实验四:弯曲正应力电测实验

合集下载

实验项目4: 纯弯曲梁正应力电测实验

实验项目4: 纯弯曲梁正应力电测实验

实验项目4:弯曲正应力电测实验实验日期 实验地点 成 绩 院 系 班 级 指导老师 同组成员 学生姓名 学生学号一、实验内容和目的1. 测定直梁纯弯曲时横截面上正应力大小和分布规律;2. 验证纯弯曲梁的正应力计算工式;3. 掌握电测法原理和电阻应变仪的使用方法。

二、实验设备及仪器(规格、型号) 1. FCL-I 型材料力学多功能实验装置。

2. HD-16A 静态电阻应变仪。

3. 钢尺。

三、实验原理在纯弯曲条件下,根据平面假设和纵向纤维间无挤压的假设,可得到梁横截面上任一点的正应力,理论应力值计算公式为:Izy M ∙=理σ式中M 为弯矩,I z 为横截面对中性轴的惯性矩;y 为所求应力点至中性轴的距离。

图.1 实验装置示意图如图1所示,为了测量梁在纯弯曲时横截面上正应力的分布规律,在梁的纯弯曲段沿梁侧面不同高度y i (-20mm 、-10mm 、0、10mm 和20mm ),平行于轴线贴应变片。

实验采用1/4桥测量方法。

加载采用增量法,即每增加等量的载荷△P (500N),测出各点的应变增量△εi ,然后分别取各点应变增量的平均值△ε实i ,依次求出各点的应变增量,由胡克定理得到实测应力值: εσ∆∙=i iE 实实将实测应力值与理论应力值进行比较,以验证弯曲正应力公式。

四、实验步骤1. 设计好本实验所需的各类数据表格。

2. 拟订加载方案。

为减少误差,先选取适当的初载荷P0(一般P0=300N左右),估算P max,分级加载。

3. 根据加载方案,调整好实验加载装置。

测量矩形截面梁的宽度b、高度h、跨度L、载荷作用点到梁支点距离a及各应变片到中性层的距离y i。

4. 按实验要求接好线组成测量电桥后,调节应变仪的灵敏系数指针,并进行预调平衡。

观察几分钟看应变仪指针有无漂移,正常后即可开始测量。

5. 加载。

均匀缓慢加载至初载荷P0,记下各点应变的初始读数;然后分级等增量加载,每增加一级载荷,依次记录各点电阻应变片的应变值εi,直到最终载荷。

纯弯曲梁的正应力电测实验

纯弯曲梁的正应力电测实验

纯弯曲梁的正应力电测实验一、实验目的1.用电测法测量单一材料的矩形截面梁在纯弯曲状态时其横截面上正应力的大小及分布规律,并与理论计算值比较,从而验证梁的弯曲正应力理论公式。

2.初步掌握电测法原理和静态电阻应变仪的使用方法。

二、实验装置和仪器1.纯弯曲实验装置本实验采用低碳钢或中碳钢制成的矩形截面梁,测试其正应力分布规律的实验装置如图20(a)所示,所加的砝码重量通过杠杆以一定的放大比例作用于加载辅梁的中央,设作用于辅梁中央的载荷为F,由于载荷对称,支承条件对称,则通过两个挂杆作用于待测梁上C、D处的载荷各为F/2。

由待测梁的内力图可知CD段上的剪力Q=0,弯矩为一常量M=2aF ,即梁的CD段处于纯弯曲状态。

图20 弯曲正应力实验装置及试样贴片位置图2.静态电阻应变仪3.游标卡尺、钢直尺三、实验原理由于矩形截面梁的CD段处于纯弯曲状态,当梁发生变形其横截面保持平面的假设成立,又可将梁视作由一层一层的纵向纤维叠合而成且假设纵向纤维间无挤压作用,此时纯弯曲梁上的各点处于单向应力状态,且弯曲正应力的方向平行于梁的轴线方向,所以若要测量纯弯曲状态下梁的横截面上的正应力的分布规律,可在梁的CD段任一截面上沿不同高度处平行于梁的轴线方向布设若干枚电阻应变计,为简便计算,本实验的布片方案如图20(b)所示,一枚布设在梁的中性层上,其余四枚分别布设在距中性层h/4或h/2处(h 为梁矩形截面的高度),此外还布设了一枚温度补偿片。

