电压比较器电路图,电压比较器的应用
lm339应用的典型电路原理图

LM339应用的典型电路原理图1. 引言LM339是一种广泛应用于电子电路中的四路开关比较器芯片。
它由低功耗CMOS技术制造,具有高精度、低功耗和宽电压供应范围的优点。
在本文档中,我们将介绍几个典型的LM339应用电路原理图,以帮助读者更好地理解和应用该芯片。
2. 电压比较器电路电压比较器电路是LM339最常见的应用之一。
它可以将一个输入电压与一个参考电压进行比较,并输出比较结果。
下面是一个基于LM339的电压比较器电路原理图:•输入电压:Vin•参考电压:Vref•输出电压:VoutLM339电压比较器电路原理图如下:Vin + ----|+|--+---- Vin|-----|+---- Vout|-----Vref ----|+|--+3. 开关电路LM339也可以用于开关电路。
下面是一个基于LM339的开关电路的原理图:•输入信号:Vin•使能信号:En•输出信号:VoutLM339开关电路原理图如下:Vin ----+-----+---- Vout| || || |+-----+En4. 电平检测电路LM339还可以用于电平检测电路。
下面是一个基于LM339的电平检测电路的原理图:•输入信号:Vin•阈值电压:Vth•输出信号:VoutLM339电平检测电路原理图如下:Vin + ----|+|--+---- Vin|------|+---- Vout|------Vth5. 温度传感器电路LM339还可以与温度传感器结合,用于温度测量和控制。
下面是一个基于LM339的温度传感器电路的原理图:•温度传感器信号:Temp•温度控制信号:Ctrl•输出信号:VoutLM339温度传感器电路原理图如下:Temp + ----|+|--+---- Temp|-------- -----| |+ +---- Vout| |----- -----Ctrl6. 总结LM339是一款功能强大、灵活多样的开关比较器芯片,适用于各种不同的电子电路应用。
运放电压比较器电路

运放电压比较器电路1. 引言运放电压比较器电路是一种常见的电路,用于将输入信号与一个参考电压进行比较,并输出高或低电平。
本文将介绍运放电压比较器电路的工作原理、常见的电路实现方式以及应用领域。
2. 工作原理运放电压比较器电路主要由运放、参考电压和反馈电阻等组成。
运放是一个高增益的电压放大器,它的输出电压取决于输入电压和其内部反馈电阻的连接方式。
当输入电压大于参考电压时,运放输出高电平;当输入电压小于参考电压时,运放输出低电平。
运放电压比较器电路的工作原理可以简单描述如下:1.将输入信号与参考电压接入运放的非反馈输入端;2.运放比较输入信号与参考电压的大小,输出相应的高或低电平。
3. 电路实现方式运放电压比较器电路可以有多种实现方式,下面介绍两种常见的实现方式。
3.1 非反相比较器非反相比较器是最简单的运放电压比较器电路。
它的电路图如下:+Vcc|Rf|Vin --|---|--- output| |Vref -| || |GND在非反相比较器中,输入信号Vin与参考电压Vref分别通过电阻Rf接入运放的非反馈输入端和反馈输入端。
当Vin大于Vref时,运放输出高电平;当Vin小于Vref时,运放输出低电平。
3.2 反相比较器反相比较器是另一种常见的运放电压比较器电路。
它的电路图如下:+Vcc|Rf|Vin --|---|--- output|||___Vref -||GND在反相比较器中,输入信号Vin被接入运放的非反馈输入端,而参考电压Vref通过一个电阻Rf连接到运放的反馈输入端。
当Vin大于Vref时,运放输出低电平;当Vin小于Vref时,运放输出高电平。
4. 应用领域运放电压比较器电路广泛应用于许多领域。
以下是一些常见的应用领域:4.1 自动控制系统运放电压比较器电路可用于自动控制系统中,用于检测输入信号是否满足一定的条件并触发相应的控制动作。
例如,可以根据输入信号的大小控制某个设备的启停、调节亮度等。
电压比较器电路图

电压比较器电路。
电压比较器是比较两个电压和开关输出或高或低的状态,取决于电压较高的电路。
一个基于运放电压比较器上显示。
图1显示了一个电压比较器的反相模式图显示了在非反相模式下的电压比较。
