江苏高考数学考点表
最新高考数学(理科)考点解析及考点分布表资料

2018年高考数学(理科)考点解析一、考核目标与要求数学科高考注重考查中学数学的基础知识、基本技能、基本思想方法(所谓三基),考查空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识、创新意识(五种能力、两种意识)。
具体考试内容根据教育部颁布的《普通高中数学课程标准(实验)》、教育部考试中心颁布的《普通高等学校招生全国统一考试大纲(理科·课程标准实验)》确定。
关于考试内容的知识要求和能力要求的说明如下:1.知识要求知识是指《课程标准》所规定的必修课程、选修课程中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算,处理数据、绘制图表等基本技能。
各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明.对知识的要求由低到高分为了解、理解、掌握三个层次(分别用A、B、C表示),且高一级的层次要求包含低一级的层次要求.(1)了解(A):要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别、认识它。
“了解”层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等。
(2)理解(B):要求对所列知识内容有较深刻的理性的认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判断、讨论,具备利用所学知识解决简单问题的能力。
“理解”层次所涉及的主要行为动词有:描述,说明,表达、表示,推测、想象,比较、判别、判断,初步应用等。
(3)掌握(C):要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决。
“掌握”层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等。
2(1会运用图形与图表等手段形象地揭示问题的本质。
专题7 函数的奇偶性和周期性-2020年江苏省高考数学考点探究(原卷版)

专题7 函数的奇偶性和周期性专题知识梳理1.奇、偶函数的定义对于函数f(x)定义域内的任意一个x,都有f(-x)=-f(x)(或f(-x)+f(x)=0),则称f(x)为奇函数;对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x)(或f(-x)-f(x)=0),则称f(x)为偶函数.2.奇、偶函数的性质(1)具有奇偶性的函数,其定义域关于原点对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称).(2)奇函数的图象关于原点对称,偶函数的图象关于y轴对称.(3)若奇函数的定义域包含0,则f(0)=__0__.(4)若函数f(x)是偶函数,则有__f(|x|)=f(x)__.(5)奇函数在对称区间上的单调性__相同__,偶函数在对称区间上的单调性__相反__.3.周期性(1)周期函数对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.注1:函数奇偶性常用结论(1)如果函数f(x)是偶函数,那么f(x)=f(|x|).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.注2:函数周期性常用结论对f(x)定义域内任一自变量的值x,(1)若f(x+a)=-f(x),则T=2a(a>0).(2)若f(x+a)=1f(x),则T=2a(a>0).(3)若f(x+a)=-1f(x),则T=2a(a>0).考点探究考向1 判断函数的奇偶性【例】判断下列函数的奇偶性:(1)f (x )=9-x 2+x 2-9; (2)f (x )=(x +1)1-x 1+x ; (3)f (x )=4-x 2|x +3|-3; (4)f (x )=⎩⎪⎨⎪⎧x 2+x (x <0)-x 2+x (x >0); (5)f (x )=x 2-|x -a |+2.题组训练1.下列函数中为偶函数的是________.①y =1x②y =lg|x | ③y =(x -1)2 ④y =2x2.下面的定义域为R 的四个函数y =x 3,y =2x ,y =x 2+1,y =2sin x 中,奇函数的个数是________.3.(易错题)试判断函数()f x =的奇偶性.考向2 函数奇偶性与单调性的综合应用【例1】(1)若函数f(x)=xln(x+√a+x2)为偶函数,则a=______.(2)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x−1)>0,则x的取值范围是______.【例2】(1) 设函数f(x)=a·2x+a-22x+1(x∈R)为奇函数,求实数a的值;(2) 设函数f(x)是定义在(-1,1)上的偶函数,在(0,1)上是增函数,若f(a-2)-f(4-a2)<0,求实数a的取值范围.题组训练1.设函数f(x)=(x+1)(2x+3a)为偶函数,则a=______ .2.已知y=f(x)+x2是奇函数,且f(1)=1,若g(x)=f(x)+2,则g(−1)=______.3.已知f(x)是定义在R 上的偶函数,且在区间(−∞,0)上单调递增,若实数a 满足f(2|a−1|)>f(−√2),则a 的取值范围是______.4.若函数f(x)={x(x −b),x ≥0ax(x +2),x <0(a,b ∈R)为奇函数,则a +b 的值为______.5.设f(x)=log 21−ax x−1−x 为奇函数,a 为常数.(1)求a 的值;(2)判断并证明函数f(x)在x ∈(1,+∞)时的单调性;(3)若对于区间[2,3]上的每一个x 值,不等式f(x)>2x +m 恒成立,求实数m 取值范围.考向3 函数的奇偶性与周期性的综合应用【例1】定义在R 上的奇函数f(x)有最小正周期4,且x∈(0,2)时,f(x)=3x9x +1.求f(x)在[-2,2]上的解析式.【例2】(2019·江苏卷)设f(x),g(x)是定义在R 上的两个周期函数,f(x)的周期为4,g(x)的周期为2,且f(x)是奇函数.