变压器油中溶解气体及微水在线监测系统技术方案
变压器中溶解气体在线监测系统说明书

正确认识变压器状况对于所有的电网工业是极必需的,变压器的在线状态监测也日益重要。
这一信息可以使资产利用达到最大化并且避免因故障而付出昂贵的代价。
变压器绝缘油中溶解气体分析(DGA)及微水测量技术被认为是变压器状况监测的最为重要的手段。
GE旗下KELMAN公司新一代的在线DGA设备,提供了监测变压器状态的必要信息。
在广泛领域内的使用证明了新一代监测仪作为一种有效的手段,为资产管理提供了可靠的信息。
TRANSFIX主要特性z监测单台变压器油箱。
z DGA及微水:8种故障气体加上微水及氮气。
DUALTRANS同时监测两个独立变压器组油箱z DUALTRANS是由凯尔曼公司为两个单相变压器组设计的油中溶解气体及微水在线监测新产品,此系统提供两个独立的绝缘油输入通道,允许对于每台变压器提供完整的油中溶解气体及微水在线监测。
z DUALTRANS测量8种故障气体以及微水。
最先进的光声光谱技术提供了准确以及可靠的测量结果,也使两个变压器箱体内的绝缘油混合可以忽略不计。
z DUALTRANS能够由用户自行设定测量间隔,每隔一小时进行测试,同时测量间隔也能按照报警状态自行调整。
z DUALTRANS可以按照用户需求自动或手动在两台变压器间进行切换。
主要技术特性z一台设备可同时监测两个主油箱。
z8种故障气体及微水分析。
MULTITRANS同时监测三个独立变压器组油箱TRANSPORT X便携式油中溶解气体及微水分析仪在线监测仪型号及监测范围在线监测仪型号 MINITRANS TRANSFIX DUALTRANS MULTITRANS TAPTRANS TRANSPORT X 可监测变压器独立油箱数 1 1 2 3 3 气体测量 测量范围(ppm)氢气(H2) 5—5000 + + + + + +甲烷(CH4) 2—50000 + + + + +乙烷(C2H6) 2—50000 + + + + + +乙烯(C2H4) 2—50000 + + + + +乙炔(C2H2) 0.5—50000 + + + + +一氧化碳(CO) 2—50000 + + + + + +二氧化碳(CO2) 20—50000 + + + + +氧气(O2) 100—50000 + + + +总可燃气体(TDCG)20—50000 +微水 0—100%RS(以ppm形式显示)+ + + + + +氮气(N2) 10—150000 ppm,精确度±15% (自由通气式变压器)+ + +精确度 ±5%最低分辨率下限(取大者)环境参数外部工作温度范围 -40至55℃油样温度范围 -40至120℃工作湿度 10-95%无凝露外壳防护等级 IP 55单相报警继电器 提供常开及常闭触点,5A 250VAC,5A30VDC 多种测量频率 每小时一次至每天一次。
变压器油中溶解气体在线监测系统的原理及应用

变压器油中溶解气体在线监测系统的原理及应用摘要:在对变压器油中溶解的气体进行诊断和监测时可以使用变压器油中气体在线监测装置来完成,它在对变压器的早期故障进行判断时可以作为一种成熟可靠的装置来完成诊断。
将变压器油中气体的在线监测装置作为检验的目标,根据传统的检验方法,将可行的现场校验方法提出来,使装置更加安全可靠,做好定量定性诊断投运状态的在线监测装置。
关键词:变压器;油中;溶解气体;在线监测;原理;应用1变压器油中溶解气体在线监测系统的原理1.1基于燃料电池技术的在线监测装置原理燃料电池与一般电池的组成一样,它是利用电化学的一种电池。
单体电池的组成包括正负两极(正极为氧化剂电极而负极为燃料电极)和电解质。
燃料电池中的正负两极不含有活性物质,只作为催化转换元件而存在。
所以燃料电池从真正意义上实现了将化学能转化成电能,是一种能量转换机器。
电池在工作的过程中,外部来供给氧化剂和燃料,从而发生反应。