电压比较器非反相比较在非反相比较器的参考电压施加到反相输入电压进行比较适用于非反相输入。
每当进行比较的电压(Vin)以上的参考电压进入运放的输出摆幅积极饱和度(V+),和副反之亦然。
实际上发生了什么是VIN和Vref(VIN-VREF)之间的差异,将是一个积极的价值和由运放放大到无穷大。
由于没有反馈电阻Rf,运放是在开环模式,所以电压增益(AV)将接近无穷。
+所以最大的可能值,即输出电压摆幅,V。
请记住公式AV=1+(Rf/R1)。
当VIN低于VREF,反向发生。
反相比较在相比较的情况下,参考电压施加到非反相输入和电压进行比较适用于反相输入。
每当输入电压(Vin)高于VREF,运放的输出摆幅负饱和。
倒在这里,两个电压(VIN-VREF)之间的差异和由运放放大到无穷大。
记住公式AV=-Rf/R1。
在反相模式下的电压增益的计算公式是AV=-Rf/R1.Since没有反馈电阻,增益将接近无穷,输出电压将尽可能即负,V-。
实际电压比较器电路一种实用的非基于UA741运放的反相比较器如下所示。
这里使用R1和R2组成的分压器网络设置参考电压。
该方程是VREF=(五+/(R1+R2)的)×R2的。
代入这个方程电路图值,VREF=6V。
当VIN高于6V,输出摆幅?+12V直流,反之亦然。
从A+/-12V 直流双电源供电电路。
电压比较器的使用741一些其他的运放,你可能会感兴趣的相关电路1求和放大器:总结放大器可以用来找到一个信号给定数量的代数和。
2。
集成使用运放:对于一个集成的电路,输出信号将输入信号的积分。
例如,一个集成的正弦波使余弦波,方波一体化为三角波等。
3。
反相放大器:在一个反相放大器,输出信号将输入信号的倒版,是由某些因素放大。
电压比较器电路图

电压比较器电路图单限比较器电路OH。
图1B为其传输特性。
图3为某仪器中过热检测保护电路。
它用单电源供电,1/4LM339的反相输入端加一个固定的参考电压,它的值取决于R1于R2。
UR=R2/(R1+R2)*UCC。
同相端的电压就等于热敏元件RT的电压降。
当机内温度为设定值以下时,“+”端电压大于“-”端电压,UO 为高电位。
当温度上升为设定值以上时,“-”端电压大于“+”端,比较器反转,UO输出为零电位,使保护电路动作,调节R1的值可以改变门限电压,既设定温度值的大小。
图3迟滞比较器图1不难看出,当输出状态一旦转换后,只要在跳变电压值附近的干扰不超过ΔU之值,输出电压的值就将是稳定的。
但随之而来的是分辨率降低。
因为对迟滞比较器来说,它不能分辨差别小于ΔU的两个输入电压值。
迟滞比较器加有正反馈可以加快比较器的响应速度,这是它的一个优点。
除此之外,由于迟滞比较器加的正反馈很强,远比电路中的寄生耦合强得多,故迟滞比较器还可免除由于电路寄生耦合而产生的自激振荡。
图2图3为某电磁炉电路中电网过电压检测电路部分。
电网电压正常时,1/4LM339的U4<2.8V,U5=2.8V,输出开路,过电压保护电路不工作,作为正反馈的射极跟随器BG1是导通的。
当电网电压大于242V时,U4>2.8V,比较器翻转,输出为0V,BG1截止,U5的电压就完全决定于R1与R2的分压值,为2.7V,促使U4更大于U5,这就使翻转后的状态极为稳定,避免了过压点附近由于电网电压很小的波动而引起的不稳定的现象。
由于制造了一定的回差(迟滞),在过电压保护后,电网电压要降到242-5=237V时,U4<U3,电磁炉才又开始工作。
这正是我们所期望的。
图3双限比较器(窗口比较器)R1<UIN<UR2),输出为高电位(UO=UOH)。
当UIN不在门限电位范围之间时,(UIN>UR2或UIN<UR1)输出为低电位(UO=UOL),窗口电压ΔU=UR2-UR1。
分立元件组成的电压比较器

分立元件组成的电压比较器
分立元件组成的电压比较器是一种基本的电路,用于比较两个输入电压的大小,并输出相应的逻辑电平。
它由几个基本的分立元件组成,包括晶体管、二极管、电阻和电容等。
一个常见的分立元件电压比较器电路示意图如下:
```
Vcc
|
R1
|
+-----|-----+
| |
Vin+ Vin-
| |
| Q1 |
| /|\ |
+----|-----+
| Vout
R2
|
GND
```
其中,Vin+和Vin-分别是待比较的两个输入电压,Vout是输出电压,Vcc是电源电压,GND是接地。