当梁受载后,电阻应变计随梁的弯曲变形而产生伸长或缩短,使自身的电阻改变。

通过力学量的电测法原理,利用电阻应变仪即可测出梁横截面上各测点的应变值ε实。

由于本实验梁的变形控制在线弹性范围内,所以依据单向虎克定律即可求解相应各测点的应力值,即σ实=E ·ε实,E 为梁材料的弹性模量。

实验采用“等增量法”加载,即每增加等量的载荷ΔF ,测定一次各点相应的应变增量Δε实,并观察各点应变增量的线性程度。

梁的弯曲正应力电测实验

梁的弯曲正应力电测实验

梁的弯曲正应力电测实验梁的弯曲正应力电测实验1、纯弯曲梁有关尺寸:弯曲梁截面宽度 b=20mm, 高度 h=40mm, 载荷作用点到梁支点距离a=150mm 。

E=210GPa。

2、本实验采用公共接线法,即梁上应变片已按公共线接法引出9根导线,其中一根特殊颜色导线为公共线,见下图1。

图一3、如图二,将应变片公共引线接至应变仪第一排的任一通道上,其它按相应序号接至第二排各通道上,补偿片接法选半桥。

4、调零。

打开纯弯曲梁实验装置电源开关,转动加载手柄1,当测力仪2显示 -0.5KN即F0=0.500KN。

电桥粗调平衡:打开应变仪电源开关,仪器将自动逐点将电桥预调平衡;电桥细调平衡:按下静态应变测试仪操作面板数字“1”,再按“确定”,然后按“平衡”,如显示屏显示为“0”,则说明调零成功,如果不为“0”,找老师处理。

依次类推,逐点(2,3,4。

8,11,12,。

18)将电桥预调平衡。

5、逐级加载。

继续转动手柄1,当测力仪2显示1.5KN,即F1=1.500KN(150Kg),按下静态应变测试仪操作面板数字“1”,再按“确定”,显示屏上将显示该点应变。

依次类推,逐点测出各点应变。

分别加F2=2.500KN, F3=3.500KN, F4=4.500KN,逐点测出各点应变。

图二6、卸荷至0.500KN,重复实验步骤4-5,测第二次数据。

7、本实验重复2次。

8、实验结束,关闭电源,拆除接线,整理实验现场。

平面纯弯曲梁横截面上的正应力纯弯曲是指梁段的各个横截面上只有弯矩而无剪力,如图中CD段梁。

实验现象分析:横向线变形后仍保持为直线,只是它们相对旋转了一个角度,但仍与纵向线成正交。

各纵向线变形后仍保持平行,但由直变弯;梁凹侧的纵向线缩短,凸侧纵向线伸长;对应纵向线缩短区域的横截面变宽,纵向线伸长区域的横截面变窄。

根据上述现象,由材料的均匀连续性假设设想梁内部的变形也与表面变形相应,因而可作如下假设:平面假设——由现象推测,梁弯曲变形后,其横截面仍保持为平面,且仍与弯曲后的纵线正交,这就是梁弯曲变形后的平面假设。

弯曲正应力实验报告

弯曲正应力实验报告

浙江大学材料力学实验报告(实验项目:弯曲正应力)一、实验目的:1、初步掌握电测方法和多点测量技术。

;2、测定梁在纯弯和横力弯曲下的弯曲正应力及其分布规律。

二、设备及试样:1. 电子万能试验机或简易加载设备;2. 电阻应变仪及预调平衡箱;3. 进行截面钢梁。

三、实验原理和方法:1、载荷P 作用下,在梁的中部为纯弯曲,弯矩为1M=2Pa 。

在左右两端长为a 的部分内为横力弯曲,弯矩为11=()2M P a c -。

在梁的前后两个侧面上,沿梁的横截面高度,每隔4h贴上平行于轴线上的应变片。

温度补偿块要放置在横梁附近。

对第一个待测应变片联同温度补偿片按半桥接线。

测出载荷作用下各待测点的应变ε,由胡克定律知E σε=另一方面,由弯曲公式MyIσ=,又可算出各点应力的理论值。

于是可将实测值和理论值进行比较。

2、加载时分五级加载,0F =1000N ,F ∆=1000N ,max F =5000N ,缷载时进行检查,若应变差值基本相等,则可用于计算应力,否则检查原因进行复测(实验仪器中应变ε的单位是610-)。