理论上来讲如果不断的输入反应物,就会不断的排出产出物,燃料电池就可以实现持续发电[1]。
1.2基于气相色谱技术的在线监测装置原理色谱分析的理论依据是分配混合物中不同组分的之间的两相,其中不动的一相是固定相;另外一相是帮助混合物在固定相之间流过的流体,称为流动相。
流动相中包含的混合物流过固定相的时候,会和固定相之间发生相互作用。
因为不同组分的结构与性质都不同,相互之间作用力的大小也不同。
所以当推动力相同时,各种组分在固定相中所存留的时间也不一样[2]。
利用两相分配的原理来分离混合物中的各组分的技术,就叫做色谱法或色谱分离技术。
色谱流动相中包含液体或气体,流动相以液体来充当时,就叫做液相色谱;流动相用气体来充当时,就叫做气相色谱。
实行常规油色谱分析法主要用到的是气相色谱仪这种装置。
当色谱仪中的柱平均压力和柱温都确定时,两项中的组分平衡状态下,分配系数就是在单位体积固定相组分中的分布量与单位体积流动相组分中的分布量所得的比例,用K来表示,K值越大,组分就会越久的停留在色谱内,反之时间就更短。
变压器油中溶解气体在线监测技术及应用研究解读

变压器油中溶解气体在线监测技术及应用研究
变压器作为电力系统的枢纽设备,其运行可靠性直接影响电力系统的安全运行。
变压器油中溶解气体的成分和含量能有效体现运行变压器内部的绝缘故障情况,变压器油中溶解气体分析法(DGA)目前已成为电力系统对油浸式电力设备进行故障诊断的有效监测手段,得到了广泛的应用。
作者深入分析了变压器油中多种溶解气体在线监测技术现状及应用前景,就目前采用的变压器油中溶解气体在线监测技术应用进行了深入研究。
主要研究:通过对F_(46)高分子透气膜分离油中溶解气体,以MQ型系列传感器阵列检测变压器油中H_2、CO、
CH_4、C_2H_4、C_2H_2、C_2H_6六种气体的在线监测技术的研究及应用分析,认为其检测稳定性及灵敏度满足现场应用要求。
特别对乙炔的检测灵敏度达
1μL/L。
通过对光声光谱技术应用于油中气体在线监测的研究,分析了光声光谱技术的优点及抗干扰措施,并与现有在线色谱及红外光谱分析比较,显示了光声光谱在可靠性、稳定性、灵敏度方面良好的发展前景。
通过对热导技术应用于变压器油中在线监测的研究,在数据稳定性、灵敏度等方面具备良好的性能。
但它是基于常规油色谱分析的技术,现场受环境干扰的因素较多,长期的现场运行有待考证。
通过对现有油中气体在线监测技术的研究及应用系统的对比分析,提出了该种系列装置的实用性评价体系并分析了其应用前景。
变压器油中溶解气体及微水在线监测系统技术方案

大型油浸式电力变压器油中溶解气体及微水在线监测系统技术方案前言:在现代电力工业的设备运行和维护中,要求在电厂或电站运行的关键变压器特别是发现有异常的变压器上经常进行故障气体,微水含量,局部放电,绕组变形等多种项目的测量。
从这些结果中得到的科学信息是电力部门预计并控制安全服务和运行成本的诸多因素。
随着现代科技的快速发展以及微处理器的引入,在线检测仪器的发展速度正在稳步提高。
在线检测仪器的功能不断改善而价格在逐步下降,使智能化在线检测仪器的广泛应用成为可能。
由于通讯技术的发展使得在线检测的结果能够快速传递到远距的分析和控制中心,在出现故障时不但能及时自动报警并可从多气体比值判断故障性质及类型,采取必要措施,更显示出了他的重要作用。
近年来在国外各大电力部门的应用已经证明,在线检测技术对电力设备的充分利用,提高效益,延长使用寿命以及降低运行维护费用方面都有极大的作用。
自1960年以来,世界电力工业广泛使用变压器油中多种故障气体的色谱分析及多比值,TD图等判断方法为电力部门的安全高效运行提供重要依据。
但其测量周期较长,脱气误差较大以及耗时较多等问题,尚难满足安全生产和状态检修的要求。
因此,变压器油中多种故障气体的在线检测就成为迫切的需要。
