的沸点高于纯溶液的沸点,这种现象称为溶液沸点的升高。

在加热蒸汽温度一定的情况下,蒸发溶液时的传热温差必定小于加热纯溶剂的纯热温差,而且溶液的浓度越高,这种影响也越显著。

(2)物料的工艺特性蒸发的溶液本身具有某些特性,例如有些物料在浓缩时可能析出晶体,或易于结垢;有些则具有较大的黏度或较强的腐蚀性等。

如何根据物料的特性和工艺要求,选择适宜的蒸发流程和设备是蒸发操作彼此必须要考虑的问题。

(3)节约能源蒸发时汽化的溶剂量较大,需要消耗较大的加热蒸汽。

如何充分利用热量,提高加热蒸汽的利用率是蒸发操作要考虑的另一个问题。

1.2蒸发操作的分类按操作的方式可以分为间歇式和连续式,工业上大多数蒸发过程为连续稳定操作的过程。

按二次蒸汽的利用情况可以分为单效蒸发和多效蒸发,若产生的二次蒸汽不加利用,直接经冷凝器冷凝后排出,这种操作称为单效蒸发。

若把二次蒸汽引至另一操作压力较低的蒸发器作为加热蒸汽,并把若干个蒸发器串联组合使用,这种操作称为多效蒸发。

多效蒸发中,二次蒸汽的潜热得到了较为充分的利用,提高了加热蒸汽的利用率。

按操作压力可以分为常压、加压或减压蒸发。

真空蒸发有许多优点:(1)在低压下操作,溶液沸点较低,有利于提高蒸发的传热温度差,减小蒸发器的传热面积;(2)可以利用低压蒸汽作为加热剂;(3)有利于对热敏性物料的蒸发;(4)操作温度低,热损失较小。

在加压蒸发中,所得到的二次蒸汽温度较高,可作为下一效的加热蒸汽加以利用。

因此,单效蒸发多为真空蒸发;多效蒸发的前效为加压或常压操作,而后效则在真空下操作。

三效蒸发器设计范文

三效蒸发器设计范文

三效蒸发器设计范文首先,三效蒸发器的设计原理是通过多级蒸发和再利用蒸发热量的方式,将原料中的溶质浓缩提纯。

它包括三个蒸发效应,即高温效应、中温效应和低温效应。

在每个效应中,蒸发器将原料加热至沸点,使其蒸发,然后将蒸发出的蒸汽冷凝成液体,最后获得浓缩溶液和净水。

其次,三效蒸发器的关键设计参数包括进料速度、浓缩量、蒸发温度和密封性能。

进料速度决定了设备的处理能力,需要根据生产需求进行调节。

浓缩量反映了设备的效率,即每个效应中蒸发和冷凝的效果。

蒸发温度是根据原料性质和产品要求来确定的,不同物质对温度的要求有所不同。

密封性能是保证设备运行效果的重要因素,需要选择合适的密封材料和设计合理的密封结构。

在三效蒸发器的设计中,还需要考虑热交换器的设计和选择。

热交换器是用来传热的关键设备,其设计应满足传热效率高、传热面积大、压力损失小等要求。

同时,还需要合理选择蒸发器的材料,考虑到耐高温、耐腐蚀和易于清洗等因素。

常用的材料包括不锈钢、钛合金和镍合金等。

此外,传热介质的选择也是很重要的一步。

常见的传热介质有蒸汽和热油,其选用应考虑到成本、温度范围和环境因素。

同时,要合理设计传热系统,提高能量利用率和减少能量损失。

最后,在三效蒸发器的设计过程中,还应注意安全运行和节能环保。

安全运行包括对蒸汽系统的安全监测和精确控制,以及防止爆炸和火灾等事故的设计。

节能环保主要是通过优化设计和改进操作,减少能量损失和污染排放。

综上所述,三效蒸发器的设计考虑了多个关键参数和因素,包括进料速度、浓缩量、蒸发温度、密封性能、热交换器选择、材料选择、传热介质选择、传热系统设计、安全运行和节能环保等。

