晶体结构和晶体缺陷
固体物理学的基础知识

固体物理学的基础知识固体物理学是物理学的一个重要分支,研究物质固态状态的性质和行为。
在这篇文章中,我们将介绍一些固体物理学的基础知识,包括晶体结构、晶格常数、晶体缺陷和固体力学性质等内容。
一、晶体结构晶体是指由周期性排列的原子、离子或分子组成的物质。
晶体结构描述了这些粒子在空间中的排列方式。
最基本的晶体结构是简单立方、面心立方和体心立方。
简单立方是最简单的结构,每个原子与其六个相邻原子相接触;面心立方在每个立方的面心上添加了一个原子;体心立方在每个简单立方的中心添加了一个原子。
除了这些基本结构,还存在许多复杂的晶体结构,如钻石和蓝宝石。
二、晶格常数晶格常数是描述晶体结构的一个重要参数。
它表示晶体中相邻原子之间的距离。
晶格常数可以通过实验或计算得到。
对于简单立方结构来说,晶格常数就是原子间距离;对于面心立方和体心立方结构,晶格常数与原子间距离有特定的关系。
三、晶体缺陷晶体缺陷是指晶体结构中的一些缺陷或杂质。
晶体缺陷可以分为点缺陷、线缺陷和面缺陷。
点缺陷包括空位、间隙原子和替位原子;线缺陷包括位错和螺旋位错;面缺陷包括晶界和界面。
晶体缺陷对晶体的性质有重要影响,如电导率、热导率和光学性质等。
四、固体力学性质固体力学性质描述了固体对外界力的响应和变形行为。
其中最基本的性质是弹性模量。
弹性模量分为压缩模量、剪切模量和杨氏模量,它们分别描述了固体对压力、剪切力和应力的响应。
除了弹性模量,还有塑性、断裂和疲劳等力学性质值得研究。
结论固体物理学的基础知识包括晶体结构、晶格常数、晶体缺陷和固体力学性质等内容。
通过对这些知识的研究,我们可以更深入地理解固体的性质和行为,为材料科学和工程技术的发展做出贡献。
希望本文对你对固体物理学的学习有所帮助。
参考文献:[1] Ashcroft N W, Mermin N D. Solid State Physics. Cengage Learning, 1976.[2] Kittel C. Introduction to Solid State Physics. John Wiley & Sons, 2005.[3] Rao C N R, Rao C N R, Omar Syed Ismail. Angular Momentum in Quantum Physics: Theory and Application. World Scientific, 2014.。
晶体结构与缺陷

晶体结构与缺陷晶体是一种有着高度有序排列的原子、离子或分子的固体材料。
晶体的结构对其性质和应用具有重要影响,而缺陷则是晶体中不完美的部分。
本文将探讨晶体结构、晶格缺陷和它们在材料中的影响。
一、晶体结构晶体结构是指晶体中原子、离子或分子的排列方式。
晶体的结构可以通过晶体学方法(如X射线衍射)来表征。
根据晶体的结构特征,可以将晶体分为多种类型,包括立方晶系、正交晶系、单斜晶系等。
晶体结构的基本单位是晶胞,晶胞由晶体中最小的重复单元构成。
在晶体结构中,晶胞有各种不同的排列方式,例如简单立方晶胞、面心立方晶胞和体心立方晶胞。
这些不同的排列方式导致了不同类型的晶体结构。
二、晶格缺陷晶格缺陷是指晶体中原子、离子或分子位置的非理想性质。
晶格缺陷可以通过外部环境和材料制备过程中的条件引入。
晶格缺陷可以分为点缺陷、线缺陷和面缺陷三类。
1. 点缺陷点缺陷是指晶体中少数几个原子、离子或分子的位置与理想排列位置有所偏离。
最常见的点缺陷是空位缺陷和杂质缺陷。
空位缺陷是指晶体中某个位置上的原子或离子缺失,而杂质缺陷是指原子或离子被其他类型的原子或离子替代。
点缺陷可以对晶体的性质和行为产生重要影响。
例如,在半导体材料中,控制杂质缺陷的浓度可以改变材料的电导率。
