LM324电压比较器电路图和应用

合集下载

LM324功能应用简介

LM324功能应用简介

LM324功能应用简介您现在的位置是:主页>>>电子元器件资料>>>正文LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。

它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。

每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。

两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。

LM324的引脚排列见图2。

图 1 图 2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。

下面介绍其应用实例。

反相交流放大器电路见附图。

此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。

电路无需调试。

放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是消振电容。

放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。

负号表示输出信号与输入信号相位相反。

按图中所给数值,Av=-10。

此电路输入电阻为Ri。

一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。

Co和Ci为耦合电容。

同相交流放大器见附图。

同相交流放大器的特点是输入阻抗高。

其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。

此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。

而对信号源的影响极小。

因运放Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。

电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。

lm324应用实例.ppt

lm324应用实例.ppt

R1 R2 R3
RF
uO

( RF R1
uI1

RF R2
uI2

RF R3
uI3 )
R R1 // R2 // R3 // RF
当 R1 = R2 = R3 = R 时,
uO


RF R1
(uI1

uI2

uI3 )
积分运算电路
由于“虚地”,u = 0,故 uO = uC
由于“虚断”,iI = iC ,故
GND
VCC
集成运放的主要技术指标
一、开环差模电压增益Aod
无外加反馈情况下的直流差模增益。一般在
105 107之间。理想运放的Aod为。
A 20lg
U O
od
U U


二、共模抑制比KCMR
开环差模电压增益与开环共模电压增益之比。 多数集成运放共模抑制比达80dB以上。
K
20 lg
1 LM324简介
GND
VCC
LM324四运放电路具有电源电压范围宽,静态功耗小, 可单电源使用,价格低廉等优点,因此被广泛应用在 反相交流放大器、同相交流放大器、测温电路、比 较器等各种电路中。
GND为接地端,VCC为电源正极端(6V),每个运放 的反相输入端、同相输入端、输出端均有编号。例如, 1Vi、1Vi 、1VO 分别表示1号运放的反相输入端、同相输入 端及输出端。依此类推,2Vi 、2Vi 、2VO 是表示2号运放器的, 等等。
t0
t1
t
O
t
uI = UI = 常数,
uO