只有在综合考虑这些因素的基础上,才能设计出高效、安全、可靠的三效蒸发器。

课程设计 并流三效蒸发器

课程设计  并流三效蒸发器

1 概述与设计方案的选择1.1 概述1.1.1 蒸发设备的分类常用蒸发器主要由加热室和分离室两部分构成。

蒸发器的多种结构型式即在于加热室和分离室结构的多样性及其组合方式的变化。

按照蒸发器在溶液中的流动情况,可将蒸发器分为循环型和单程型两大类。

(1)循环型蒸发器:其特点是溶液在蒸发器中作循环流动。

根据引起溶液循环流动原理的不同,又可分为自然循环式和强制循环式两种类别。

显然,强制循环蒸发器式依靠外加动力造成溶液在蒸发器中的循环流动,而自然循环式是依靠溶液在蒸发器中不同部位的密度差引起的自然循环流动。

表1-1 常用循环型蒸发器的结构特点及主要性能汇总型式结构特点优点缺点中央循环管式(自然循环式和强制循环式)加热时中央循环管和加热管内溶液受热程度不同,同时因加热管内蒸汽上升的抽吸作用使溶液产生由加热管上升,中央循环管下降的不断流动,从而提高了传热系数,强化了蒸发过程。

在管内安装一旋桨式搅拌器,即构成强制循环式蒸发器。

1.构造简单,操作可靠2.传热效果较好3.投资费用较少1.清洗和检修较麻烦2.溶液循环速度较低(搅拌式可提速2~3倍)3.因溶液的循环使蒸发器中溶液的组成总是接近于完成液组成,溶液沸点升高明显,传热温差减小,粘度较大,影响传热效果悬框式加热室像个悬框挂在蒸发器壳体内的下部,溶液沿加热室与壳体形成的环隙下降,沿加热管上升,不断循环流动1.循环速度较前者大2.蒸发器外壳接触的是温度较低的沸腾溶液,热损失少1.结构较复杂2.单位传热面积用金属量最多3.便与检修和更换4.适用于蒸发易结垢或有晶体析出的液体列文式在加热管上部附加一段直管,由于其静压抑制了加热管中溶液的沸腾,减少了结垢的可能性,在直管上部装有立式隔板,使沸腾产生的气泡受到限制,与液体形成均匀混合物上升,这样循环管中的汽液混合物之间产生较大的密度差和推动力,故循环速度增大1.可避免在加热管中析出晶体,减轻加热管表面上污垢的形成2.传热效果较好3.适用于处理有结晶析出的溶液1.设备高达,消耗金属材料多,需要高大厂房2.液柱静压引起的温度差损失较大,要求加热蒸汽压力较大3.必须保持在较大温差下操作强制循环式溶液的的循环借助外力作用,如用泵迫使溶液想一定方向流动1.传热系数较自然循环式蒸发器大2.适用于高粘度、易结垢、易结晶的溶液3.加热蒸汽与溶液之间的温度差较小时(3~5),仍可进行操作动力消耗大,单位传热面积耗费功率达0.4~0.82/k mw浸没燃烧式高温烟道气直接通入待蒸发溶液中,使溶液沸腾汽化1.结构简单2.传热速率快,效率高,适用于易结垢、易结晶或有腐蚀性的溶液1.二次蒸汽难以再利用2.不适用于热敏性或不能被烟道气污染的物料(2)单程型蒸发器单程型蒸发器的特点是溶液沿加热管壁呈膜状流动而进行传热和蒸发,一次通过加热室即可达到所要求的组成。

KNO3-水溶液三效并流加料蒸发装置的设计

KNO3-水溶液三效并流加料蒸发装置的设计

结构与要求
较简单
简单
水量 其他
较大 孔易堵塞
较大
较大 适用于腐蚀性 蒸气的冷凝
4、辅助设备结构尺寸设计
4.3封头尺寸的确定
(1)顶部封头 由《化工设备课程设计指导》[4]第21页可知,中低压化 工设备上经常使用的封头(或顶盖)大多为标准的椭圆形
封头。
所以本次设计顶盖选用标准椭圆形封头。
见《化工设备机械基 础》[5]第214页。
2、工艺计算蒸发器传热面积
多效蒸发的计算一般采用迭代计算法。
1、初步估 计各效蒸发 量和完成液 组成
见《化工单元操作课程设 计》[3]第85~90页。
2、估算各 效溶液沸 点和有效 总温差
确定各效 传热面积
ε≧0.05
3、根据热 量衡算求个 小的蒸发量 和传热速率
4、根据传 热速率方程 式计算各效 的传热面积
4、辅助设备结构尺寸设计
(2)底部封头 由《化工设备机械基础》[5]第217页可知,锥形封头
广泛用于立式容器底部以便于卸除物料。为解决边界应
力,最好的办法是在圆柱形壳体与锥形壳体之间加上一 个过渡圆弧。 所以本次设计选用带直边和折边的锥形封头。
见《化工设备机械基 础》[5]第217页。
5、设计结果汇总
5、设计结果汇总
蒸汽冷凝器结构尺寸设计
冷凝器类型 冷却水量 冷凝器的直径 淋水板数 淋水板间距 L1 淋水板间距 L2 淋水板间距 L3 淋水板间距 L4 弓形淋水板的宽度 淋水板堰高 淋水板孔径 最上层板的实际淋水孔数 其他各板的实际淋水孔数 多层多孔式冷凝器
63.75m3 / h
460 mm 5 0.462 m 0.323m 0.226 m 0.158 m 391mm / 280 mm 40 mm 10 mm 356 340