由国家质量监督局颁布的最新国家标准“变压器油中溶解气体分析和判断导则”中指出了变压器绝缘油的产气原理是由于绝缘油和固体绝缘材料在电及热作用下的分解。
低能量放电故障促使最弱的C-H键断裂,主要重新化合成氢气,乙烯在高于甲烷和乙烷的温度下生成。
大量的乙炔是在电弧的弧道中产生。
标准定义了“对判断充油电器设备内部故障有价值的特征气体:即氢气(H),2甲烷(CH4),乙烷(C2H6),乙烯(C2H4),一氧化碳(CO),二氧化碳(CO2)”,并说明氧气(O2)和氮气(N2),可作为辅助判断指标。
因此对包含氧气(O2)在内的8种故障气体进行在线检测才能符合中国国家标准的要求,进一步检测氮气(N2)是国际新发展方向。
变压器油中溶解气体的在线监测技术的综述

变压器油中溶解气体的在线监测技术的综述【摘要】介绍了变压器油中溶解气体在线监测技术的应用与研究现状,分析比较了现有的油中溶解气体在线监测技术。
【关键字】变压器,油中溶解气体,在线监测【引言】电力机车变压器是电力系统的枢纽设备,其运行状态直接影响到整个电力系统的安全。
因为变压器油中溶解气体的分析不受外界影响,并且能在不停电的情况下进行,已经成为电力系统中对油浸式变压器早期故障诊断的有效监测方法。
早期采用的离线色谱检测技术,由于检测程序复杂、周期长,难以反映设备的当前状态。
随着在线监测技术的发展,减少和避免了非计划断电和灾难性事故的发生,为设备检修提供科学依据[1]。
本文简要介绍了变压器油中溶解气体的产生机理,重点对溶解气体在线监测技术的方法进行了综述。
1.变压器油中的溶解气体1.1产生机理变压器油中溶解的气体主要来自大气,主要成分为氮气和氧气;变压器在正常运行条件下,都会受电场、温度、湿度以及氧气的长时间作用发生速度缓慢的老化,其内部的绝缘材料会因热分解产生氢气(H2)、一氧化碳(CO)、二氧化碳(CO2)和烃类气体;当变压器内部存在过热或放电故障时,绝缘介质会发生热裂解,主要产生一氧化碳、二氧化碳和低分子烃类物质;此外,在变压器油的精制过程、运输过程等都会产生气体,并通过与油接触而溶解于油中。
1.2溶解气体与变压器内部故障的关系变压器油和固体绝缘材料在热和电磁的作用下,将产生各种气体,这些气体要溶解于油中,对中各种气体进行分析,就可判断变压器故障。
如:1.2.1热性故障当固体材料局部过热时,就会产生CO和CO2,且CO/CO2>10,当变压器油局部过热时会产生大量的乙烯和甲烷。
1.2.2电性故障绕组匝间、层间出现的绝缘击穿,电弧放电、火花放电和局部放电[2,3]主要产生:氢气(H2),乙炔(C2H2),其次是乙烯(C2H4)和甲烷(CH4)。
2.变压器油中溶解气体在线监测的方法变压器油中溶解气体的在线监测技术主要分为油气分离和气体在线检测,前者常用的方法有薄膜透气法和抽真空取气法;后者又分为单组分气体在线监测和多组分气体在线监测。
变压器油中溶解气体在线监测概要(可编辑修改word版)

变压器油中溶解气体在线监测方法研究摘要 (3)1.导言 (4)2.国内外发展现状及发展趋势 (6)3.变压器油中溶解气体在线监测方法的基本原理 (9)3.1.变压器常见故障类型 (9)3.2.变压器内部故障类型与油中溶解特征气体含量的关系 (10)4.基于油中特征气体组分的故障诊断方法 (14)4.1.特征气体法 (14)4.2.三比值法 (15)4.3.与三比值法配合使用的其它方法 (17)摘要电力变压器是电力系统中最主要的设备,同时也是电力系统中发生事故最多的设备之一,对其运行状况实时监测,保证其安全可靠运行,具有十分重要的意义。
变压器油中溶解气体的组分和含量在一定程度上反映出变压器绝缘老化或故障的程度,可以作为反映设备异常的特征量。
如何以变压器油中溶解气体在线监测为手段,实现对运行变压器潜伏性故障的诊断和预测,是本文的出发点。