在金属材料中,点缺陷可以影响金属的硬度、延展性和热导率等物理性能。
2. 线缺陷线缺陷是指晶体中沿某个方向出现的缺陷线。
常见的线缺陷包括位错和螺旋位错。
位错是晶体中原子排列顺序的偏移,而螺旋位错则是沿某个方向上原子排列的扭曲。
线缺陷可以导致晶体的塑性变形和断裂行为。
位错的运动可以使晶体发生滑移,从而导致材料的塑性变形。
而螺旋位错则可以在晶体中形成螺旋状的断裂。
3. 面缺陷面缺陷是指晶体中的平面缺陷。
最常见的面缺陷是晶界和孪晶。
晶界是两个晶粒之间的界面,它们的晶体结构可能有所不同。
孪晶是指两个对称的晶体结构在某个面上镜面对称的结合。
面缺陷可以对晶体的物理性能产生重要影响。
晶界可以影响晶体的弹性模量和导电性能。
第二章-晶体结构与晶体中的缺陷

• 层内力远远大于层间力,容易形成片状解理。
• ⑷ 蒙脱石结构
• 单元层间:范德华力,弱。 • [SiO4]4-中的Si4+被Al3+取代(
同晶取代)为平衡电价,吸 附低价正离子,易解吸,使 颗粒荷电,因此使陶瓷制品 因带某些离子具有放射性。 • 性质: • 加水体积膨胀,泥料可塑性 好。
因子看,A位离子越大, B位离子才能较大。
理想立方钙钛矿结构中离子的位置
§2.2 硅酸盐晶体结构
一、硅酸盐结构特点与分类 硅酸盐是数量极大的一类无机物。硅酸盐晶体可以 按硅(铝)氧骨干的形式分成岛状结构、组群状结 构、链状结构、层状结构和架状结构。它们都具有 下列结构特点: 1)结构中Si4+之间没有直接的键,而是通过O2-连接 起来的 2)结构是以硅氧四面体为结构的基础 3)每一个O2-只能连接2个硅氧四面体 4)硅氧四面体间只能共顶连接,而不能共棱和共面 连接
陶瓷材料如MgO,CaO, NiO,
CoO,MnO和PbO等都形成
该结构。岩盐型结构还是若干
复杂层状化合物结构的一部分。
根据鲍林静电价规则,
S=Z/n NaCl: 每一个Na+静电键强度是 1/6。正负离子的配位数相等, 都是6。因此键强度总和达到氯 离子的价电荷数(6x(1/6)=1) MgO: 阳离子Mg2+的静电键强 度是2/6 ,键强度总和等于氧离子 O2-的电价6x(2/6)=2
缺陷的含义:通常把晶体点阵结构中周期 性势场的畸变称为晶体的结构缺陷。 理想晶体:质点严格按照空间点阵排列。 实际晶体:存在着各种各样的结构的不完 整性。
晶体结构缺陷的类型
第一章 晶体结构与晶体中的缺陷

第一章晶体结构与晶体中的缺陷一、名词解释1.正尖晶石与反尖晶石;2.弗伦克尔缺陷与肖特基缺陷;3.刃位错与螺位错;4.固溶体;5.非化学计量化合物:二、填空与选择2.在硅酸盐结构分类中,下列矿物Ca[Al2Si2O8];CaMg[Si2O6];β-Ca2SiO4和Mg3[Si4O10](OH)2,分别属于;;;和四类。
3.在负离子作立方密堆的晶体中,为获得稳定的晶体结构,正离子将所有八面体空隙位置填满的晶体有,所有四面体空隙均填满的晶体有,填满一半八面体空隙的晶体有,填满一半四面体空隙的晶体有。
4.在尖晶石(MgAl2O4)型晶体中,O2-作面心立方最紧密堆积,Mg2+填入了;金红石晶体中,所有O2-作稍有变形的六方密堆,Ti4+填充了。
(A全部四面体空隙;B 全部八面体空隙;C四面体空隙的半数;D八面体空隙的半数;E四面体空隙的八分之一;F八面体空隙的八分之一)5.构成层状硅酸盐的[Si2O5]片中的Si4+,通常被一定数量的Al3+所取代,为满足鲍林第二规则(静电价规则),在层状结构中结合有(OH)-离子和各种二价正离子或三价正离子。
这种以Al3+取代Si4+的现象,称为。
( A同质多晶(同质多象);B类质同晶;C有序-无序转化;D同晶置换(同晶取代))6.高岭石与蒙脱石属于层状硅酸盐结构,前者的结构特征是,后者的结构特征是。