化工原理设计说明书-三效并流蒸发器

化工原理设计说明书-三效并流蒸发器

设计题目:NaOH水溶液三效并流加料蒸发装置的设计设计者:设计日期:年月日审核:2009级化工单元操作课程设计任务书一、设计题目NaOH水溶液三效并流加料蒸发装置的设计二、设计任务及操作条件1.处理能力 3.96×104吨/年NaOH水溶液2.设备形式中央循环管式蒸发器3.操作条件(1) NaOH水溶液的原料液浓度为5%。

完成液浓度为25%,原料液温度为第一效沸点温度,原料液比热为3.7KJ(kg·℃),各效蒸发器中溶液的平均密度为:ρ1=1014kg/m3,ρ2=1060 kg/m3,ρ3=1239 kg/m3;(2)加热蒸气压强为500kPa(绝压),冷凝器压强为15 kPa(绝压):(3)各效蒸发器的总传热系数:K1=1500W/(m2·℃),K2=1000W/(m2·℃),K3=600W/(m2·℃);(4)各效蒸发器中页面的高度:1.5m;(5)各效加热蒸气的冷凝液均在饱和温度下下排出,假设各效传热面积相等,并忽略热损失;(6)每年按330天计算,每天24小时运行。

三、设计项目(1)设计方案简单,对确定的工艺流程及蒸发器形式进行简要论述;(2)蒸发器的工艺计算,确定蒸发器的传热面积;(3)蒸发器的主要结构尺寸设计;(4)绘制NaOH水溶液三效并流加料蒸发装置的流程及蒸发器设备工艺简图;(5)对本设计的评述1目录(一)蒸发器的形式、流程、效数论证..................(二)工艺计算......................................(三)蒸发器主要工艺尺寸的设计计算..................(四)设计感想......................................(五)设计图纸......................................2(一)蒸发器的形式、流程、效数论证1.蒸发器的形式:中央循环管式2.蒸发器的流程:三效并流加料3.效数论证:在工业中常用的加热方式有直接加热和间接加热。