3、实测应力计算时,采用1000F N ∆=时平均应变增量im ε∆计算应力,即i im E σε∆=∆ ,同一高度的两个取平均。

实测应力,理论应力精确到小数点后两位。

4、理论值计算中,公式中的31I=12bh ,计算相对误差时 -100%e σσσσ=⨯理测理,在梁的中性层内,因σ理=0,故只需计算绝对误差。

四、数据处理1、实验参数记录与计算:b=20mm, h=40mm, l=600mm, a=200mm, c=30mm, E=206GPa, P=1000N ∆, max P 5000N =, k=2.193-641I==0.1061012bh m ⨯ 2、填写弯曲正应力实验报告表格 (1)纯弯曲的中部实验数据记录(2)横力弯曲的两端实验数据记录五、实验总结与思考题:实验总结:1、在纯弯曲变形的理论中有两个假设,即(1)平面假设,(2)纵向纤维间无正应力。

梁的弯曲正应力实验报告

梁的弯曲正应力实验报告

一、实验目的1. 通过实验,了解梁在弯曲状态下的应力分布规律;2. 验证梁的弯曲正应力计算公式的准确性;3. 掌握应变电测法的基本原理和操作方法;4. 培养学生严谨的实验态度和科学的研究方法。

二、实验原理梁在弯曲状态下,其横截面上各点的正应力可以用以下公式计算:\[ \sigma = \frac{M y}{I_z} \]其中,\(\sigma\) 为正应力,\(M\) 为弯矩,\(y\) 为梁横截面上某点到中性轴的距离,\(I_z\) 为梁截面对中性轴的惯性矩。

实验中,通过测量梁横截面上不同位置的应变,根据虎克定律,可计算出相应位置的应力。

实验装置主要包括梁、应变片、静态数字电阻应变仪等。

三、实验仪器与设备1. 梁材料:矩形截面试件,尺寸为 \(b \times h\);2. 应变片:电阻应变片,用于测量梁横截面上的应变;3. 静态数字电阻应变仪:用于测量应变片输出的电阻变化,从而计算出应变;4. 加载装置:用于对梁施加弯矩;5. 游标卡尺:用于测量梁的尺寸;6. 计算器:用于计算实验数据。

四、实验步骤1. 准备实验装置,包括梁、应变片、应变仪等;2. 将应变片粘贴在梁的预定位置,确保应变片与梁表面紧密贴合;3. 接通应变仪电源,调整应变仪的量程和灵敏度;4. 使用游标卡尺测量梁的尺寸,记录数据;5. 在梁上施加预定的弯矩,确保梁处于弯曲状态;6. 使用应变仪测量梁横截面上不同位置的应变,记录数据;7. 根据实验数据和应变片的位置,计算出梁横截面上不同位置的应力;8. 比较实验测得的应力与理论计算值,分析误差原因。

五、实验结果与分析1. 实验数据:表1:梁横截面上不同位置的应变测量值| 测点位置 | 应变值(με) || -------- | ------------ || A点 | 120 || B点 | 100 || C点 | 80 || D点 | 60 |表2:梁横截面上不同位置的应力计算值| 测点位置 | 应力值(MPa) || -------- | ------------ || A点 | 12.00 || B点 | 10.00 || C点 | 8.00 || D点 | 6.00 |2. 结果分析:通过实验数据与理论计算值的比较,可以看出,在梁的弯曲状态下,应力在梁横截面上呈线性分布。

电测弯曲正应力实验报告

电测弯曲正应力实验报告

电测弯曲正应力实验报告
对于金属材料在抗拉、抗压、抗剪及屈服性能,通常采用电测弯曲来实施类似试验以把结果转换成应力和应变量。

本次实验使用电测弯曲来测试材料的正应力和正应变,旨在验证本次实验的准确性。

实验的测试单位是一根Φ8mm的钢杆,在此基础上记录点之间的距离为250mm,将其安装在测试机上,上表面涂有准确测量长度和精准装配的电感传感器,并根据数据加载两个实验测试点。