本文的目标是研究基于油中溶解气体分析(DGA)的电力变压器状态监测与故障分析方法,通过气体色谱分析方法实现对变压器油中溶解的七种特征气体(氢气H2、甲烷CH4、乙炔C2H2、乙烯C2H4、乙烷C2H6、一氧化碳CO、二氧化碳CO2)组分含量在线实时监测,从而达到对电力变压器工作状态的诊断分析。
1.导言现代社会对能源的巨大需求促进了电力工业的飞速发展。
一方面是单台电力的容量越来越大;另一方面是电力网向着超高压的方向发展,并正组织成庞大的区域性甚至跨区域的大电网。
然而,随着电力设备容量的增大和电力网规模的扩大,电力设备故障给人们的生产和现代生活所带来的影响也就越来越大。
这就要求供电部门在不断提高供电质量的同时,要切实采取措施来保证电力设备的正常运行,以此来提高供电的可靠性。
长期以来形成的定期检修已不能满足供电企业生产目标。
激烈的市场竞争迫使电力企业面临着多种棘手的问题,例如如何提高设备运行可靠性、如何有效控制检修成本、合理延长设备使用寿命等。
因此,状态检修已成为必然。
而状态检修的实现,必须建立在对主要电气设备有效地进行在线监测的基础上,通过实时监测高压设备的实际运行情况,提高电气设备的诊断水平,做到有针对性的检修维护,才能达到早期预报故障、避免恶性事故发生的目的。
浅谈电力变压器油中溶解气体在线监测技术

浅谈电力变压器油中溶解气体在线监测技术【摘要】随着电力变压器现代维护技术的发展,产生了在线状态监测。
它打破了以往收集电力变压器信息的局限性。
本文主要介绍了电力变压器油中单组分气体在线监测技术,电力变压器油中多组分气体在线监测技术。
【关键词】电力变压器油中溶解气体在线监测1、前言传统收集电力变压器状态信息的方法是外观检查、理化、高压电气试验和继电保护。
这些传统方法属于常规的试验和检测,仅仅能够提供电力变压器故障或事故后的信息,即在事故过后才能获得状态信息。
与现代化状态维护发展趋势不相适应,虽然检测方法种类很多,却不能满足对电力变压器进行实时状态监测的需要,继电保护装置的作用也是如此。
随着电力变压器现代维护技术的发展,产生了在线状态监测。
它打破了以往收集电力变压器信息的局限性。
目前,电力系统通过采用对电力变压器的在线监测,可以即时连续记录各种影响电力变压器寿命的相关数据,对这些数据的自动处理可及早发现故障隐患,实现基本的状态维护。
现代科技进步使微电子技术、传感器技术和计算机技术广泛应用于电力系统高压设备的状态监测成为现实。
国内外应用的各种在线监测的经验,促使在线监测技术上不断完善和成熟,开拓可高压装置状态维护的新局面。
2、电力变压器油中单组分气体在线监测技术在线监测技术首先要求连续地(最好是实时地)在线监测电力变压器油中溶解气体,其监测指标最好达到或者超过实验室气相色谱值。
其次,在线监测技术要求在线监测装置将检测结果通过网络实时传输至监测中心的故障诊断专家系统,由专家系统来综合判断变压器的实际状况,并给出相应对策。
油中溶解气体在线监测技术发展很快,电力变压器油中溶解气体在线监测技术要注意测试对象、取气方法和所使用的检测器三个方面检测技术。
根据不同的测试对象,选择不同的检测器,并配合使用不同的取气方法,可以组合成多种多样的油中溶解气体在线监测装置。
该技术主要分为油中溶解单组分、多组分气体在线监测技术两大类别。
变压器油中溶解气体在线监测 检定规程-概述说明以及解释

变压器油中溶解气体在线监测检定规程-概述说明以及解释1.引言1.1 概述变压器油作为变压器的重要介质之一,承担着冷却、绝缘和灭弧等关键功能。
然而,随着使用时间的增长,变压器油中往往会溶解一些气体,这些溶解气体的存在对变压器的正常运行产生了极大的影响。
因此,对变压器油中溶解气体的在线监测变得至关重要。
溶解在变压器油中的气体来源主要可以分为两类:一类是由于变压器内部的故障或异常工况引起的气体生成,例如绝缘材料老化、开关设备故障、电弧放电等;另一类是由于环境因素引起的外源性气体进入,例如大气中的氧气、空气湿度等。
这些溶解气体的存在对变压器的运行状态和性能造成了一系列负面影响。