当x ∈(0,2]时,f(x)=√1−(x −1)2,g(x)={k(x +2),0<x ≤1,−12,1<x ≤2,其中k >0.若在区间(0,9]上,关于x 的方程f(x)=g(x)有8个不同的实数根,则k 的取值范围是______.题组训练1.若f(x)是周期为2的奇函数,当x ∈(0,1)时,f(x)=x 2−8x +30,则f(√10)=______.2.奇函数f(x)的周期为4,且x ∈[0,2],f(x)=2x −x 2,则f(2018)+f(2019)+f(2020)的值为________.3.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数.若方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4=________.4.(拔高题)设函数f (x )的定义域关于原点对称,且满足:① f (x 1-x 2)=1221()()1()()f x f x f x f x +- (x 1≠x 2);② 存在正常数a ,使得f (a )=1. 求证:(1) f (x )是奇函数;(2) f (x )是周期为4a 的周期函数.。
2020届江苏高考数学(理)总复习讲义:点、线、面之间的位置关系

••>必过数材美1. 平面的基本性质(1) 公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.(2) 公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的一条直线.(3) 公理3:经过不在同一条直线上的三点,有且只有一个平面.2. 空间中两直线的位置关系(1) 空间中两直线的位置关系共面直线.异面直线:不同在任何一个平面内(2) 异面直线所成的角①定义:设a, b是两条异面直线,经过空间任一点0,作直线a'// a, b'// b,把a' 与b'所成的锐角(或直角)叫做异面直线a与b所成的角.②范围:0, n.(3) 公理4:平行于同一条直线的两条直线互相平行.(4) 定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.[小题体验]1. _________________________________________________ "点P在直线m 上, m在平面a内”可表示为 ____________________________________________________ .解析:点在直线上用,直线在平面上用“?”.答案:P€ m, m? a2.平面aA 3= l,点A € a,点B € a,且C? l, C € 3,又AB A l= R,如图所示,过A,B, C三点确定的平面为Y贝U 3A = _________ .解析:由已知条件可知,C € Y AB n 1= R, AB? Y所以R€ Y又因为C, R€ ®故阳丫 =CR.答案:CR3•以下四个命题中,正确命题的个数是_____________ .①不共面的四点中,其中任意三点不共线;②若点A, B, C, D共面,点A, B, C, E共面,则A, B, C, D, E共面;③若直线a, b共面,直线a, c共面,则直线b, c共面;④依次首尾相接的四条线段必共面.解析:①显然是正确的,可用反证法证明;②中若A, B, C三点共线,则A, B, C, D , E五点不一定共面;③构造长方体或正方体,如图,显然b, c异面,故不正确;④中空间四边形中四条线段不共面•故正确的个数为1.答案:11 •异面直线易误解为“分别在两个不同平面内的两条直线为异面直线”,实质上两异面直线不能确定任何一个平面,因此异面直线既不平行,也不相交.2 •直线与平面的位置关系在判断时最易忽视“线在面内”.3•不共线的三点确定一个平面,一定不能丢掉“不共线”条件.[小题纠偏]1 • (2019南京名校联考)已知直线a和平面a , an 3=l, a? a, a? 且a在a, B内的射影分别为直线b和c ,则直线b和c的位置关系是 ____________ •解析:依题意,直线b和c的位置关系可能是相交、平行或异面.答案:相交、平行或异面2. ___________________________________________ 在下列四个命题中,正确命题的个数为•① a , b是异面直线,则存在分别过 a , b的平面a, B,使a// B;② a , b是异面直线,则存在分别过 a , b的平面a, B,使a丄B;③ a , b是异面直线,若直线 c , d分别与a , b都相交,则c, d也是异面直线;④ a , b是异面直线,则存在平面a过a且与b垂直.解析:因为a , b是异面直线,所以可以作出两个平面a, B分别过a , b,并使a// B,所以①正确;因为 a , b是异面直线,所以存在两个互相垂直的平面分别过 a , b,所以②正确;因为a , b是异面直线,若直线c , d与a , b分别都相交,则c , d相交或异面,所以③ 不正确;因为a , b是异面直线,若 a , b垂直,则存在平面a过a且与b垂直,若a , b不垂直,则不存在平面a 过a且与b垂直,④不正确.答案:23•四条线段顺次首尾相连,它们最多可确定的平面个数有______________ 个.解析:首尾相连的四条线段每相邻两条确定一个平面,所以最多可以确定4个平面.答案:4考点一平面的基本性质及应用基础送分型考点——自主练透[题组练透]1如图所示,在正方体ABCD-A i B i C i D i中,E, F分别是AB,AA i的中点•求证:⑴E, C, D i, F四点共面;(2)CE , D i F , DA 三线共点.证明:(i)如图,连结EF , A i B, CD i.因为E, F分别是AB, AA i的中点,所以EF // A i B.又A i B / CD i,所以EF // CD i,所以E, C, D i, F四点共面.(2)因为EF // CD i, EF V CD i,所以CE与D i F必相交,设交点为P,则由P€ CE , CE?平面ABCD , 得P €平面ABCD .同理P€平面ADD i A i.又平面ABCD门平面ADD i A i= DA ,所以P€直线DA.所以CE , D i F , DA三线共点.2.