然后,启动实验环境,让机器进行加载,将电子衡上的重物放入实验环境中,控制界面上的参数,让机器进行稳定的实验测试,最大值达到10 kg,并开始计时,最后得出实验结果进行记录和计算。

在本次实验中,测得的正应力结果在1000N之内,正应变结果在0.153之内,数据展示测试结果较好,无论是正确性还是准确性都比较合理,比较符合实际情况。

实验中,多项技术手段得到积极锻炼,应力应变测试项目更加准确,数据也更具实用性,而在时间管理上,合理问题安排,在时间内进行实验,并且最大可以达到测试数据要求,以达到实验室测试结果与实际状况一致的方面,有效提高了实验的精度。

总之,实验证实了电测弯曲的有效性,能够有效测试正应力和正应变,得出的测试数据可以作为判断材料品质性能的依据,有助于提高科研工作的效率,对金属材料的研究起到效果。

纯弯曲梁的正应力电测实验

纯弯曲梁的正应力电测实验

纯弯曲梁的正应力电测实验一、实验目的1.用电测法测量单一材料的矩形截面梁在纯弯曲状态时其横截面上正应力的大小及分布规律,并与理论计算值比较,从而验证梁的弯曲正应力理论公式。

2.初步掌握电测法原理和静态电阻应变仪的使用方法。

二、实验装置和仪器1.纯弯曲实验装置本实验采用低碳钢或中碳钢制成的矩形截面梁,测试其正应力分布规律的实验装置如图20(a)所示,所加的砝码重量通过杠杆以一定的放大比例作用于加载辅梁的中央,设作用于辅梁中央的载荷为F,由于载荷对称,支承条件对称,则通过两个挂杆作用于待测梁上C、D处的载荷各为F/2。

由待测梁的内力图可知CD段上的剪力Q=0,弯矩为一常量M=2aF ,即梁的CD段处于纯弯曲状态。

图20 弯曲正应力实验装置及试样贴片位置图2.静态电阻应变仪3.游标卡尺、钢直尺三、实验原理由于矩形截面梁的CD段处于纯弯曲状态,当梁发生变形其横截面保持平面的假设成立,又可将梁视作由一层一层的纵向纤维叠合而成且假设纵向纤维间无挤压作用,此时纯弯曲梁上的各点处于单向应力状态,且弯曲正应力的方向平行于梁的轴线方向,所以若要测量纯弯曲状态下梁的横截面上的正应力的分布规律,可在梁的CD段任一截面上沿不同高度处平行于梁的轴线方向布设若干枚电阻应变计,为简便计算,本实验的布片方案如图20(b)所示,一枚布设在梁的中性层上,其余四枚分别布设在距中性层h/4或h/2处(h 为梁矩形截面的高度),此外还布设了一枚温度补偿片。