首先,气体会导致变压器油的绝缘性能下降,增加了绝缘介质击穿的风险;其次,气体会降低油的冷却效果,影响变压器的散热能力;最后,气体还可能导致油的氧化和硫化,引发油的老化和腐蚀变质。
因此,为了确保变压器的正常运行和延长其使用寿命,对变压器油中溶解气体的在线监测具有重要的意义。
通过实时监测变压器油中的气体含量和种类,可以及时判定变压器是否存在故障或异常情况,采取相应的维护和修复措施。
此外,对溶解气体进行定期监测还有助于掌握变压器的运行状态,提前预防潜在的问题,减少变压器的停用和维修时间,进一步提高电力系统的可靠性和稳定性。
综上所述,变压器油中溶解气体的在线监测在电力行业中具有重要的意义。
通过对溶解气体的监测和分析,可以有效提高变压器的安全性和可靠性,保障电力系统的稳定供电。
因此,制定并遵守合适的变压器油中溶解气体在线监测检定规程,对保障电力系统的正常运行和设备的长期稳定工作具有重要的意义。
1.2文章结构文章结构部分的内容可以如下所示:文章结构本文主要包括以下几个部分:1. 引言:在这一部分,首先对变压器油中溶解气体在线监测的背景和重要性进行简要介绍,然后概述本文的目的和结构。
2. 正文:本部分将详细介绍变压器油中溶解气体的重要性和变压器油中溶解气体在线监测的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大型油浸式电力变压器油中溶解气体及微水在线监测系统技术方案前言:在现代电力工业的设备运行和维护中,要求在电厂或电站运行的关键变压器特别是发现有异常的变压器上经常进行故障气体,微水含量,局部放电,绕组变形等多种项目的测量。
从这些结果中得到的科学信息是电力部门预计并控制安全服务和运行成本的诸多因素。
随着现代科技的快速发展以及微处理器的引入,在线检测仪器的发展速度正在稳步提高。
在线检测仪器的功能不断改善而价格在逐步下降,使智能化在线检测仪器的广泛应用成为可能。
由于通讯技术的发展使得在线检测的结果能够快速传递到远距的分析和控制中心,在出现故障时不但能及时自动报警并可从多气体比值判断故障性质及类型,采取必要措施,更显示出了他的重要作用。
近年来在国外各大电力部门的应用已经证明,在线检测技术对电力设备的充分利用,提高效益,延长使用寿命以及降低运行维护费用方面都有极大的作用。
自1960年以来,世界电力工业广泛使用变压器油中多种故障气体的色谱分析及多比值,TD图等判断方法为电力部门的安全高效运行提供重要依据。
但其测量周期较长,脱气误差较大以及耗时较多等问题,尚难满足安全生产和状态检修的要求。
因此,变压器油中多种故障气体的在线检测就成为迫切的需要。
由国家质量监督局颁布的最新国家标准“变压器油中溶解气体分析和判断导则”中指出了变压器绝缘油的产气原理是由于绝缘油和固体绝缘材料在电及热作用下的分解。
低能量放电故障促使最弱的C-H键断裂,主要重新化合成氢气,乙烯在高于甲烷和乙烷的温度下生成。
大量的乙炔是在电弧的弧道中产生。
标准定义了“对判断充油电器设备内部故障有价值的特征气体:即氢气(H2),甲烷(CH4),乙烷(C2H6),乙烯(C2H4),一氧化碳(CO),二氧化碳(CO2)”,并说明氧气(O2)和氮气(N2),可作为辅助判断指标。
因此对包含氧气(O2)在内的8种故障气体进行在线检测才能符合中国国家标准的要求,进一步检测氮气(N2)是国际新发展方向。
光声光谱(PAS)技术应用予溶解气体分析,在此基础上研制成功了Transfix® 型在线式油中溶解气体分析仪。
Transfix® 使用欧洲先进技术和部件,克服了环境变化,仪器恒温,信号干扰,机械振动等各种难题,成功地实现在线检测变压器油中的8种故障气体及微水。
它可以直接安装在变压器现场,连续自动采样,自动检测油中气体及微水。
并且主控室终端电脑可以通过有线或无线的方式与其通信,获取油中气体及溶解水的实时数据信息。