如图,在四边形ABCD中,已知AB // CD,直线AB , BC , AD , DC分别与平面a相交于点E , G , H, F ,求证:E , F , G , H 四点必定共线.证明:因为AB// CD,所以AB , CD确定一个平面3 又因为AB A a= E , AB? 3,所以 E € a, E € B,即E为平面a与B的一个公共点.同理可证F, G, H均为平面a与B的公共点,因为两个平面有公共点,它们有且只有一条通过公共点的公共直线, 所以E,F,G,H四点必定共线.[谨记通法]1.证明点共线问题的常用方法公理法先找出两个平面,然后证明这些点都是这两个平面的公共点,再根据公理这些点都在交线上3证明同一法选择其中两点确疋一条直线,然后证明其余点也在该直线上2. 证明线共点问题的常用方法先证两条直线交于一点,再证明第三条直线经过该点.3. 证明点、直线共面问题的常用方法纳入平面法先确定一个平面,再证明有关点、线在此平面内辅助平面法先证明有关的点、线确定平面a,再证明其余兀素确定平面面a, B重合B,最后证明平考点二空间两直线的位置关系重点保分型考点一一师生共研[典例引领]如图,在正方体ABCD -A i B i C i D i中,M , N分别为棱CQ i, C i C的中点,有以下四个结论:①直线AM与CC i是相交直线;②直线AM与BN是平行直线;③直线BN与MB i是异面直线;④直线AM与DD i是异面直线.其中正确的结论的序号为 _________ .解析:直线AM与CC i是异面直线,直线AM与BN也是异面直线,所以①②错误.点B, B i, N 在平面BB i C i C中,点M在此平面外,所以BN , MB i是异面直线•同理AM , DD i也是异面直线.1.上面例题中正方体 ABCD-A i B i C i D i 的棱所在直线中与直线________ 条.解析:与AB 异面的有4条:CC i , DD i , A 1D 1, B i C i .答案:42.在图中,G , N , M , H 分别是正三棱柱的顶点或所在棱的中点,则表示直线GH ,解析:图①中,直线 GH // MN ;图②中,G , H , N 三点共面,但 M ?平面GHN ,因 此直线GH 与MN 异面;图③中,连结MG , GM // HN ,因此GH 与MN 共面;图④中,G , M , N 共面,但 H ?平面GMN ,因此 GH 与MN 异面.所以在图②④中, GH 与MN 异面.答案:②④考点三异面直线的证明重点保分型考点一一师生共研[典例引领]如图,已知不共面的三条直线 a , b , c 相交于点P , A € a , B € a , C € b, D € c ,求证:AD 与BC 是异面直线.证明:法一:(反证法)假设AD 和BC 共面,所确定的平面为 a,那么点P , A , B , C , D 都在平面a 内,答案:③④空间两直线位置关系可构 造几 何模AB 是异面直线的有[由题悟法]方法" [即时应用]所以直线a, b, c都在平面a内,与已知条件a, b, c不共面矛盾,假设不成立,所以AD和BC是异面直线.法二:(直接证法)因为a n c= P, 所以它们确定一个平面,设为a由已知C?平面a B €平面a, 则BC ?平面a,又AD ?平面a, B?AD ,所以AD和BC是异面直线.[由题悟法]证明直线异面通常用反证法,证明两直线不可能平行、相交或证明两直线不可能共面, 从而可得两直线异面.有时也可以用直接法证明.[即时应用]如图所示,正方体ABCD-A I B I C I D I中,M ,的中点.问:(1) AM和CN是否是异面直线?说明理由;(2) D i B和CC i是否是异面直线?说明理由.解:(1)AM与CN不是异面直线.理由如下:连结MN , A1C1, AC.因为M , N分别是A1B1, B1C1的中点,所以MN // A1C1.又因为A1A // C1C, A1A= C1C,所以四边形A1ACC1为平行四边形,所以A1C1// AC,所以MN // AC,A B所以A, M , N , C在同一平面内,故AM和CN不是异面直线.⑵D1B与CC1是异面直线•证明如下:因为ABCD-A1B1C1D1是正方体,所以B, C, C1, D1不共面.假设D1B与CC1不是异面直线,则存在平面a,使D1B ?平面a, CC1?平面a ,所以D1 , B , C , C1 € a,与ABCD-A1B1 G|D 1是正方体矛盾.所以假设不成立,即D1B与CC1是异面直线.一抓基础,多练小题做到眼疾手快 1.设P 表示一个点,a , b 表示两条直线,其中正确命题的序号是.① P € a , P € a ? a ? a ; ②a n b = P , b ? 3? a ? 3; ③a // b , a ? a, P € b , P € a ? b ? ④ an 3= b , P € a, P € 3? P € b.答案:③④2. (2018高邮期中)给出以下说法: ① 不共面的四点中,任意三点不共线; ② 有三个不同公共点的两个平面重合; ③ 没有公共点的两条直线是异面直线;④ 分别和两条异面直线都相交的两条直线异面;⑤ 一条直线和两条异面直线都相交,则它们可以确定两个平面. 其中正确结论的序号是 __________ .解析:在①中,不共面的四点中,任意三点不共线是正确命题,可以用反证法证明: 若其中任意三点共线,则四点必共面,故①正确;在②中,有三个不同公共点的两个平面重合或相交,故②错误; 在③中,没有公共点的两条直线是异面直线或平行直线,故③错误; 在④中,分别和两条异面直线都相交的两条直线异面或共面,故④错误;在⑤中,一条直线和两条异面直线都相交,则由两条相交线能确定一个平面得它们可 以确定两个平面,故⑤正确.答案:①⑤3. _________________________________________________________________________ 若平面a B 相交,在a, B 内各取两点,这四点都不在交线上, 这四点能确定 ___________________ 个平面.解析:如果这四点在同一平面内,那么确定一个平面;如果这四点不共面,则任意三 点可确定一个平面,所以可确定四个.答案:1或4 4.如图,平行六面体 ABCD -A i B i C i D i 中,既与AB 共面又与CC i '共面的棱有 _________ 条.