在这个电路中,Q1是一个晶体管,用作放大器。
当Vin+大于Vin-时,Q1的基极电流增加,导致集电极电流增大,进而使输出电压Vout接近Vcc;反之,当Vin+小于Vin-时,Q1的基极电流减小,导致集电极电流减小,进而使输出电压Vout接近GND。
R1和R2是电阻,用于设置比较器的阈值电压。
通过调节它们的比例关系,可以确定比较器的阈值电压,即当Vin+与Vin-之间的电压差超过阈值时,比较器输出电压发生变化。
还可以使用二极管和电容等元件来实现更复杂的功能,如滞回特性、延时等。
这种分立元件组成的电压比较器电路简单、灵活,可以根据具体需求进行调整和修改。
电路实验报告14 电压比较器的应用实验

实验报告课程名称:电路与电子技术实验II指导老师:沈连丰 成绩:__________________ 实验名称:电压比较器的应用实验 实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得一、 实验目的和要求1、了解电压比较器与运算放大器的性能区别;2、掌握电压比较器的结构及特点;3、掌握电压比较器电压传输特性的测试方法;4、学习比较器在电路设计中的应用。
二、实验内容和原理实验内容:1、过零电压比较器;2、单门限电压比较器;3、滞回电压比较器;4、窗口电压比较器;5、三态电压比较器。
理想比较器 :A od → ∞,R id → ∞,R ic → ∞,K CMR → ∞,f H → ∞,R o → 0;I IB(+) = I IB(-)→ 0,U IO → 0,I IO → 0,且温漂、噪声和干扰均忽略。
强调:灵敏度(分辨率,鉴别度),工作速度 [ 转换速率 SR , 响应时间],输入过激励,输出只有两个电平 (高电平, 低电平)。
器件处于非线性工作状态。
比较器构成: ① 运放构成比较器。
② 专用比较器。
电压比较器与运算放大器的性能区别:专业:电子信息工程 姓名:彭嘉乔学号:3130104084 日期:2015.06.04 地点:东3-211运算放大器一般可作电压比较器使用,但电压比较器原则上不能作为运算放大器使用。
电压比较器的输出结构比较器的输出级主要有开路输出(包括:集电极开路输出(Open-Collector Outputs)、集电极/发射极开路输出(Open-Collector/Emitter Outputs)、漏极开路输出(Open-Drain Output))和推挽式输出(Push-Pull Output)两种输出电路结构。
《电压比较器的应用》课件

在绘制完版图后,检查版图是否符合设计规则, 确保版图的正确性和可制造性。
电压比较器的仿真与测试
建立仿真模型
根据电路设计和版图布局,建立电压比较器的仿真模 型。
进行仿真测试
使用仿真软件对电压比较器进行仿真测试,观察电路 的性能指标是否满足设计要求。
进行实际测试
在实际环境中,搭建测试平台对电压比较器进行实际 测试,验证其性能和可靠性。
研究方向二
研究电压比较器的数字化控制技术,实现智能化 和自适应调节。通过引入数字信号处理技术,对 电压比较器的输出信号进行数字化处理,提高其 抗干扰能力和稳定性。
研究方向四
研究电压比较器的可靠性技术,以提高其在复杂 环境下的稳定性和可靠性。通过加强器件可靠性 设计、优化电路布局和布线等措施,提高电压比 较器的抗干扰能力和稳定性。
选择合适的比较器芯片
根据输入信号范围、精度要求和功耗等因素,选择合适的比较器芯 片。
设计比较器电路
根据比较器芯片的规格书,设计比较器电路,包括输入级、放大器 和输出级等部分。
电压比较器的版图设计
设计版图布局
根据电路设计,合理规划版图布局,确保电路元 件之间的连接关系正确、紧凑。
绘制版图
使用EDA工具,按照电路元件的连接关系,逐一 绘制每个元件的版图。
详细描述
功耗是指电压比较器在工作过程中所消耗 的能源量,通常以功率或能量消耗来表示 。功耗的大小直接影响到比较器的发热、 效率以及电源的负载能力。在节能减排和 绿色环保的背景下,功耗已经成为评价电 子设备性能的重要指标之一。
04
电压比较器的设计与实现
电压比较器的电路设计
确定输入信号范围
根据应用需求,确定电压比较器的输入信号范围,以便选择合适 的比较器芯片或自行设计电路。
电压比较器电路介绍及其应用

电压比较器电路介绍及其应用