(A二层型三八面体结构;B三层型三八面体结构;C二层型二八面体结构;D 三层型二八面体结构)7.在石英的相变中,属于重建型相变的是,属于位移式相变的是。
(A α-石英→α-鳞石英;B α-石英→β-石英;C α-鳞石英→α-方石英;D α方石英→β-方石英)8.晶体结构中的热缺陷有和二类。
9.CaO掺杂到ZrO2中,其中置换了。
由于电中性的要求,在上述置换同时产生一个空位。
以上置换过程可用方程式表示。
10.由于的结果,必然会在晶体结构中产生"组分缺陷",组分缺陷的浓度主要取决于:和。
晶体的结构和晶格缺陷

晶体的结构和晶格缺陷晶体是具有规则、有序排列的原子、离子或分子的物质。
它们在自然界中广泛存在,包括矿物、金属、合金等。
晶体的结构和晶格缺陷对其性质和应用起着至关重要的作用。
晶体的结构是由周期性排列的结构单元(晶胞)组成的。
晶胞是晶体的最小重复单元,通过平移操作可以生成整个晶体。
晶体结构可以分为两类:晶体属于晶胞内原子、离子或分子之间具有长程有序排列的晶体称为晶态;而在晶胞内部分子之间没有长程有序排列的晶体则称为非晶态。
晶体的结构具有高度的有序性,可以通过X射线衍射等技术进行解析。
晶体的结构决定了其物理、化学性质以及机械性能。
不同原子或离子之间的键合方式和键长决定了晶体的硬度、熔点和导电性等。
晶格缺陷是晶体结构中的缺陷,它们可以分为点缺陷、线缺陷和面缺陷三类。
点缺陷是晶胞内单个原子、离子或分子的缺失或替代。
最常见的点缺陷包括空位、间隙原子和替位原子。
空位是晶胞中缺少一个原子,它会导致晶体特定的电学、热学和光学性质发生改变。
间隙原子是晶胞中多余的原子,它会引起晶体的固溶度变化。
替位原子则是晶胞中某个原子被另一种原子替代,这种缺陷会对晶体的磁性和电性产生重要影响。
线缺陷是沿着晶体中一维方向分布的缺陷。
最常见的线缺陷是位错,位错是晶体中原子、离子或分子排列出错的地方。
位错会导致晶体的机械性质发生变化,如增加晶体的可塑性和延展性,降低其硬度和强度。
面缺陷是沿着晶体中二维方向分布的缺陷。
最常见的面缺陷包括晶面偏差、晶界和孪晶等。
晶面偏差是晶格平面相对于理想晶体位置的偏移,它会影响晶体的表面形貌和晶体的性质。
晶界是两个或多个晶粒之间的界面,它是晶体内部结构的交界处。
孪晶是两个不同晶方向生长的晶体在晶界处错配而结合形成的缺陷,它会降低晶体的机械性能。
晶格缺陷在物质的制备和改性过程中起着重要作用。
通过控制晶格缺陷,可以调节晶体的性质和应用。
在材料科学领域,研究晶体中的缺陷可以提高材料的力学性能、电学性能和化学稳定性等。
第二章晶体构与晶体中的缺陷

第二章 晶体结构与晶体中的缺陷1、证明等径圆球面心立方最密堆积的空隙率为25.9%。
解:设球半径为a ,则球的体积为4/3πa 3,求的z=4,则球的总体积(晶胞)4×4/3πa 3,立方体晶胞体积:33216)22(a a =,空间利用率=球所占体积/空间体积=74.1%,空隙率=1-74.1%=25.9%。
2、金属镁原子作六方密堆积,测得它的密度为1.74克/厘米3,求它的晶胞体积。
解:ρ=m/V =1.74g/cm 3,V=1.37×10-22。
3、 根据半径比关系,说明下列离子与O 2-配位时的配位数各是多少? 解:Si 4+ 4; K + 12; Al 3+ 6; Mg 2+ 6。
4、一个面心立方紧密堆积的金属晶体,其原子量为M ,密度是8.94g/cm 3。
试计算其晶格常数和原子间距。