“伤CZI 0 □ 1=1欝雇窗月空躡宓购懺尿鎚a, B 表示两个平面,给出下列四个命题,冲B解析:依题意,与AB和CC i都相交的棱有BC;与AB相交且与CC i平行有棱AA i,BB仁与AB平行且与CC i相交的棱有CD, C1D1.故符合条件的有5 条.答案:55.设a, b, c是空间中的三条直线,下面给出四个命题:①若 a // b, b// c,贝U a// c;②若a丄b, b±c,贝U a// c;③若a与b相交,b与c相交,则a与c相交;④若a?平面a, b?平面3,则a, b 一定是异面直线.上述命题中正确的命题是 _____ (写出所有正确命题的序号).解析:由公理4知①正确;当a丄b, b丄c时,a与c可以相交、平行或异面,故②错;当a 与b相交,b与c相交时,a与c可以相交、平行,也可以异面,故③错;a? a, b? 3并不能说明a与b "不同在任何一个平面内”,故④错.答案:①二保咼考,全练题型做到咼考达标1.已知A, B, C, D是空间四点,命题甲:A, B, C, D四点不共面,命题乙:直线AC和BD不相交,则甲是乙成立的________ 条件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”).解析:若A, B, C, D四点不共面,则直线AC和BD不共面,所以AC和BD不相交;若直线AC和BD不相交,若直线AC和BD平行时,A, B, C, D四点共面,所以甲是乙成立的充分不必要条件.答案:充分不必要2. (2019常州一中检测)如图,在长方体ABCD -A i B i C i D i中,点E , F分别为B i O和C i O的中点,长方体的各棱中,与EF平行的有______ 条.解析:•/ EF是厶OB i C i的中位线,••• EF // B i C i.••• B i C i / BC // AD // A i D i,二与EF 平行的棱共有4 条.答案:43. ___________________________________ 下列命题中,真命题的个数为.①如果两个平面有三个不在一条直线上的公共点,那么这两个平面重合;②两条直线可以确定一个平面;③空间中,相交于同一点的三条直线在同一平面内;④若M € a, M € 3 aA 3= l,贝U M € l.解析:根据公理3,可判断①是真命题;两条异面直线不能确定一个平面,故②是假命题;在空间,相交于同一点的三条直线不一定共面(如墙角),故③是假命题;根据平面的性质可知④是真命题.综上,真命题的个数为 2.答案:24. 已知I, m, n为两两垂直的三条异面直线,过I作平面a与直线m垂直,则直线n与平面a的关系是__________ .解析:因为I? a,且I与n异面,所以n?a,又因为m丄a, n丄m,所以n // a. 答案:n// a5. 如图所示,在空间四边形ABCD中,点E , H分别是边AB ,CF CG 2 …AD的中点,点F , G分别是边BC , CD上的点,且—=—=§,则下列说法正确的是_______ (填序号).①EF与GH平行;②EF与GH异面;③EF与GH的交点M可能在直线AC上,也可能不在直线AC 上;④EF与GH的交点M —定在直线AC 上.解析:连结EH , FG ,如图所示. 依题意,可得EH // BD, FG// BD , 故EH // FG,所以E, F , G, H共面.1 2因为EH = 2BD , FG = 3BD, 故EH 工FG ,所以EFGH是梯形,EF与GH必相交,设交点为M.因为点M在EF上, 故点M在平面ACB上.同理,点M在平面ACD上, 所以点M是平面ACB与平面ACD 的交点,又AC是这两个平面的交线,所以点M —定在直线AC 上.答案:④6. 如图为正方体表面的一种展开图,则图中的四条线段AB,CD , EF , GH在原正方体中互为异面直线的对数为___________ 对.解析:平面图形的翻折应注意翻折前后相对位置的变化,则AB , CD , EF和GH在原正方体中,显然AB与CD, EF与GH ,AB与GH都是异面直线,而AB与EF相交,CD与GH相交,CD与EF平行.故互为异面的直线有且只有3对.答案:37. 如图是正四面体的平面展开图,G , H , M , N分别为DE ,B H E N CBE , EF , EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是___________ .解析:还原成正四面体知GH与EF为异面直线,BD与MN为异面直线,GH与MN 成60°角,DE丄MN .答案:②③④8. (2019通州月考)如图所示,在正方体ABCD -A1B1C1D1中,E,F , G, H分别是棱CC1, C1D1, D1D , CD的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足______________ 时,有MN//平面B1BDD1.解析:•/ HN // DB , FH // D1D,•••平面FHN //平面B1BDD1.•••点M在四边形EFGH及其内部运动,故M € FH .答案:M在线段FH上9. (2018南师附中检测)如图,E, F分别是长方体ABCD-A1B1C1D1的棱A1A, C1C的中点•求证:四边形B1EDF是平行四边形.A R证明:设Q是DD1的中点,连结E Q, Q C1,如图.因为E是AA1的中点,Q是DD1的中点,所以E Q綊A1D1.又A1D1 綊B1C1,所以E Q綊B1C1,所以四边形EQC1B1为平行四边形,所以B1E綊6Q又Q, F分别是D1D,C1C的中点,所以Q D綊C1F,所以四边形D Q C1F为平行四边形,所以C1Q綊DF.故B i E 綊DF ,所以四边形 B i EDF 是平行四边形. 10.如图所示,四边形 ABEF 和四边形 ABCD 都是直角梯形, 1 1 / BAD =Z FAB = 90 ° BC // AD , BC = Q AD , BE // FA , BE = ~FA , G , H 分别为FA , FD 的中点. (1) 证明:四边形 BCHG 是平行四边形; (2) C , D , F , E 四点是否共面?为什么?说明理由. 解:⑴证明:因为 G , H 分别为FA , FD 的中点, 1 所以 GH // AD , GH = 2AD. 1 又 BC // AD , BC = Q AD , 所以GH 綊BC ,所以四边形 BCHG 为平行四边形. 