化工原理课程设计三效蒸发

化工原理课程设计三效蒸发

化工原理课程设计三效蒸发在化工领域中,蒸发是一种常见的分离技术。

而三效蒸发是一种高效的蒸发方式,它在提高产能的同时,降低了能耗,具有很大的应用潜力。

本文将介绍三效蒸发的原理、设计和优势。

一、原理三效蒸发是利用多级蒸发器进行连续蒸发的过程。

它由三个蒸发器组成,分别是高效蒸发器、中效蒸发器和低效蒸发器。

其原理是通过将高浓度的溶液从高效蒸发器中的蒸发器底部引入中效蒸发器,再将中效蒸发器中的浓缩液引入低效蒸发器,最终得到浓缩度最高的产物。

二、设计三效蒸发的设计需要考虑多个因素,包括溶液的性质、蒸发器的尺寸和操作条件等。

首先,需要确定溶液的性质,包括溶质的浓度、沸点和热稳定性等。

这些参数将影响蒸发器的设计和操作条件的选择。

其次,需要确定蒸发器的尺寸,包括蒸发器的高度、直径和传热面积等。

这些参数将影响蒸发器的产能和能耗。

最后,需要确定蒸发器的操作条件,包括进料流量、蒸发温度和蒸发压力等。

这些参数将影响蒸发器的稳定性和效率。

三、优势相比于传统的单效蒸发,三效蒸发具有以下几个优势。

首先,三效蒸发可以实现连续操作,提高了生产效率。

在传统的单效蒸发中,溶液需要经过多次蒸发才能达到所需浓度,而三效蒸发可以一次完成,节省了时间和能源。

其次,三效蒸发可以降低能耗。

由于三效蒸发中的蒸发器是串联的,低效蒸发器的进料温度较高,可以利用高效蒸发器和中效蒸发器的余热,减少了能源的消耗。

最后,三效蒸发可以提高产品质量。

由于三效蒸发可以在较低的温度下进行,可以减少溶质的热分解和挥发,提高产品的纯度和稳定性。

四、应用三效蒸发在化工领域中有广泛的应用。

它可以用于浓缩溶液、回收溶剂和提取有价值的成分等。

例如,在果汁生产中,三效蒸发可以用于浓缩果汁,提高果汁的浓度和口感。

在制药工业中,三效蒸发可以用于回收溶剂,减少废物的产生。

在化肥生产中,三效蒸发可以用于提取有机成分,提高产品的价值。

总之,三效蒸发是一种高效、节能的蒸发技术。

它通过多级蒸发器的连续操作,实现了溶液的快速浓缩。

三效蒸发设计手册

三效蒸发设计手册

三效蒸发设计手册三效蒸发设计手册旨在为设计人员提供关于三效蒸发器的设计指南和操作规范。

该手册详细介绍了三效蒸发器的原理、特点、应用范围以及设计计算等内容。

一、三效蒸发器原理三效蒸发器是一种利用蒸发原理进行溶液浓缩和结晶的设备。

其工作原理是将废水的热量通过一效、二效、三效蒸发器的串联方式进行重复利用,以实现废水的低能耗处理。

二、三效蒸发器特点1. 节能高效:三效蒸发器采用串联方式,使加热蒸汽得到充分利用,提高了能源利用率。

2. 处理量大:三效蒸发器具有较大的处理量,可满足大规模废水处理的需求。

3. 自动化程度高:设备采用全自动控制系统,可实现进料、加热、出料等操作的自动化控制。

4. 适用范围广:三效蒸发器适用于多种类型的废水处理,如化工、制药、食品等行业的废水。

三、三效蒸发器应用范围1. 化工行业:可用于处理化工废水中的盐分、有机物等杂质。

2. 制药行业:可用于处理制药废水中的药物残留、有机物等杂质。

3. 食品行业:可用于处理食品加工废水中的盐分、有机物等杂质。

4. 其他行业:如冶金、印染、造纸等行业也可使用三效蒸发器进行废水处理。

四、三效蒸发器设计计算1. 设计原则:根据废水处理的要求和规模,选择合适型号的三效蒸发器,并按照设备结构、工艺流程等因素进行设计计算。

2. 工艺流程:根据废水处理的要求,确定合理的工艺流程。

一般情况下,废水经过一效、二效、三效蒸发器的处理后,可得到浓缩液或结晶物。

3. 设备结构:根据工艺流程和废水性质,选择合适的设备结构,包括加热室、蒸发室、冷凝器等部件的设计和选用。

4. 操作参数:根据实际情况,确定合理的操作参数,如温度、压力、液位等,以保证设备的正常运行和处理效果。

5. 安全措施:为确保设备运行安全,应采取相应的安全措施,如防爆、防腐、防泄漏等措施。

总之,三效蒸发设计手册是进行三效蒸发器设计和操作的必备工具。

通过该手册的指导,设计人员可以更加全面地了解三效蒸发器的原理、特点和应用范围,从而更好地进行设备选型和设计计算,提高废水处理的效率和效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三效并流蒸发器的设计:处理量(㎏/h )4500,初始温度为20℃,初始浓度5%,完成液浓度为40%,加热蒸汽压强为5at(绝压),末效真空度为600mmHg(表压),试计算所需的蒸发器的传热面积。