解:根据密度定义,晶格常数)(0906.0)(10906.094.810023.6/(43/13/183230nm M cm M M a =⨯=⨯⨯=- 原子间距= )(0641.02/0906.0)4/2(223/13/1nm M M a r ==⨯=5、 试根据原子半径R 计算面心立方晶胞、六方晶胞、体心立方晶胞的体积。
解:面心立方晶胞:3330216)22(R R a V ===六方晶胞(1/3):3220282/3)23/8()2(2/3R R R c a V =•••=•= 体心立方晶胞:333033/64)3/4(R R a V ===6、MgO 具有NaCl 结构。
根据O 2-半径为0.140nm 和Mg 2+半径为0.072nm ,计算球状离子所占据的体积分数和计算MgO 的密度。
并说明为什么其体积分数小于74.05%?解:在MgO 晶体中,正负离子直接相邻,a 0=2(r ++r -)=0.424(nm)体积分数=4×(4π/3)×(0.143+0.0723)/0.4243=68.52%密度=4×(24.3+16)/[6.023×1023×(0.424×10-7)3]=3.5112(g/cm 3)MgO 体积分数小于74.05%,原因在于r +/r -=0.072/0.14=0.4235>0.414,正负离子紧密接触,而负离子之间不直接接触,即正离子将负离子形成的八面体空隙撑开了,负离子不再是紧密堆积,所以其体积分数小于等径球体紧密堆积的体积分数74.05%。
第一章晶体的结构及晶体中的缺陷

ˆn c ˆn ˆh s
I
s
在晶体中反轴 对应的操作是先绕(轴)线旋转α度,然后再通过线上 (中心)点进行倒反(或先倒反再旋转),即能产生等价图形。这种连续性 操作的符号为 “ L( ) I ”, 其中“ ”为倒反, “L( )” 为旋转.
由此可知, 与Sn都属于复合对称操作,且都由旋转与另一相连的操 作组合而成。
小角度晶界: 晶粒位向差小于10度的晶界。其结构为位 错列,又分为对称倾侧晶界和扭转晶界。
5、晶界能
Gb W= ( A0 ln 0 ) 4 (1 ) b A0 1+ ln( ) 2r0 G 剪切模量;--失配度; b --柏氏矢量;
--泊松比; r0 与位错线有关的一个
除了对称元素和对称操作的符号和名称的不完全相同外,晶体的宏观 对称性与有限分子的对称性最本质的区别是:晶体的点阵结构使晶体 的宏观对称性受到了限制,这种限制主要表现在两方面: 在晶体的空间点阵结构中,任何对称轴(包括旋转轴、反轴以及以后 介绍的螺旋轴)都必与一组直线点阵平行,与一组平面点阵垂直(除 一重轴外);任何对称面(包括镜面及微观对称元素中的滑移面)都必 与一组平面点阵平行,而与一组直线点阵垂直。 晶体中的对称轴(包括旋转轴,反轴和螺旋轴)的轴次n并不是可以有 任意多重,n仅为1,2,3,4,6,即在晶体结构中,任何对称轴或轴性 对称元素的轴次只有一重、二重、三重、四重和六重这五种,不可 能有五重和七重及更高的其它轴次,这一原理称为“晶体的对称性 定律”。 所以,综合前面的讨论,由于点阵结构的限制,晶体中实际存在 的独立的宏观对称元素总共只有八种,见表2
1.3准晶体 准晶体是1984年科学家发现的一种新的物 质聚集形态。一种介于晶体和非晶体之间的
理解物质的晶体结构和晶格缺陷

理解物质的晶体结构和晶格缺陷晶体结构是物质内部有序排列的一种形态。
物质的晶体结构对其性质和应用有着重要影响。
同时,晶格缺陷是晶体中不完美的区域,对晶体的性质和行为产生显著影响。
本文将探讨晶体结构的基本特征和晶格缺陷的类型以及其对物质性质的影响。
一、晶体结构的基本特征晶体结构的基本特征包括晶体晶格、晶胞和晶格常数。
晶体晶格是指晶体中重复出现的空间网状结构,其由原子、离子或分子组成。
晶胞是晶体中最小重复单元,通常是一个几何图形。
晶格常数则是描述晶格的参数,反映着晶体内部原子排列的距离和方向。