1 ⑵四点共面,理由如下:由 BE // FA , BE = Q FA , G 为FA 的中点知,BE // FG , BE =FG , 所以四边形BEFG 为平行四边形,所以 EF // BG. 由(1)知BG // CH ,所以EF // CH ,所以EF 与CH 共面. 又D € FH ,所以C , D , F , E 四点共面. 三上台阶,自主选做志在冲刺名校时,EH // FG 且EH = FG .当 将□时,EH // FG ,但EH 工FG ,所以①②③正确,只有④错 误. 答案:①②③ 2. 在正方体 ABCD-A i B i C i D i 中,E , F 分别为棱 AA Q , CC i 的中点,则在空间中与三 条直线A i D i , EF , CD 都相交的直线有 ___________ 条.1.如图所示,设 E , F , G , H 依次是空间四边形 ABCD 边AB , AE AH BC , CD , DA 上除端点外的点, —=A D =人CB CD 论中正确的是 (填序号). ①当 入= 卩时, 四边形 EFG H ②当 卩时, 四边形 EFG H ③当 卩时, 四边形 EFG H ④当 入= 卩时, 四边形 EFG H 由AB = AD =入得EH // BD ,且BD =入同理得FG / BD 且BD D 是平行四边形; 是梯形; 定不是平行四边形; 是梯形.解析:CF CG 卩,则下列结解析:如图,在A1D1上任取一点P,过点P与直线EF作一个平面a,因为CD与平面a不平行,所以它们相交,设aP CD = Q连结P Q则P Q与EF必然相交, 即P Q为所求直线.由点P的任意性,知有无数条直线与A1D1, EF , CD都相交.答案:无数3•如图所示,三棱柱ABC -A1B1C1,底面是边长为2的正三角形,侧棱A I A丄底面ABC,点E, F分别是棱CC i, BB1上的点,点M是线段AC上的动点,EC = 2FB = 2.(1)当点M在何位置时,BM //平面AEF?⑵若BM //平面AEF ,判断BM与EF的位置关系,说明理由;并求BM与EF所成的角的余弦值.解:⑴法一:如图所示,取AE的中点0,连结OF,过点0作0M丄AC于点M.因为侧棱A I A丄底面ABC ,所以侧面A1ACC1X底面ABC.又因为EC = 2FB = 2,1所以0M // FB // EC 且0M = 2EC = FB ,所以四边形0MBF为矩形,BM // 0F.因为0F ?平面AEF , BM ?平面AEF ,故BM //平面AEF,此时点M为AC的中点.如图所示,取EC的中点P, AC的中点Q,连结P Q, PB, BQ155 -因为EC = 2FB = 2,所以PE綊BF ,所以P Q// AE, PB // EF ,所以P Q//平面AFE , PB //平面AEF , 因为PB P P Q= P, PB, P Q ?平面PB Q 所以平面PBQ//平面AEF .又因为B Q?平面PB Q所以B Q//平面AEF.故点Q即为所求的点M,此时点M为AC的中点.(2)由(1)知,BM与EF异面,/ 0FE (或/ MBP )就是异面直线BM与EF所成的角或其补角.易求AF = EF = 5 , MB = 0F = 3 , 0F 丄AE , 所以cos/ 0FE = 0F=^3=书,所以BM与EF所成的角的余弦值为155 -。
江苏高考数学8个C级考点

江苏高考8个C级(掌握)考点
1.两角和(差)的正弦、余弦和正切
必修二公式(二倍角公式)正用、逆用,角的变换
2.平面向量的的数量积
必修四定义法、基底法、坐标法、极化恒等式、特殊化
3.等差数列
4.等比数列
必修五填空题:基本量计算,项与和的性质
解答题:等差等比的判定证明,
函数的角度研究数列单调性
5.基本不等式
必修五三个条件:正、定、等
分参、分离常数、消元、换元、“1”的代换等6.一元二次不等式
必修五三个二次的关系二次项系数的讨论
数形结合
7.直线方程
8.圆的标准方程和一般方程
必修二直线方程的形式:点斜式、截距式、一般式
两直线平行、垂直充要条件
圆的方程求法:代数法、几何法(首选)
切线问题、弦长问题斜率是否存在?。
高考数学259个核心考点

高中数学考试必备的知识点整理温馨提示:在复习的同时,也要结合课本上的例题去复习,重点是课本,而不是题目应该怎样去做,所以在考前的一天必须回归课本复习,心中无公式,是解不出任何题目来的,只要心中有公式,中等的题目都可以解决。
必修一:一、集合的运算:交集:定义:由集合A 和集合B 中的公共元素组成的集合叫交集,记为A B 并集:定义:由属于集合A 或属于集合B 的元素组成的集合叫并集,记为A B补集:定义:在全集U 中,由所有不属于集合A 的元素组成的集合叫补集,记为C UA 二、指数与指数函数1、幂的运算法则:(1)a m •a n =a m + n ,(2)a m ÷a n =a m -n ,(3)(a m )n =a m n (4)(ab )n = a n •b nn -11a n⎛a ⎫nm-n (5) ⎪=n (6)a 0 = 1 ( a ≠0)(7)a =n (8)am=a(9)am=mna b ⎝b ⎭a 2、根式的性质⎧a ,a ≥0n n n n n n n n (1)(a )=a .(2)当为奇数时,a =a ;当为偶数时,a =|a |=⎨.-a ,a <0⎩n n 5.指数式与对数式的互化:log aN =b ⇔a b =N (a >0,a ≠1,N >0).6、对数的运算法则:(1)a b = N <=> b = log a N (2)log a 1 = 0(3)log a a = 1(4)log a a b = b (5)a log a N = N (6)log a (MN) = log a M + log a N(7)log a (log b N M ) = log a M -log a N(8)log a N b = b log a N (9)换底公式:log a N =Nlog banlog a b (a >0,且a >1,m ,n >0,且m ≠1,n ≠1,N >0).m (10)推论:log a m b n =(11)log a N =1(12)常用对数:lg N = log 10N(13)自然对数:ln A = log e Alog