解:
1、 计算总蒸发量:
W=F(1-X 0/X 3=4500(1-0.05/0.40)=3937.5㎏/h 2、 估算各效蒸发量: 假设:W 1:W 2:W 3=1:1.1:1.2 W=W 1+W 2+W 3=3.3W 1=3937.5 W 1=1193㎏/h W 2=1312㎏/h W 3=1432㎏/h
3、 估算各效浓度: X 1=
1
W -F X F ⨯=(4500×0.05)/(4500-1193)=0.068
X 2=4500×0.05/(4500-1193-1312)=0.113 X 3=0.4
4、 分配各效压强 假设各效间压降相等
P 1=5×98.07+101.33=592KPa
P K =101.33-600×133.32×10-3
=21KPa ΔP=(592-21)/3=571/3=190KPa
则各效蒸发室的压强(二次蒸汽压强)为: P 1/
=P 1-ΔP=592-190=402KPa
P 2/=P 1-2ΔP=592-2×190=212KPa P 3/
=P K =21KPa
由各效二次蒸汽压强查水蒸汽表可得相应的二次蒸汽温度和气化潜热如下表:
5、 计算各效传热温度差损失 (一)、由于蒸汽压下降引起的温度差损失Δ/ 根据二次蒸汽温度和各效完成液的浓度,由氢氧化钠的杜林线图可查的各效溶液的沸点分别为:
沸点:t a1=146℃ t a2=125℃ t a3=87℃ 由于溶液蒸汽压下降引起的温度差损失为: Δ1/
=146-143.6=2.4℃ Δ2/
=125-121.9=3.1℃ Δ3/
=87-60.7=26.3℃
∑∆/
=2.4+3.1+26.3=31.8℃
(二)、由于静压强引起的温度差损失
P m =p /+ρg L/2
取液位高度为2米(即加热蒸汽管长度)
由溶液的沸点和各效完成液的浓度查表可得各效溶液的密度
ρ1=991㎏/m 3
ρ21056㎏/m 3
ρ31366㎏/m 3
P 1=402+991×9.81×2/2/1000=412KPa P 2=212+1056×9.81×2/2/1000=222kpa P 3=21+1366×9.81×2/2/1000=34kpa
对应的各效溶液(水)的温度分别为:144.4℃ 123.3℃ 69.9℃
∑∆/
/=t m /-t p
Δ1///
=144.4-143.6=0.8℃ Δ2///
=123.3-121.9=1.4℃ Δ3///
=69.9-60.7=9.2℃
∑∆
/
/=0.8+1.4+9.2=11.4℃
(三)、流动阻力引起的温度差损失Δ///
∑∆
///=0
6、 计算总温度差损失
∑∆=31.8+11.4=43.2℃
7、 计算总传热温度差
∆t=T 1-T K -∑∆=158.1-60.7-43.2=54.2℃
8、 计算各效溶液的沸点及各效加热蒸汽的温度 一效:t 1=T I /+ΔI =143.6+2.4+0.8=146.8℃ : t 2=121.9+3.1+1.4=126.4℃
:t 3=60.7+26.3+9.2=96.2℃
T2=t 1-(△1/+△1//+△1///)=146.8-3.2=143.6 T3=△t 3+t 3
9、 计算加热蒸汽消耗量及各效蒸发水分量 解方程组: W 1=1428㎏/h W 2=1420㎏/h W 3=1091㎏/h D 1=1508㎏/h 10、 估算蒸发器的传热面积
i
t ∆⨯=
i i
k Q Si
Δt 1=T 1-t 1=158.1-146.8=11.3℃ 假设各效传热系数:
K 1=1800W/(m 2k) K 2=1200 W/(m 2k) K 3=600 W/(m 2k)
Q 1=D 1×R 1=15.8×2093×103/3600=8.77×105
W
Q 2=1428×2138×103/3600=8.48×105
W
Q 3=8.68×105
W
S 1=43.1m 2
S 2=41.1m 2
S 3=56.3m 2
11、 有效温度差再分配
∑∆∆+∆+∆=
t
t S t S t 3
32211S S =48.7m 2
=∆1t 43.1/48.7×11.3=10℃ =∆2t 41.1/48.7×17.2=14.5℃ =∆3t 56.3/48.7×25.7=29.7℃
12、 重新计算各效浓度 X 1=0.073 X 2=0.136 X 3=0.4
14、 计算各效蒸发量 解方程组: W 1=1444㎏/h W 2=1393㎏/h W 3=1101㎏/h D=1523㎏/h 15、 计算各效传热面积
Q 1=8.85×105 S 1=49.2m 2
Q 2=8.54×105 S 2=49.1M 2
Q 3=8.47×105 S 3=47.5M 2
m ax
m in
S S -
1=1-47.5/49.2=0.0346<0.05 取平均面积S=(49.2+49.1+47.5)/3=48.6M 2 取S=1.1S=53.46=[54M 2]。

相关文档
最新文档