1 RC
uIdt

LM324电压比较器电路图和应用

LM324电压比较器电路图和应用

电压比较器基本原理及设计应用本文主要介绍电压比较器基本概念、工作原理及典型工作电路,并介绍一些常用的电压比较器。

电压比较器(以下简称比较器)是一种常用的集成电路。

它可用于报警器电路、自动控制电路、测量技术,也可用于V/F变换电路、A/D变换电路、高速采样电路、电源电压监测电路、振荡器及压控振荡器电路、过零检测电路等。

什么是电压比较器简单地说,电压比较器是对两个模拟电压比较其大小(也有两个数字电压比较的,这里不介绍),并判断出其中哪一个电压高,如图1所示。

图1(a)是比较器,它有两个输入端:同相输入端(“+”端) 及反相输入端(“-”端),有一个输出端Vout(输出电平信号)。

另外有电源V+及地(这是个单电源比较器),同相端输入电压VA,反相端输入VB。

VA和VB的变化如图1(b)所示。

在时间0~t1时,VA>VB;在t1~t2时,VB>VA;在t2~t3时,VA>VB。

在这种情况下,Vout的输出如图1(c)所示:VA>VB时,Vout输出高电平(饱和输出);VB>VA时,Vout输出低电平。

根据输出电平的高低便可知道哪个电压大。

如果把VA输入到反相端,VB输入到同相端,VA及VB的电压变化仍然如图1(b)所示,则Vout输出如图1(d)所示。

与图1(c)比较,其输出电平倒了一下。

输出电平变化与VA、VB的输入端有关。

图2(a)是双电源(正负电源)供电的比较器。

如果它的VA、VB输入电压如图1(b)那样,它的输出特性如图2(b)所示。

VB>VA时,Vout输出饱和负电压。

如果输入电压VA与某一个固定不变的电压VB相比较,如图3(a)所示。

此VB称为参考电压、基准电压或阈值电压。

如果这参考电压是0V(地电平),如图3(b)所示,它一般用作过零检测。

比较器的工作原理比较器是由运算放大器发展而来的,比较器电路可以看作是运算放大器的一种应用电路。

由于比较器电路应用较为广泛,所以开发出了专门的比较器集成电路。

LM324集成芯片内部电路分析与典型应用_模电研讨文

LM324集成芯片内部电路分析与典型应用_模电研讨文

LM324集成芯片内部电路分析与典型应用_模电研讨文首先,LM324的内部电路主要由四个运算放大器组成。

每个运算放大器都由一个差分输入级、一个电压增益级以及一个输出级组成。

差分输入级由两个PNP型晶体管和两个NPN型晶体管组成,分别起到差分输入和电流放大的作用。

电压增益级由一个P型晶体管和一个N型晶体管组成,用于控制电压增益。

输出级由一个NPN型晶体管和一个PNP型晶体管组成,负责输出信号。

对于LM324的典型应用之一是作为比较器使用。

比较器主要用于比较两个输入信号的大小,根据比较结果输出高电平或低电平。

在LM324中,将一个运算放大器配置为比较器,其中一个输入信号接到非反相输入端,另一个输入信号接到反相输入端。

当非反相输入信号的电压高于反相输入信号的电压时,输出电压为高电平。

反之,则输出电压为低电平。

比较器常用于电压参考、开关控制等场合。

另一个典型应用是作为电压跟随器(Voltage Follower)。

电压跟随器主要用于信号缓冲和阻抗匹配。

LM324的一个运算放大器可以配置为电压跟随器,将输入信号接到非反相输入端,将输出信号从运算放大器的输出端取出。

由于LM324的输入阻抗相对较高,输出阻抗相对较低,因此可以有效地实现信号放大和阻抗匹配,保持输入输出信号一致。

此外,LM324还可以用于多种滤波电路的设计。

例如,可以将它配置为无源RC低通滤波器,用于滤除高频噪声。

另外,还可以将多个LM324连接起来,构成滤波电路的多级级联结构,实现更高阶次的滤波功能。

总之,LM324是一款功能强大的集成芯片,它内部的四个运算放大器提供了丰富的功能和灵活的配置方式。

通过灵活的连接和组合,可以实现多种不同的模拟信号处理和放大应用。

在电子工程领域,LM324已经成为一款被广泛应用的集成芯片。

lm324应用实例.ppt

lm324应用实例.ppt
GND
VCC
集成运放的主要技术指标
一、开环差模电压增益Aod
无外加反馈情况下的直流差模增益。一般在
105 107之间。理想运放的Aod为。
A 20lg
U O
od
U U


二、共模抑制比KCMR
开环差模电压增益与开环共模电压增益之比。 多数集成运放共模抑制比达80dB以上。
K
20 lg
1 LM324简介
GND
VCC
LM324四运放电路具有电源电压范围宽,静态功耗小, 可单电源使用,价格低廉等优点,因此被广泛应用在 反相交流放大器、同相交流放大器、测温电路、比 较器等各种电路中。
GND为接地端,VCC为电源正极端(6V),每个运放 的反相输入端、同相输入端、输出端均有编号。例如, 1Vi、1Vi 、1VO 分别表示1号运放的反相输入端、同相输入 端及输出端。依此类推,2Vi 、2Vi 、2VO 是表示2号运放器的, 等等。
uI = iIR = iCR
R R
得:
1
1
uO uC C iCdt RC uIdt
τ = RC
——积分时间常数
积分电路的输入、输出波形
(一)输入电压为阶跃信号 uI
UI
当 t ≤ t0 时,uI = 0, uO = 0; 当 t0 < t ≤ t1 时,
O uO
基本微分运算电路在输入信号时,集成运放内部的放大 管会进入饱和或截止状态,以至于即使信号消失,管子 还不能脱离原状态回到放大区,出现阻塞现象。
图7.2.19实用微分运算电路
图7.2.20微分电路输入、输出波形分析
LM324作反相交流放大器
代替晶体管进行交流