Na必修4:1、特殊角的三角函数值角α0°30°45°60°πππ角α的弧度数643Sinα12223290°π21180°π0270°3π2-1360°2π0321Cosα12220-101tanα03313不存在0不存在02、诱导公式:函数名不变,符号看象限(把α看成锐角)公式一:Sin(α+2kπ)=Sinα公式二:Sin(α+π)=-SinαCos(α+2kπ)=Cosα Cos(α+π)=-Cosαtan(α+2kπ)=tanα tan(α+π)=tanα公式三:Sin(-α)=-Sinα公式四:Sin(π-α)=SinαCos(-α)= Cosα Cos(π-α)=-Cosαtan(-α)=-tanα tan(π-α)=-tanα公式五:Sin(π2-α)=Cosα公式六:Sin(π2+α)=CosαCos(ππ2-α)=Sinα Cos(2+α)=-Sinα3、两角和与角差的正弦、余弦和正切公式①sin(α+β)=sin αcos β+cos αsin β②sin(α-β)=sin αcos β-cos αsin β③cos(α+β)=cos αcos β-sin αsin β④cos(α-β)=cos αcos β+sin αsin β⑤tan(α+β)=tan α+tan β1-tan αtan β⑥tan(α-β)=tan α-tan β1+tan αtan β4.二倍角的正弦、余弦和正切公式①sin 2α=2sin αcos α②cos 2α=cos 2α-sin 2α=1-2sin 2α=2cos α2-1③tan 2α=2tan α1-tan 2α④sin 2α=1-cos 2α2⑤cos 2α=1+cos 2α2sin αcos α=12sin 2α5、向量公式:→→→→①a ∥b ⇔x 1x =y 1(x 2,y 2≠0)(a ∥b ⇔x 1y 2-x 2,y 1=0)2y2→→→→→②a +b =(a +b )2=a 2+2a →⋅b →→+b 2=→2a +2a →⋅b →⋅cos θ+b→2→→③cos θ=a ⋅b =x 1x 2+y 1y2→(求向量的夹角)a ⋅→bx21+y2x2212+y2⑥④a ⊥b ⇔a ⋅b =0⑥平面内两点间的距离公式:设a =(x ,y ),则→2→→→→→a =x +y 或a =x 2+y 2→22→⑦平面内两点间的距离公式:a =(x 1-x 2)+(y 1-y 2)2222高中数学必修5知识点归纳第一章解三角形1、正弦定理:在∆AB C 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为∆AB C 的外接圆的a b c半径,则有===2R .sin A sin B sin C2、正弦定理的变形公式:①a =2R sin A ,b =2R sin B ,c =2R sin C ;a b c②sin A =,sin B =,sin C =;③a :b :c =sin A :sin B :sin C ;2R 2R 2R a +b +c a b c④.===sin A +sin B +sin C sin A sin B sin C(正弦定理用来解决两类问题:1、已知两边和其中一边所对的角,求其余的量。
2020年高考数学五年真题与三年模拟考点分类解读(江苏版)22 空间几何题的面积与体积(原卷版)

考点22 空间几何题的面积与体积一、考纲要求1. 直观了解柱、锥、台、球及其简单组合体的结构特征,对柱、锥、台、球的概念的理解不作过高要求,复习时不要过分挖深.2. 多面体与旋转体表面上两点间的最短距离问题,要适当强化,体现了空间问题向平面问题转化.3. 柱、锥、台、球的表面积与体积的计算可能会在高考填空题中出现,注意体现不同几何体之间的联系,同时注意与平面几何中的面积等进行类比.二、近五年江苏高考立体几何中的计算作为江苏考纲必考知识点,每年都会考查,但是江苏高考对立体几何中的运算要求比较简单,近要求计算简单几何体的体积与表面积等简单的运算。
从近五年江苏高考试题可以发现主要考查柱、锥、球的表面积与体积,因此,在复习中要注意把握深度。
三、考点总结:把握空间几何体的结构特征是认识几何体的一个重要方面,也是进一步学习立体几何的基础. 在学习过程中,要通过互相对比的方式来把握它们的实质与不同,既要看到它们之间的不同,也要理解它们之间的联系,这样才能理解它们之间的共性和个性,做到心中有数,心中有图. 近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题. 即使考查空间线面的位置关系问题,也常以几何体为依托,因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式. 同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解.四、近五年江苏高考题1、(2019江苏卷)如图,长方体1111ABCD A B C D 的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是_____.2、(2018江苏卷)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.3、(2017江苏卷)如图,圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.4、(2016江苏卷)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P A 1B 1C 1D 1,下部的形状是正四棱柱ABCDA 1B 1C 1D 1(如图所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍.(1) 若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?(2) 若正四棱锥的侧棱长为6 m ,则当PO 1为多少时,仓库的容积最大?5、(2015江苏卷)现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为________.