零交比较器
零交比较器的功能是将输入信号与零电位进行比较,测定输入电压是大于零还是小于零,用输出电压是高或低电平给出判断的结果。
图5.4-63示出了零交比较器的电路。
图5.4-63的零交比较器,是同相端接地,反相端接输入信号,相对零电平进行比较。
对图5.4-63的零交比较器,又称为反相零交比较器,若将图5.4-63中输入信号加在同相端,使反相接地,就得到了同相零比较器。
实际上,由于运放输入失调电压和失调电流的影响,使输入信号U1在稍许偏离零的电压上发生切换。
如图5.4-62所示。
所以在实际应用中,使用调零电路对失调进行补偿,才能使信号在0V时比较器切换。
调零电路吸能在一定温度下,对失调进行补偿。
对由于温漂引起的失调还会使切换点发生稍许偏移。
图5.4-64示出了有补偿失调的零交比较器和用零交比较器用作整形电路的波形图。
任意电平比较器
1、双端输入式电压比较器
图5.4-65为双端输入式比较器。
将基准电压UR加在运放的同相端,比较信号U4加在反相端。
实现电压比较。
当UR为零时,就成为零交比较器。
其工作原理与零交比较器相同,只是切换点电压不是0V而是基准电压UR的值。
当U1大于UM时,比较器输出作出0的响应。
2、单端输入式电压比较器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电压比较器电路图,电压比较器的应用
电压比较器电路图
>OH。
图1b为其传输特性。
电压比较器基本原理及设计应用
本文主要介绍电压比较器基本概念、工作原理及典型工作电路,并介绍一些常用的电压比较器。
电压比较器(以下简称比较器)是一种常用的集成电路。
它可用于报警器电路、自动控制电路、测量技术,也可用于V/F变换电路、A/D变换电路、高速采样电路、电源电压监测电路、振荡器及压控振荡器电路、过零检测电路等。
什么是电压比较器
简单地说,电压比较器是对两个模拟电压比较其大小(也有两个数字电压比较的,这里不介绍),并判断出其中哪一个电压高,如图1所示。
图1(a)是比较器,它有两个输入端:同相输入端(“+”端) 及反相输入端(“-”端),有一个输出端Vout(输出电平信号)。
另外有电源V+及地(这是个单电源比较器),同相端输入电压VA,反相端输入VB。
VA和VB 的变化如图1(b)所示。
在时间0~t1时,VA>VB;在t1~t2时,VB>VA;在t2~t3时,VA>VB。
在这种情况下,Vout的输出如图1(c)所示:VA>VB时,Vout输出高电平(饱和输出);VB>VA 时,Vout输出低电平。
根据输出电平的高低便可知道哪个电压大。
如果把VA输入到反相端,VB输入到同相端,VA及VB的电压变化仍然如图1(b)所示,则Vout输出如图1(d)所示。
与图1(c)比较,其输出电平倒了一下。
输出电平变化与VA、VB的输入端有关。
图2(a)是双电源(正负电源)供电的比较器。
如果它的VA、VB输入电压如图1(b)那样,它的输出特性如图2(b)所示。
VB>VA时,Vout输出饱和负电压。
如果输入电压VA与某一个固定不变的电压VB相比较,如图3(a)所示。
此VB称为参考电压、基准电压或阈值电压。
如果这参考电压是0V(地电平),如图3(b)所示,它一般用作过零检测。
比较器的工作原理
比较器是由运算放大器发展而来的,比较器电路可以看作是运算放大器的一种应用电路。
由于比较器电路应用较为广泛,所以开发出了专门的比较器集成电路。
图4(a)由运算放大器组成的差分放大器电路,输入电压VA经分压器R2、R3分压后接在同相端,VB通过输入电阻R1接在反相端,RF为反馈电阻,若不考虑输入失调电压,则其输出电压Vout与VA、VB及4个电阻的关系式为:Vout=(1+RF/R1)·R3/(R2+R3)VA-(RF/R1)VB。
若R1=R2,R3=RF,则Vout=RF/R1(VA-VB),RF/R1为放大器的增益。
当R1=R2=0(相当于R1、R2短路),R3=RF=∞(相当于R3、RF开路)时,Vout=∞。
增益成为无穷大,其电路图就形成图4(b)的样子,差分放大器处于开环状态,它就是比较器电路。
实际上,运放处于开环状
态时,其增益并非无穷大,而Vout输出是饱和电压,它小于正负电源电压,也不可能是无穷大。
从图4中可以看出,比较器电路就是一个运算放大器电路处于开环状态的差分放大器电路。