lm324典型电路

lm324典型电路

LM324四运放的应用LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。

它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。

每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“V o”为输出端。

两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端V o的信号与该输入端的相位相同。

LM324的引脚排列见图2。

图 1 图2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。

下面介绍其应用实例。

●反相交流放大器电路见附图。

此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。

电路无需调试。

放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是消振电容。

放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。

负号表示输出信号与输入信号相位相反。

按图中所给数值,Av=-10。

此电路输入电阻为Ri。

一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。

Co和Ci为耦合电容。

●同相交流放大器见附图。

同相交流放大器的特点是输入阻抗高。

其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。

电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。

R4的阻值范围为几千欧姆到几十千欧姆。

●交流信号三分配放大器此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。

而对信号源的影响极小。

因运放Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。

lm324应用电路大全(温度控制器振荡器带通滤波器断电保护)

lm324应用电路大全(温度控制器振荡器带通滤波器断电保护)

lm324应用电路大全(温度控制器振荡器带通滤波器断电保护)描述lm324应用电路(一)温度控制器采用LM324四运算放大器集成电路,温度控制范围为5~95℃,可广泛应用于工农业生产方面的温度自动控制。

该温度控制器电路由电源电路、温度检测电路、基准电压电路、温度指示电路、电压比较放大电路和控制执行电路组成,如图6-6所示。

图6-6采用LM324运算放大器的温度控制器电路电路中,电源电路由电源开关S、电源变压器T、整流桥堆UR、滤波电容C1、C2、三端稳压集成电路IC2、限流电阻R10和电源指示发光二极管VL1组成;温度检测电路由晶体管式温度传感器V1、电阻R1、电容C3和运算放大器集成电路IC1(N1~N4)内部的N1组成;基准电压电路由电阻R4、R5、R8、电位器RP1~RP3、稳压二极管VS和IC1内部的N4组成;温度指示电路由电阻R2、R3、IC1内部的N2和电压表PV组成;电压比较放大电路由IC1内部的N3和电阻R6、R7组成;控制执行电路由电阻R9、晶体管V2、继电器K、二极管VD 和工作指示发光二极管VL2组成。

交流220V电压经T降压、UR整流、C1滤波及IC2稳压后,为IC1、基准电压电路和控制执行电路提供+9V工作电压,同时将VL1点亮;+9V电压经R5限流、VS稳压后产生+6V左右的基准电压,一路经R4、RP1分压后为N2的正相输入端提供基准电压;另一路先经N4缓冲放大,然后经RP2、RP3分压后,再经R8加至N4的正相输入端,作为N3的基准电压;V1发射结的电压降(Vbe)随着环境温度的变化而变化。

温度上升时,V1的导通内阻变小,发射结的电压降也减小,使N1的输出电压降低,N2的输出电压升高,N4的输出电压则下降;PV用来指示V1检测的温度值(灵敏度为10mV/℃),若PV指示电压值为250mV,则表明温度为25℃;RP3用来设定控制温度值;RP2用来设定RP3的最大输出电压(调节RP2的阻值,使RP3的最大输出电压为1V);RP1用来设定N2正相输入端的基准电压(调节RP1的阻值,使N2的正相输入端电压为530mV)。

LM324电压比较器介绍

LM324电压比较器介绍

LM324电压比较器介绍
LM324电压比较器简介
LM324是单电源四路运算放大器,是一个具有差分输入和单端输出的高增益电压放大器。

与在单电源应用场合的标准运算放大器比起来,其优点更明显。

该四路放大器可以工作于低至3.0 V 或高达32 V 的电源电压,静态电流是MC1741的五分之一左右(每个放大器)。

共模输入范围包括负电源,因此在众多应用中无需外部偏置元器件。

输出电压范围也包括负电源电压。

应用领域包括:
1、传感器放大器。

2
、直流增益模块。

3、所有传统的运算放大器应用电路。

LM324实物图
LM324引脚图
LM324引脚图
LM324特性
1、具有短路保护输出。

2、真正的差分输入级。

3、单电源供电:3.0 V~32 V。

4、每个芯片封装四个放大器。

5、内部补偿。

6、共模范围扩展为负电源。

7、输入端ESD钳位可增加坚固性而不影响器件操作。

维思电桥振荡器
高阻抗差动放大器
滞后比较器
双四级滤波器
函数发生器
多路反馈带通滤波器
LM324应用电路实例。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电压比较器基本原理及设计应用
本文主要介绍电压比较器基本概念、工作原理及典型工作电路,并介绍一些常用的电压比较器。