五、三年模拟题型一柱的表面积与体积1、(2019南通、泰州、扬州一调)已知正四棱柱的底面长是3 cm,侧面的对角线长是3 5 cm,则这个正四棱柱的体积为________cm3.2、(2019常州期末)已知圆锥SO,过SO的中点P作平行于圆锥底面的截面,以截面为上底面作圆柱PO,圆柱的下底面落在圆锥的底面上(如图),则圆柱PO的体积与圆锥SO的体积的比值为________.3、(2019苏锡常镇调研(一))已知圆柱的轴截面的对角线长为2,则这个圆柱的侧面积的最大值为________.4、(2019南京三模)有一个体积为2的长方体,它的长、宽、高依次为a,b,1.现将它的长增加1,宽增加2,且体积不变,则所得新长方体高的最大值为.5、(2018南京学情调研)将一个正方形绕着它的一边所在的直线旋转一周,所得圆柱的体积为27πcm3,则该圆柱的侧面积为________cm2.6、(2018南通、泰州一调)如图,铜质六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知正六棱柱的底面边长、高都为4 cm,圆柱的底面积为9 3 cm2.若将该螺帽熔化后铸成一个高为6 cm的正三棱柱零件,则该正三棱柱的底面边长为________cm(不计损耗).7、(2018苏北四市期末)已知正四棱柱的底面边长为3 cm,侧面的对角线长是35cm,则这个正四棱柱的体积是________cm3.8、(2018苏中三市、苏北四市三调)现有一正四棱柱形铁块,底面边长为高的8倍,将其熔化锻造成一个底面积不变的正四棱锥形铁件(不计材料损耗).设正四棱柱与正四棱锥的侧面积分别为1S ,2S ,则12S S 的值为 .9、(2017南通一调)如图,在正四棱柱ABCDA 1B 1C 1D 1中,AB =3 cm ,AA 1=1 cm ,则三棱锥D 1A 1BD 的体积为________cm 3.10.(2017常州期末)以一个圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥,若所得的圆锥底面半径等于圆锥的高,则圆锥的侧面积与圆柱的侧面积之比为________.题型二 锥的表面积与体积1、(2019扬州期末)底面半径为1,母线长为3的圆锥的体积是________.2、(2019镇江期末) 已知一个圆锥的底面积为π,侧面积为2π,则该圆锥的体积为________.3、(2019泰州期末) 如图,在直三棱柱ABCA 1B 1C 1中,点M 为棱AA 1的中点,记三棱锥A 1MBC 的体积V 1,四棱锥A 1BB 1C 1C 的体积为V 2,则V 1V 2的值是________.4、(2019苏北三市期末)已知正四棱锥的底面边长为23,高为1,则该正四棱锥的侧面积为________.5、(2018苏州暑假测试)如图,正四棱锥PABCD 的底面一边AB 的长为2 3 cm ,侧面积为8 3 cm 2,则它的体积为________cm 3.6、(2018常州期末) 已知圆锥的高为6,体积为8.用平行于圆锥底面的平面截圆锥,得到的圆台体积是7,则该圆台的高为________.7、(2018镇江期末) 已知正四棱锥的底面边长为2,侧棱长为6,则该正四棱锥的体积为________. 8、(2018扬州期末) 若圆锥的侧面展开图是面积为3π且圆心角为2π3的扇形,则此圆锥的体积为________.9、(2018南京、盐城、连云港二模)在边长为4的正方形ABCD 内剪去四个全等的等腰三角形(如图1中阴影部分),折叠成底面边长为2的正四棱锥SEFGH(如图2),则正四棱锥SEFGH 的体积为________.(图1) (图2)10、(2018苏锡常镇调研(一))若正四棱锥的底面边长为 2 cm ,侧面积为8 cm 2,则它的体积为________cm 3.11、(2017苏锡常镇调研(一)) 已知正四棱锥的底面边长是2,侧棱长是3,则该正四棱锥的体积为________.题型三 球的表面积与体积1、(2019苏州期末)如图,某种螺帽是由一个半径为2的半球体挖去一个正三棱锥构成的几何体,该正三棱锥的底面三角形内接于半球底面大圆,顶点在半球面上,则被挖去的正三棱锥体积为________.2、(2019苏州三市、苏北四市二调)设P,A,B,C为球O表面上的四个点,PA,PB,PC两两垂直,且PA=2 m,PB=3 m,PC=4 m,则球O的表面积为________m2.3、(2018无锡期末)直三棱柱ABCA1B1C1中,已知AB⊥BC,AB=3,BC=4,AA1=5,若三棱柱的所有顶点都在同一球面上,则该球的表面积为________.4、(2018苏州期末)鲁班锁是中国传统的智力玩具,起源于中国古代建筑中首创的榫卯结构,它的外观是如图所示的十字立方体,其上下、左右、前后完全对称,六根等长的正四棱柱体分成三组,经90°榫卯起来.若正四棱柱的高为5,底面正方形的边长为1,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积至少为________(容器壁的厚度忽略不计,结果保留π).。
2024年高考数学高频考点(新高考通用)柯西不等式(精讲+精练)解析版

【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)
素养拓展01柯西不等式(精讲+精练)
1.二维形式的柯西不等式
.),,,,,()())((22222等号成立时当且仅当bc ad R d c b a bd ac d c b a =∈+≥++2.二维形式的柯西不等式的变式
bd ac d c b a +≥+⋅+2222)1( .),,,,,(等号成立时当且仅当bc ad R d c b a =∈bd ac d c b a +≥+⋅+2222)2(
.),,,,,(等号成立时当且仅当bc ad R d c b a =∈.)
,0,,,(())()(3(2等号成立,时当且仅当bc ad d c b a bd ac d c b a =≥+≥++3.
二维形式的柯西不等式的向量形式
.),,,(等号成立时使或存在实数是零向量当且仅当βαβk k =≤注:有条件要用;没有条件,创造条件也要用。
比如,对2
2
2
c b a ++,并不是不等式的形状,但变成
()()
2222221113
1
c b a ++∙++∙就可以用柯西不等式了。
4.扩展:()()233221122322212
2322
21)(n n n n b a b a b a b a b b b b a a a a ++++≥++++++++ ,当且仅当n n b a b a b a :::2211=== 时,等号成立.