Transfix®不仅仅能够检测变压器油中的8种故障气体,而且能够检测变压器油中的微水含量。
和传统的变压器色谱分析仪相比,Transfix®不仅仅性能大为提高,而且它还能替换变压器微水测试仪。
到2004年,Transfix®已经广泛的应用在美国、加拿大、墨西哥、丹麦、德国、挪威、奥地利、瑞士、瑞典、英国、韩国、马来西亚、新加坡、澳大利亚等国家的电力系统中。
系统原理和传统的气相色谱分析仪比较,Transfix®采用了领先的“动态顶空平衡”法进行油气分离;专利光声光谱技术进行气体检测。
1. 油气分离图1 脱气模块图1是Transfix®的油气分离模块,即脱气模块。
其采用的是“动态顶空平衡”进行脱气。
在脱气的过程中,采样瓶内的磁力搅拌子不停的旋转,搅动油样脱气;析出的气体经过检测装置后返回采样瓶的油样中。
在这个过程中,光声光谱模块间隔测量气样的浓度,当前后测量的值一致时,认为脱气完毕。
该脱气方式满足ASTM 3612标准及IEC相关标准。
1. 气体检测 Transfix®是利用光声光谱技术实现变压器油中故障气体的检测。
光声光谱是基于光声效应的一种光谱技术。
光声效应是由分子吸收电磁辐射(如红外线等)而造成。
气体吸收一定量电磁辐射后其温度也相应升高,但随即以释放热能的方式退激,释放出的热量则使气体及周围介质产生压力波动。
若将气体密封于容器内,气体温度升高则产生成比例的压力波。
检测压力波的强度可以测量密闭容器内气体的浓度。
一个简单的灯丝光源可提供包括红外谱带在内的宽带辐射光,采用抛物面反射镜聚焦后进入光声光谱测量模块。
光线经过以恒定速率转动的调制盘将光源调制为闪烁的交变性号。
由一组滤光片实现分光,每一个滤光片允许透过一个窄带光谱,其中心频率分别与预选的各气体特征吸收频率相对应。
图2 光声光谱原理图如果在预选各气体的特征频率时可以排除各气体的交叉干扰,则通过对安装滤光片的圆盘进行步进控制,就可以依次测量不同的气体。
经过调制后的各气体特征频率处的光线以调制频率反复激发样品池中相的气体分子,被激发的气体分子会通过辐射或非辐射两种方式回到基态。
对于非辐射驰豫过程,体系的能量最终转化为分子的平动能,引起气体局部加热,从而在气池中产生压力波(声波)。
使用微音器可以检测这种压力变化。
声光技术就是利用光吸收和声激发之间的对应关系,通过对声音信号的探测从而了解吸收过程。
由于光吸收激发的声波的频率由调制频率决定;而其强度则只与可吸收该窄带光谱的特征气体的体积分数有关。
因此,建立气体体积分数与声波强度的定量关系,就可以准确计量气池中各气体的体积分数。
由于光声光谱测量的是样品吸收光能的大小,因而反射,散射光等对测量干扰很小;尤其在对弱吸收样品以及低体积分数样品的测量中,尽管吸收很弱,但不需要与入射光强进行比较,因而仍然可以获得很高的灵敏度。
图3 光声光谱模块图通过观查变压器故障气体的分子红外吸收光谱发现,其中存在不同化合物分子特征谱线交叠重合的现象。
通过进一步研究,可寻找到合适的独立特征频谱区域以满足检测各种气体化合物的要求,从而也从根本上消除了检测过程中不同气体间发生干扰的问题。
系统优点Transfix ®采用了先进的“动态顶空平衡”法进行脱气以及光声光谱法进行气样检测。
因此和传统的变压器油中故障气体检测仪器相比较有以下一些优点:1. 由光声光谱测量部件特性而知,较传统的气相色谱(GC)分析仪器而言,光声光谱分析仪所需的校验工作将大为减少;2. 光声光谱检测技术无需气相色谱分析仪器中所需的消耗品,如载气等;3. 采用光声光谱技术的仪器内光声室(一般仅2-3mL )容积较小,意味着仅需少量样品即可进行测试,且便于迅速清理光声室以满足快速、连续测量的要求。
通常光声室的清理时间仅为1-2分钟,而多数实验室气相色谱仪器则需要几十分钟的清理时间。
4. Transfix ®不仅仅能够检测变压器油中8种故障气体,而且还能够检测油中的微水含量。