不同晶体具有不同的晶体结构类型,常见的有离子晶体、共价晶体和金属晶体。
离子晶体由正负电荷的离子通过电静力吸引力形成,典型的例子是氯化钠。
共价晶体是由共用电子键将原子结合在一起,如金刚石。
金属晶体则由金属原子通过金属键结合,典型的例子是铜。
二、晶格缺陷的类型晶格缺陷是晶体内部不完美的区域,可能是由于原子或离子在晶体结构中的位置不正常或缺失导致的。
常见的晶格缺陷包括点缺陷、线缺陷和面缺陷。
点缺陷是指晶格中某些点位置发生了改变,比如原子偏离了理想位置或者被替代。
点缺陷可以分为点位错、空位和固溶体三种类型。
点位错是晶体中原子位置发生偏移或旋转导致的缺陷,它会使晶体中的原子排列出现错位。
空位是晶体中某个位置没有被原子占据的缺陷,导致晶格中的空隙。
固溶体是指晶格中某些原子被替代为其他原子。
线缺陷是指晶格中存在一维缺陷,如位错和螺旋走错。
位错是指晶体中原子面或者原子排列出现偏差,它可以是线性或螺旋状的。
螺旋走错是晶体中原子沿着一个螺旋线排列,而不是按照理想的平行方式。
面缺陷是指晶格中存在二维缺陷,如晶界、取向沟槽和堆垛层错。
晶界是不同晶粒之间的交界面,其原子排列比较杂乱。
取向沟槽是晶体中沿着特定方向原子排列比较紊乱的缺陷。
堆垛层错则是晶体中原本平行的晶面在某些位置上错位。
三、晶格缺陷对物质性质的影响晶格缺陷对物质性质的影响是多方面的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分晶体结构和晶体缺陷
1.原子的负电性的定义和物理意义是什么?
2.共价键的定义和特点是什么?
3.金刚石结构为什么要提出杂化轨道的概念?
4.V、VI、VII族元素仅靠共价键能否形成三维晶体?
5.晶体结构,空间点阵,基元,B格子、单式格子和复式格子之间的关系和区别。
6.W-S元胞的主要优点,缺点各是什么?
7.配位数的定义是什么?
8.晶体中有哪几种密堆积,密堆积的配位数是多少?
9.晶向指数,晶面指数是如何定义的?
10.点对称操作的基本操作是哪几个?
11.群的定义是什么?讨论晶体结构时引入群的目的是什么?
12.晶体结构、B格子、所属群之间的关系如何?
13.七种晶系和十四种B格子是根据什么划分的?
14.肖特基缺陷、费仑克尔缺陷、点缺陷、色心、F心是如何定义的?
15.棱(刃)位错和螺位错分别与位错线的关系如何?
16.位错线的定义和特征如何?
17.影响晶体中杂质替位几率的主要因素有哪些?
18.晶体中原子空位扩散系数D与哪些因素有关?
19.解理面是面指数低的晶面还是面指数高的晶面?为什么?
20.为什么要提出布拉菲格子的概念?
21.对六角晶系的晶面指数和晶向指数使用四指标表示有什么利弊?
第二部分倒格子
1.倒格子基矢是如何定义的?
2. 正、倒格子之间有哪些关系?
3.原子散射因子是如何表示的,它的物理意义如何?
4. 几何结构因子是如何表示的,它的物理意义如何?
5. 几何结构因子S h与哪些元素有关?
6.衍射极大的必要条件如何?
7.什么叫消光条件?
8.反射球是在哪个空间画的,反射球能起到什么作用,如何画反射球?
9.常用的X光衍射方法有哪几种,各有什么基本特点?
10.为什么要使用“倒空间”的概念?
第三部分 晶格振动
1. 讨论晶格振动时的物理框架是牛顿力学还是量子力学?
2. 讨论晶格振动时采用了哪些近似条件?
3. 什幺是近邻近似和简谐近似?
4. 为什幺可使用玻恩-卡曼周期边界条件?
5. 一维单原子链色散关系是怎样的?相速度v p 等于什幺?
6. 一维格波波矢q 的的取值范围是什幺?q 在第一B 、Z 内取值数是多少?
7. 一维格波波矢q 有哪些特点?
8. 一维双原子链的色散关系是怎样的?