同相放大器电路如图5所示。
如果图5中RF=∞,R1=0时,它就变成与图3(b)一样的比较器电路了。
图5中的Vin相当于图3(b)中的VA。
比较器与运放的差别
运放可以做比较器电路,但性能较好的比较器比通用运放的开环增益更高,输入失调电压更小,共模输入电压范围更大,压摆率较高(使比较器响应速度更快)。
另外,比较器的输出级常用集电极开路结构,如图6所示,它外部需要接一个上拉电阻或者直接驱动不同电源电压的负载,应用上更加灵活。
但也有一些比较器为互补输出,无需上拉电阻。
这里顺便要指出的是,比较器电路本身也有技术指标要求,如精度、响应速度、传播延迟时间、灵敏度等,大部分参数与运放的参数相同。
在要求不高时可采用通用运放来作比较器电路。
如在A/D变换器电路中要求采用精密比较器电路。
由于比较器与运放的内部结构基本相同,其大部分参数(电特性参数)与运放的参数项基本一样(如输入失调电压、输入失调电流、输入偏置电流等)。
比较器典型应用电路
这里举两个简单的比较器电路为例来说明其应用。
1.散热风扇自动控制电路
一些大功率器件或模块在工作时会产生较多热量使温度升高,一般采用散热片并用风扇来冷却以保证正常工作。
这里介绍一种极简单的温度控制电路,如图7所示。
负温度系数(NTC)热敏电阻RT粘贴在散热片上检测功率器件的温度(散热片上的温度要比器件的温度略低一些),当5V电压加在RT及R1电阻上时,在A点有一个电压VA。
当散热片上的温度上升时,则热敏电阻RT的阻值下降,使VA上升。
RT的温度特性如图8所示。
它的电阻与温度变化曲线虽然线性度并不好,但是它是单值函数(即温度一定时,其阻值也是一定的单值)。
如果我们设定在80℃时应接通散热风扇,这80℃即设定的阈值温度TTH,在特性曲线上可找到在80℃时对应的RT的阻值。
R1的阻值是不变的(它安装在电路板上,在环境温度变化不大时可认为R1值不变),则可以计算出在80℃时的VA值。
R2与RP组成分压器,当5V电源电压是稳定电压时(电压稳定性较好),调节RP可以改变VB的电压(电位器中心头的电压值)。
VB值为比较器设定的阈值电压,称为VTH。
设计时希望散热片上的温度一旦超过80℃时接通散热风扇实现散热,则VTH的值应等于80℃时的K值。
一旦VA>VTH,则比较器输出低电平,继电器K吸合,散热风扇(直流电机)得电工作,使大功率器件降温。
VA、VTH电压变化及比较器输出电压Vout的特性如图9所示。
这里要说清楚的是在VA开始大于VTH时,风扇工作,但散热体有较大的热量,要经过一定时问才能把温度降到80℃以下。
从图7可看出,要改变阈值温度TTH十分方便,只要相应地改变VTH值即可。
VTH 值增大,TTH增大;反之亦然,调整十分方便。
只要RT确定,RT的温度特性确定,则R1、R2、RP可方便求出(设流过RT、R1及R2、RP的电流各为0.1~0.5mA)。
2.窗口比较器
窗口比较器常用两个比较器组成(双比较器),它有两个阈值电压VTHH(高阈值电压)及VTHL(低阈值电压),与VTHH及VTHL比较的电压VA输入两个比较器。
若VTHL≤VA≤VTHH,Vout输出高电平;若VA<VTHL,VA>VTHH,则Vout输出低电平,如图10所示。
图10是一个冰箱报警器电路。
冰箱正常工作温度设为0~5℃,(0℃到5℃是一个“窗口”),在此温
度范围时比较器输出高电平(表示温度正常);若冰箱温度低于0V或高于5℃,则比较器输出低电平,此低电平信号电压输入微控制器(μC)作报警信号。
温度传感器采用NTC热敏电阻RT,已知RT在0℃时阻值为333.1kΩ;5℃时阻值为258.3kΩ,则按1.5V工作电压及流过R1、RT的电流约1.5 uA,可求出R1的值。
R1的值确定后,可计算出0℃时的VA值为0.5V(按图10中R1=665kΩ时),5℃时的VA值为0.42V,则VTHL=0.42V,VTHH=0.5V。
若设R2=665kΩ,则按图11,可求出流过R2、R3、R4电阻的电流I=(1.5V-0.5V)/665kΩ=0.0015mA,按R4×I/=0.42V,可求出R4=280kΩ再按0.5V=(R3+R4)0.0015mA,则可求出R3=53.3kΩ。
本例中两个比较器采用低工作电压、低功耗、互补输出双比较器LT1017,无需外接上拉电阻。