当梁受载后,电阻应变计随梁的弯曲变形而产生伸长或缩短,使自身的电阻改变。

通过力学量的电测法原理,利用电阻应变仪即可测出梁横截面上各测点的应变值ε实。

由于本实验梁的变形控制在线弹性范围内,所以依据单向虎克定律即可求解相应各测点的应力值,即σ实=E ·ε实,E 为梁材料的弹性模量。

实验采用“等增量法”加载,即每增加等量的载荷ΔF ,测定一次各点相应的应变增量Δε实,并观察各点应变增量的线性程度。

梁弯曲正应力电测实验报告

梁弯曲正应力电测实验报告
hhhh
y1?=15mm;y2?=;y3=0cm;y4????;y5????15mm;E=210Gpa。
2442
23
抗弯曲截面模量WZ=bh/6惯性矩JZ=bh/12
(2)应变?记录:
(3)取各测点?值并计算各点应力:
??1=16×10;??2=7×10;??3= 0;??4=8×10;??5=15×10;??1=E?1=;??2=E??2=;??3=0;
二、实验仪器和设备
1、多功能组合实验装置一台;2、TS3860型静态数字应变仪一台;3、纯弯曲实验梁一根。4、温度补偿块一块。三、实验原理和方法
弯曲梁的材料为钢,其弹性模量E=210GPa,泊松比μ=。用手转动实验装置上面的加力手轮,使四点弯上压头压住实验梁,则梁的中间段承受纯弯曲。根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为:
图4-1
此值与理论公式计算出的各点正应力的增量即
?理?
?MyIZ
?pa2
进行比较,就可验证弯曲正应力公式。这里,弯矩增量?M?。
梁上各点的应变测量,采用1/4桥接线,各工作应变片共用一个温度补偿块。
四、实验步骤
1.记录实验台参数,设计实验方法。
2.准备应变仪:把梁上各测量点的应变片(工作应变片)按编号逐点接到电阻应变仪A、B接线柱上,将温度补偿片接到电阻应变仪接线柱上作公共补偿。
如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的虎克定律公式??E?,可求出各点处的应力实验值。将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。
σ实=Eε
式中E是梁所用材料的弹性模量。

图3-16
为确定梁在载荷ΔP的作用下各点的应力,实验时,可采用“增量法”,即每增加等量的载荷ΔP测定各点相应的应变增量一次,取应变增量的平均值Δε
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四:弯曲正应力电测实验
一、实验目的和要求
1.学习使用应变片和电阻应变仪测定静态应力的基本原理和方法。

2.用电测法测定纯弯曲钢梁横截面不同位置的正应力。

3.绘制正应力沿其横截面高度的的分布图,观察正应变(正应力)分布规律,验证纯弯曲梁的正应力计算公式。

二、实验设备、仪器和试件
1.CLDS-2000型材料力学多功能实验台。

2.YJZ —8型智能数字静态电阻应变仪。

3.LY —5型拉力传感器。

4.直尺和游标卡尺。

三、实验原理和方法
(1)理论公式:
本实验的测试对象为低碳钢制矩形截面简支梁,实验台如图4-1所示,加载方式如图4-2所示。

图4-1 图4-2
由材料力学可知,钢梁中段将产生纯弯曲,其弯矩大小为
c P
M 2
∆=
(1) 横截面上弯曲正应力公式为
Z
I My
=
σ (2) 式中y 为被测点到中性轴z 的距离,I z 为梁截面对z 轴的惯性矩。

12
3bh I Z =
(3)
横截面上各点正应力沿截面高度按线性规律变化,沿截面宽度均匀分布,中性轴上各点的正应力为零。

截面的上、下边缘上各点正应力为最大,最大值为W
M =max σ。

(2)实测公式:
实验采用螺旋推进和机械加载方法,可以连续加载,荷载大小可由电子测力仪读出。

当增加压力P ∆时,梁的四个点受力分别增加作用力2/P ∆,如图4-2所示。

为了测量梁纯弯曲时横截面上应变分布规律,在梁的纯弯曲段侧面布置了5片应变片,如4-2所示,各应变片的粘贴高度见梁上各点标注。

此外,在梁的上表面沿横向粘贴了第6片应变片,用以测定材料的泊松比μ;在梁的端部上表面零应力处粘贴了第7片温度补偿应变片,可对以上各应变片进行温度补偿。

在弹性范围内,如果测得纯弯曲梁在纯弯曲时沿横截面高度上的轴向应变,则由单向应力状态的胡克定律,即:
σε=E (4) 由上式可求出各点处的应力实验值。

将应力实验值σε=E 与理论值Z
I My
=σ进行比较,以验证弯曲正应力公式。

如果测得应变片4和6的应变满足
μεε=46/
则证明梁弯曲时近似为单向应力状态,即梁的纵向纤维间无挤压的假设成立。

实验采用增量法。

每增加等量载荷ΔP ,测得各点相应得应变增量实ε∆一次。

因每次ΔP 相同,故实ε∆应是基本上按比例增加。

四、实验步骤
1.用游标卡尺和直尺分别测量矩形截面梁的宽度b 、高度h 以及载荷作用点到支点的距离a ,并记入实验记录表中。

注意两端a 值应相等,可通过移动两根拉杆的位置来保证。

2.将1到5点测量应变片以4/1桥分别接入电阻应变仪的任意5个通道的A 、B 点之间(若考虑温度补偿,则须将仪器后面板B 、1C 端子的标准120Ω电阻去掉,再将温度补偿片接入该处),将拉力传感器的四根输出线与电阻应变仪的任意通道的A 、B 、C 、D 端对应连接(全桥测量),将应变仪的通讯电缆与PC 机的COM 口连接,注意检查各接点连接是否可靠。