电压比较器(以下简称比较器)是一种常用的集成电路。

它可用于报警器电路、自动控制电路、测量技术,也可用于V/F变换电路、A/D变换电路、高速采样电路、电源电压监测电路、振荡器及压控振荡器电路、过零检测电路等。

什么是电压比较器
简单地说,电压比较器是对两个模拟电压比较其大小(也有两个数字电压比较的,这里不介绍),并判断出其中哪一个电压高,如图1所示。

图1(a)是比较器,它有两个输入端:同相输入端(“+”端) 及反相输入端(“-”端),有一个输出端Vout(输出电平信号)。

另外有电源V+及地(这是个单电源比较器),同相端输入电压VA,反相端输入VB。

VA和VB的变化如图1(b)所示。

在时间0~t1时,VA>VB;在t1~t2时,VB>VA;在t2~t3时,VA>VB。

在这种情况下,Vout的输出如图1(c)所示:VA>VB时,Vout输出高电
平(饱和输出);VB>VA时,Vout输出低电平。

根据输出电平的高低便可知道哪个电压大。

如果把VA输入到反相端,VB输入到同相端,VA及VB的电压变化仍然如图1(b)所示,则Vout输出如图1(d)所示。

与图1(c)比较,其输出电平倒了一下。

输出电平变化与VA、VB的输入端有关。

图2(a)是双电源(正负电源)供电的比较器。

如果它的VA、VB输入电压如图1(b)那样,它的输出特性如图2(b)所示。

VB>VA时,Vout输出饱和负电压。

如果输入电压VA与某一个固定不变的电压VB相比较,如图3(a)所示。

此VB称为参考电压、基准电压或阈值电压。

如果这参考电压是0V(地电平),如图3(b)所示,它一般用作过零检测。

比较器的工作原理
比较器是由运算放大器发展而来的,比较器电路可以看作是运算放大器的一种应用电路。

由于比较器电路应用较为广泛,所以开发出了专门的比较器集成电路。

图4(a)由运算放大器组成的差分放大器电路,输入电压VA经分压器R2、R3分压后接在同相端,VB通过输入电阻R1接在反相端,RF为反馈电阻,若不考虑输入失调电压,则其输出电压Vout与VA、VB及4
个电阻的关系式为:Vout=(1+RF/R1)·R3/(R2+R3)VA-(RF/R1)VB。

若R1=R2,R3=RF,则Vout=RF/R1(VA-VB),RF/R1为放大器的增益。

当R1=R2=0(相当于R1、R2短路),R3=RF=∞(相当于R3、RF开路)时,Vout=∞。

增益成为无穷大,其电路图就形成图4(b)的样子,差分放大器处于开环状态,它就是比较器电路。

实际上,运放处于开环状态时,其增益并非无穷大,而Vout输出是饱和电压,它小于正负电源电压,也不可能是无穷大。

从图4中可以看出,比较器电路就是一个运算放大器电路处于开环状态的差分放大器电路。

同相放大器电路如图5所示。

如果图5中RF=∞,R1=0时,它就变成与图3(b)一样的比较器电路了。

图5中的Vin相当于图3(b)中的VA。

比较器与运放的差别
运放可以做比较器电路,但性能较好的比较器比通用运放的开环增益更高,输入失调电压更小,共模输入电压范围更大,压摆率较高(使比较器响应速度更快)。