9. 在三维晶体中,格波独立的q →
点数,声学波支数,光学波支数,格波总支数分
别等于多少?
10. 定性地讲,声学波和光学波分别描述了晶体原子的什么振动状态?
11. 格波模式密度g(ω)的定义是什幺,g(ω)是如何表示的?
12. 在一般情况下,求解格波模式密度g(ω)的困难是什么?
13. 晶格振动的色散曲线有哪些对称性?
14. 讨论晶格振动的系统能量时为什幺要引入简正坐标Q q (t)?
15. 讨论晶格振动时,进行了量子力学修正,引入了量子谐振子的能量表示,在
此过程中,把什么能量表示为谐振子的能量?
16. 什么叫声子?
17. 讨论晶格振动时的量子力学修正体现在什幺地方?
18. 声子有哪些性质?
19. 什么是晶格振动的Einsten 模型和Debye 模型?
20. 解释二模型与实验结果比较的原因。
(重点)
21. 有人定性地认为,德拜温度θD 是经典概念与量子概念解释比热的分界线,你的看法如何?
22. 热膨胀系数αv 是如何表示的?
23. 热传导系数(热导率)λ是如何表示的?
24. 什么叫N 过程和U 过程?
25. 为什么说光学支一般对热导贡献小?
26. 有人说,热容C v 是声子密度的度量,你的看法如何?
27. 为什么说“晶格振动”理论是半经典理论?
28.简述晶格振动理论中简谐近似的成功之处和局限性。
29. 什么是声子的准动量?为什么称它们是“准”动量,而不直接称为动量?
30.为了制备室温附近高导热材料,应选θD 高的材料还是θD 低的材料?
31.晶格振动中的力常数β是否影响材料的低温热导率λ?要提高热导率λ,是
选β较大的材料还是选β较小的材料?
32. 在一维双原子链中存在光学支和声学支之间的“带隙”。
若需要增大该“带隙”的宽度,可采取哪些措施?
33.晶格振动中的光学波和声学波之间可以存在“带隙”,晶体对频率处于该带隙的格波和电磁波是“透明”的吗?
第四部分 固体能带论
1.固体能带论的两个基本假设是什么?
2.固体能带论的基本思路是怎样的?
3.固体中电子状态的主要特征有哪些?
4.什么叫Bloch 定理?
5.由Bloch 定理有哪些结论和推论?
6. 在第一B 、Z 内波矢K →的取值,K →点数,K →
点密度。
7. 能态密度D 是如何定义的?
8.试计算自由电子的能态密度D 。
9.特鲁多模型及其成功与不足之处有哪些?
10.特鲁多模型的“自由电子气”与无限大真空中自由电子能量有何异同?
11.索末菲的“自由电子费米气”模型与特鲁多模型的异同。
12.费米分布函数的表示式和物理意义是什么?
13.电子密度分布的意义是什么?
14.什么叫费米面?
15.简述无限大真空自由电子,晶体中特鲁多模型,索未菲模型,近自由电子模型的关系。
16.按N.F.E 模型,晶体中的能隙是如何解释的?
17.按近自由电子模型能求解哪些问题,近自由电子近似的零级近似如何取?它主要
能计算哪些物理量?
18.按紧束缚模型能求解哪些问题,紧束缚近似的零级近似如何取?它主要能计算哪
些物理量?
19.什么叫接触电势差?
20.产生接触电势差的原因是什么?
21.两块同种金属的温度不同,接触后温度未达到相等前,是否存在电势差?为什么?
22.什么是尼克龙克-潘纳模型?
23.固体中电子状态的主要特征有哪些?
第五部分晶体中的电子输运
1.存在外电场
E时,讨论晶体中电子的输运的基本思路是怎样的?为什么未采用解薛
定格方程的方法?
2.BLoch电子的运动速度如何表示?电子的运动速度与波矢的方向是否总是相同?
3.什么是BLoch电子的准动量,为什么称之为“准”动量?
4.简述BLoch电子的有效质量的重要特征。
5.什么是BLoch电子费米气?
6.为什么满带不导电?
7.对绝缘体费米能级E f必处在导带、禁带、价带的哪一个?为什么?
8.什么叫空穴?为什么要引入这个概念?
9.半导体和半金属有何异同?
10.晶体电阻的起因是什么?。