因此Transfix ®不仅仅能够同时替换传统的色谱分析仪和微水测试仪,而且还能够使操作简单,不易产生污染。
5. 由于系统采用光声光谱技术测量气体含量,因此没有传统的色谱柱以及色谱柱老化、污染、饱和等缺点。
并且系统没有固态半导体传感器,不受CO 或其他气体污染。
6. 系统能够提供历史数据,能够在主机中纵向比较变压器的历史数据,给出变压器油中气体以及微水的走势图。
7. 系统在运行过程中,不需要频繁校准。
8. 系统的重复性能好,Transfix ®有相当高的测量一致性。
9. 系统在设计过程中充分考虑变压器现场的恶劣工作环境,因此系统具有较好的抗振性,较高的防护等级。
由于内部具有温度补偿功能,因此其受环境温度影响小,在-40℃ ~ +55℃都能正常的工作。
系统结构:油样泵入脱气模块,经过脱气得到的气样进入光声光谱模块。
光声光谱模块处理后将得到的电信号传送给高精度ADC ,CPU 控制其工作并且得到相应的数字信号随后根据温度补偿模块的信号,对数据进行修正,修正后的数据存放于数据存储模块。
当主机通信时,将数据传送给主机。
规格以及参数1. 技术指标:温度:环境温度: -40℃ ~ +55℃(-10℃ ~ +55℃启动时);仪器进样处油温: -10℃ ~ +110℃;湿度: 10 ~ 100%RH;防护等级: IP56;净重: 81kg;油压:油样进样处:运行时0~3bar(0~45psi);非运行时-1~6bar(-15~87psi);外壳: 760×600×350mm(高×宽×深)(参看附件1);安装支架:参看附件2管材规格:参看附件32. 测量范围:3. 校准范围:氢气(H) 6~2,000ppm2其他 LDL~50,000ppm4. 相关技术指标:- 交流电源: 110Vac~240Vac、46-63Hz,单相8A max ;- 仪器内置存储器可存储至8,000个记录,按每小时一次的采样周期计算可存储一年的检测数据;- 数据现场处理及分析;- 仪器面板配有红色、黄色用户设置报警、注意值指示灯;- 仪器配有三个继电器输出接点,用户可根据气体含量、微水值、产气速率、变化趋势或气体比值等判别标准设置该接点的工作状态;- Modem、RS-485、USB及串口通讯方式便于数据下载;- 校验周期,2年(可由用户自行校验或由英国Kelman公司技术服务部门进行校验);- 采样周期:最小采样周期是1小时一次,用户可以在上位机,根据实际情况自己设定。
系统框图对于需要连续监控两台主变的要求,本方案中采用两台Transfix®分别监控两台变压器。
位于控制室的主机运行监控软件,在监控软件上可以设置Transfix®的运行状态,获取Transfix®的检测数据并且可以分析这些数据得出变压器油中气体的变化趋势。
Transfix®固定在金属架上,放置于变压器旁,检测变压器油中气体。
采用交换机和Modem实现主机和两台Transfix®间的通讯连接,利用它们传送主机的命令及Transfix®的检测数据。
油路连接:图6 油路连接示意图图6显示了变压器的取油和回油示意图。
一般推荐在变压器中部取油,因为从变压器中部可以取得油路主回路的油样,这样的油样具有代表性。
回油口一般位于变压器底部。
取油阀组件:图7 取油阀结构图图8 取油阀现场安装图片回油阀组件:图9 回油阀结构图1图10 回油阀结构图2图11 回油阀安装图Kelman精心设计了取油阀和回油阀部相关组件,这些都保证了Transfix®和变压器联机运行的过程中不会漏油,而且外部的空气不会进入变压器油中。
系统安装图图12 Transfix®现场安装图图13 Transfix®管道安装图应用软件(TransCom®)随仪器提供的TransCom®专用软件,以最全面和直观的图形和表格显示出与变压器内部状态直接关联的检测结果。
由用户设定可分别绘制全部8种或任何选定气体的PPM浓度,注意值%,报警值%随时间的变化曲线。