3.打开PC 机及应变仪的电源,预热后设置各通道参数(通道使用与否、桥型、灵敏度系数、被测物理量量纲),参数设置有两种方法:一是由应变仪键盘设定,二是由PC 机安装的测试软件用通信方式设定,建议采用第二种方法设定参数,这样比较简单快捷。

具体设定
方法请参阅附录的相关仪器使用说明书。

注意不使用的通道应设置成0,测载荷的通道量纲选KN 。

4.转动手轮将载荷卸到零,然后对各通道进行手动平衡调零,即调节各通道平衡电位器使显示为零(其中3点精确到με1±,其他点精确到με2±,测载荷的通道零位误差应不超过±0.01KN )。

最后再进行一次自动平衡。

注意平衡调节需耐心细致,由于显示与调节之间有一定的滞后,故每次调节电位器时要稍有间隔。

5.将自动平衡后各通道的零位误差值用PC 机的测试软件接收到各通道的初始值处,即:使应变仪处于通讯状态,然后在PC 机测试软件的参数设置界面下,点击“接收参数”按钮即可。

6.在PC 机测试软件应力—应变曲线的界面下,选Y 轴为测载荷的通道号,选X 轴为测某点(3点除外)应变的通道号,然后点击“开始接收”按钮,同时按一下应变仪侧的“执行”键,以开始被测信号的实时采样。

此时即可转动手轮对梁进行分级加载。

加载时应注意观察应变仪的显示屏,在0—2.5KN 之间分五次加载,每次递增0.5KN ;由于应变仪各通道的采样不是同时工作,而是采用分时扫描方式,每个通道的工作时间只有约2秒,因此要求每次加载时的速度要快,且必须扫描到载荷的通道(由应变仪显示灯可观察到)时才加载,这样才能使软件显示的应力—应变曲线接近于一条直线;由于载荷达到稳态与软件采集速度之间存在相对滞后,因此每次加载的时间间隔不应小于两个循环扫描周期。

加载到 2.5KN 后再分级(每次递减0.5KN )卸载到0。

加载和卸载过程重复一至两次。

7.将实验数据和应力—应变曲线保存成文档(保存前须先停止接收数据),以便进行数据处理和编写实验报告。

实验过程中应注意避免接触或接近应变片及其连接导线,不要改变连接导线的走向,以避免导线分布电容的变化对仪器稳定性的影响。

五、注意事项
认真观察、调整实验装置,确保两侧横力弯曲段长度相等。

六、思考题
1.尺寸、加载方式完全相同的钢梁和木梁,如果与中性层等距离处纤维的应变相等,问两梁相应位置的应力是否相等,载荷是否相等?
2.采用等增量加载法的目的是什么?
3.沿梁截面高度,应变怎样分布?随载荷逐级增加,应变分布按什么规律变化?中性轴在横截面的什么位置?
七、实验数据及处理
1. 按实验记录数据求出各点的应力实验值,并计算各点的应力理论值,计算相对误差。

对每一测点求出应变增量的平均值
n
i
∑∆=
∆εε实
(5)
由(4)式可知
实实∆=∆E (6)
由(2)式可知,与载荷增量ΔP 相应的应力增量理论值为
Z
I y
M ⋅∆=∆理σ (7) 2
c
P M ⋅∆=
∆ (8) 对每一测点,列表比较理σ∆与实σ∆,并计算相对误差
%100⨯∆∆-∆=


理σσσe (9)
2.按同一比例分别画出各点应力的实验值和理论值沿截面高度的分布曲线,将两者进行比较,如果两者接近,说明弯曲正应力的理论分析是可行的。

3.若计算μεε=46/,则说明梁为单向应力状态。

实验数据的记录和计算处理见下表,表中载荷的平均增量F ∆=0.5KN ,相应各点的应变平均增量为i ε∆,由于每次加载或卸载时的增量大小难以准确掌握,因此载荷以及各相应点的应变值可根据实际加载曲线按分段线性插值计算的方法计算出平均增量值。

相关文档
最新文档