【题型训练1-刷真题】
二、题型精讲精练
一、知识点梳理。
江苏高考数学重点难点

江苏高考数学重点难点一.函数(函数的概念、性质、初等函数与导数)【重难点】考察:函数的性质(单调性、奇偶性、周期性),初等函数的概念和性质(三角、指数、对数、幂)、导数的性质,运用以及函数与导数的结合(难点) (2014,第13题)已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,|212|)(2+-=x x x f .若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是 ▲ .19. 已知b a ,是实数,函数,)(,)(23bx x x g ax x x f +=+= )(x f '和)(x g '是)(),(x g x f 的导函数,若0)()(≥''x g x f 在区间I 上恒成立,则称)(x f 和)(x g 在区间I 上单调性一致(1)设0>a ,若函数)(x f 和)(x g 在区间),1[+∞-上单调性一致,求实数b 的取值范围;(2)设,0<a 且b a ≠,若函数)(x f 和)(x g 在以b a ,为端点的开区间上单调性一致,求||b a -的最大值【解析】本题主要考查函数的概念、性质及导数等基础知识,考查灵活运用数 形结合、分类讨论的思想方法进行探索、分析与解决问题的综合能力.本题属难题.二、三角形1. 两角和(差)的正弦、余弦和正切【重点】(2012,第15题)在ABC ∆中,已知3AB AC BA BC = .(1)求证:tan 3tan B A =;(2)若cos C =求A 的值. 2.解三角形(正弦定理、余弦定理及其应用)正弦定理:a/sinA=b/sinB=c/sinC=2R余弦定理:a ²= b ²+ c ²- 2·b·c·c os A常考题,以中档题和难题为主例题:(2014,第14题)若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是 ▲ . (2012,第13题)在锐角ABC ∆中,角C B A ,,的对边分别为c b a ,,,若C b a a b c o s 6=+, 则BC A C tan tan tan tan +的值是__▲三. 平面向量必考题,以基础题和中档题考点为主,常考知识点:(1)平面向量的加法、减法和数乘运算(2) 平面向量的数量积(c 级考点)【重点】(2013,第15题)已知)sin ,(cos )sin ,(cos ββαα=b a ,=,παβ<<<0.(1)若2||=-b a ,求证:b a ⊥;(2012,第13题)如图,在矩形ABCD 中,2AB BC =,点E 为BC 的中点,点F在边CD 上,若AB AF AE BF的值是 ▲ .四.数列(等差数列和等比数列)【重难点必考,以难题为主】考察点:①求等差数列、等比数列的通项公式②数列的前n 项和:1、 用通项公式法: 规律:能用通项公式写出数列各项,从而将其和重新组合为可求数列和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考考点要求(一)必做题部分
考试内容 1.集合要求层次A B C
集合及其表示√
子集√交集、并集、补集√
考试内容 2.函数概念与基本初等函数Ⅰ要求层次A B C
函数的概念√函数的基本性质√指数与对数√指数函数的图像与性质√对数函数的图像与性质√幂函数√
函数与方程√
函数模型及其应用√
考试内容 3 .基本初等函数Ⅱ(三角函数)、三角恒等变换要求层次A B C
三角函数的概念√
同角三角函数的基本关系式√
正弦函数、余弦函数的诱导公式√
正弦函数、余弦函数、正切函数的图象与性质√
函数 y=Asin( ω x+ φ) 的图象与性质√
两角和(差)的正弦、余弦及正切√二倍角的正弦、余弦、正切√
考试内容 4.解三角形要求层次A B C
正弦定理、余弦定理及其应用√
考试内容 5.平面向量要求层次
A B C
平面向量的概念√
平面向量的加法、减法及数乘运算√
平面向量的坐标表示√
平面向量的数量积√
平面向量的平行与垂直√
平面向量的应用√考试内容 6.数列
要求层次
A B C 数列的概念√
等差数列√等比数列√
考试内容 7.不等式要求层次A B C
基本不等式√二元一次不等式√线性规划√
考试内容 8.复数要求层次A B C
复数的概念√复数的四则运算√复数的几何意义√
考试内容 9.导数及其应用要求层次A B C
导数的概念√
导数的几何意义√导数的运算√利用导数研究函数的单调性与极值√导数在实际问题中的应用√
考试内容 10.算法初步要求层次
A B C
算法的含义√流程图√基本算法语句√
考试内容 11.常用逻辑用语要求层次A B C
命题的四则形式√
充分条件、必要条件、充分必要条件√简单的逻辑联结词√
全称量词与存在量词√
考试内容 12.推理与证明要求层次A B C
合情推理与演绎推理√分析法与综合法√
反证法√
考试内容 13.概率、统计要求层次
A B C
抽样方法√
总体分布的估计√
总体特征数的估计√变量的相关性√
随机事件与概率√
古典概型√几何概型√
互斥事件及其发生的概率√
考试内容 14.空间几何体要求层次A B C
柱、锥、台、球及其简单组合体√柱、锥、台、球的表面积与体积√
考试内容 15.点、线、面之间的位置关系要求层次A B C
平面及其基本性质√
直线与平面平行、垂直的判定及性质√两平面平行、垂直的判定及性质√
考试内容 16.平面解析几何初步要求层次A B C
直线的斜率与倾斜角√
直线方程√直线的平行关系与垂直关系√
两条直线的交点√
两点间的距离,点到直线的距离√
圆的标准方程与一般方程√直线与圆、圆与圆的位置关系√
空间直角坐标系√
考试内容 17.圆锥曲线与方程要求层次
A B C
中心在坐标原点的椭圆的标准方程与几何性质√中心在坐标原点的双曲线的标准方程与几何性质√
顶点在坐标原点的抛物线的标准方程与几何性质√
(二)附加题部分
(选修系列 2:不含选修系列 1 中的内容)
1.圆锥曲线与方程
要求层次考试内容
A B C 曲线与方程√
顶点在坐标原点的抛物线的标准方程与几何性质√2.空间向量与立体几何
要求层次
考试内容
A B C 空间向量的概念√
空间向量共线、共面的充分必要条件√
空间向量的加法、减法及数乘运算√
空间向量的坐标表示√
空间向量的数量积√
空间向量的共线与垂直√
直线的方向向量与平面的法向量√
空间向量的应用√3.导数及其应用
要求层次考试内容
A B C 简单的复合函数的导数√4.推理与证明
要求层次
考试内容
A B C 数学归纳法的原理√
数学归纳法的简单应用√5.计数原理
考试内容要求层次
A B C 加法原理与乘法原理√
排列与组合√
二项式定理√6.概率统计
要求层次
考试内容
A B C 离散型随机变量及其分布列√
超几何分布√
条件概率及相互独立事件√
n 次独立重复试验的模型及二项分布√
离散型随机变量的均值与方差√8.矩阵与变换
要求层次考试内容
A B C 矩阵的概念√
二阶矩阵与平面向量√
常见的平面交换√
矩阵的复合与矩阵的乘法√
二阶逆矩阵√
二阶矩阵的特征值与特征向量√
二阶矩阵的简单应用√9.坐标系与参数方程
要求层次考试内容
A B C 坐标系的有关概念√
简单图形的极坐标方程√
极坐标方程与直角坐标方程的互化√
参数方程√
直线、圆及椭圆的参数方程√
参数方程与普通方程的互化√
参数方程的简单应用√。