另外,比较器的输出级常用集电极开路结构,如图6所示,它外部需要接一个上拉电阻或者直接驱动不同电源电压的负载,应用上更加灵活。

但也有一些比较器为互补输出,无需上拉电阻。

这里顺便要指出的是,比较器电路本身也有技术指标要求,如精度、响应速度、传播延迟时间、灵敏度等,大部分参数与运放的参数相同。

在要求不高时可采用通用运放来作比较器电路。

如在A/D变换器电路中要求采用精密比较器电路。

由于比较器与运放的内部结构基本相同,其大部分参数(电特性参数)与运放的参数项基本一样(如输入失调电压、输入失调电流、输入偏置电流等)。

比较器典型应用电路
这里举两个简单的比较器电路为例来说明其应用。

1.散热风扇自动控制电路
一些大功率器件或模块在工作时会产生较多热量使温度升高,一般采用散热片并用风扇来冷却以保证正常工作。

这里介绍一种极简单的温度控制电路,如图7所示。

负温度系数(NTC)热敏电阻RT粘贴在散热片上检测功率器件的温度(散热片上的温度要比器件的温度略低一些),当5V电压加在RT及R1电阻上时,在A点有一个电压VA。

当散热片上的温度上升时,则热敏电阻RT的阻值下降,使VA上升。

RT的温度特性如图8所示。

它的电阻与温度变化曲线虽然线性度并不好,但是它是单值函数(即温度一定时,其阻值也是一定的单值)。

如果我们设定在80℃时应接通散热风扇,这80℃即设定的阈值温度TTH,在特性曲线上可找到在80℃时对应的RT的阻值。

R1的阻值是不变的(它安装在电路板上,在环境温度变化不大时可认为
R1值不变),则可以计算出在80℃时的VA值。

R2与RP组成分压器,当5V电源电压是稳定电压时(电压稳定性较好),调节RP可以改变VB的电压(电位器中心头的电压值)。

VB值为比较器设定的阈值电压,称为VTH。

设计时希望散热片上的温度一旦超过80℃时接通散热风扇实现散热,则VTH的值应等于80℃时的K值。

一旦VA>VTH,则比较器输出低电平,继电器K吸合,散热风扇(直流电机)得电工作,使大功率器件降温。

VA、VTH电压变化及比较器输出电压Vout的特性如图9所示。

这里要说清楚的是在VA开始大于VTH时,风扇工作,但散热体有较大的热量,要经过一定时问才能把温度降到80℃以下。

从图7可看出,要改变阈值温度TTH十分方便,只要相应地改变VTH值即可。

VTH值增大,TTH增大;反之亦然,调整十分方便。

只要RT确定,RT的温度特性确定,则R1、R2、RP可方便求出(设流过RT、R1及R2、RP的电流各为0.1~0.5mA)。

2.窗口比较器
窗口比较器常用两个比较器组成(双比较器),它有两个阈值电压VTHH(高阈值电压)及VTHL(低阈值电压),与VTHH及VTHL比较的电压VA输入两个比较器。

若VTHL≤VA≤VTHH,Vout输出高电平;若VA<VTHL,VA>VTHH,则Vout输出低电平,如图10所示。

图10是一个冰箱报警器电路。

冰箱正常工作温度设为0~5℃,(0℃到5℃是一个“窗口”),在此温度范围时比较器输出高电平(表示温度正常);若冰箱温度低于
0V或高于5℃,则比较器输出低电平,此低电平信号电压输入微控制器(μC)作报警信号。

温度传感器采用NTC热敏电阻RT,已知RT在0℃时阻值为333.1kΩ;5℃时阻值为258.3kΩ,则按1.5V工作电压及流过R1、RT的电流约1.5 uA,可求出R1的值。

R1的值确定后,可计算出0℃时的VA 值为0.5V(按图10中R1=665kΩ时),5℃时的VA值为0.42V,则VTHL=0.42V,VTHH=0.5V。

若设R2=665k Ω,则按图11,可求出流过R2、R3、R4电阻的电流I=(1.5V-0.5V)/665kΩ=0.0015mA,按R4×I/=0.42V,可求出R4=280kΩ再按0.5V=(R3+R4)0.0015mA,则可求出R3=53.3kΩ。

本例中两个比较器采用低工作电压、低功耗、互补输出双比较器LT1017,无需外接上拉电阻。

相关文档
最新文档