四川南充市中考数学试卷(有答案)
2024年四川省南充市中考真题数学试卷含答案解析

2024年四川省南充市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1 )A .点AB .点BC .点CD .点D2.学校举行篮球技能大赛,评委从控球技能和投球技能两方面为选手打分,各项成绩均按百分制计,然后再按控球技能占60%,投球技能占40%计算选手的综合成绩(百分制人选手李林控球技能得90分,投球技能得80分.李林综合成绩为( )A .170分B .86分C .85分D .84分【答案】B【分析】本题考查求加权平均数,利用加权平均数的计算方法,进行求解即可.【详解】解:9060%8040%86⨯+⨯=(分);故选B .3.如图,两个平面镜平行放置,光线经过平面镜反射时,1240∠=∠=︒,则3∠的度数为( )A .80︒B .90︒C .100︒D .120︒【答案】C 【分析】本题考查利用平行线的性质求角的度数,平角的定义求出4∠的度数,再根据平行线的性质,即可得出结果.【详解】解:∵1240∠=∠=︒,∴418012100∠=︒-∠-∠=︒,∵两个平面镜平行放置,∴经过两次反射后的光线与入射光线平行,∴34100∠=∠=︒;故选C .4.下列计算正确的是( )A .235a a a +=B .842a a a ÷=C .236a a a ⋅=D .()326327a a =【答案】D【分析】本题考查整式的运算,根据合并同类项,同底数幂的乘除法则,积的乘方和幂的乘方法则,逐一进行判断即可.【详解】解:A 、23,a a 不能合并,原选项计算错误,不符合题意;B 、844a a a ÷=,原选项计算错误,不符合题意;C 、235a a a ⋅=,原选项计算错误,不符合题意;D 、()326327a a =,原选项计算正确,符合题意;故选D .5.如图,在Rt ABC 中,90306C B BC ∠=︒∠=︒=,,,AD 平分CAB ∠交BC 于点D ,点E 为边AB 上一点,则线段DE 长度的最小值为( )A B C .2D .3【答案】C 【分析】本题主要考查解直角三角形和角平分线的性质,垂线段最短,根据题意求得BAC ∠和AC ,结合角平分线的性质得到CAD ∠和DC ,当DE AB ⊥时,线段DE 长度的最小,结6.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房.设该店有客房x 间、房客y 人,下列方程组中正确的是( )A .779(1)x y x y+=⎧⎨-=⎩B .779(1)x y x y +=⎧⎨+=⎩C .779(1)x y x y -=⎧⎨-=⎩D .779(1)x y x y-=⎧⎨+=⎩【答案】A 【分析】根据“如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房”分别列出两个方程,联立成方程组即可.【详解】根据题意有779(1)x y x y+=⎧⎨-=⎩故选:A .【点睛】本题主要考查列二元一次方程组,读懂题意找到等量关系是解题的关键.7.若关于x 的不等式组2151x x m -<⎧⎨<+⎩的解集为3x <,则m 的取值范围是( )A .m>2B .2m ≥C .2m <D .2m ≤【答案】B【分析】本题考查根据不等式组的解集求参数的范围,先解不等式组,再根据不等式组的解集,得到关于参数的不等式,进行求解即可.【详解】解:解2151x x m -<⎧⎨<+⎩,得:31x x m <⎧⎨<+⎩,∵不等式组的解集为:3x <,∴13m +≥,∴2m ≥;故选B .8.如图,已知线段AB ,按以下步骤作图:①过点B 作BC AB ⊥,使12BC AB =,连接AC ;②以点C 为圆心,以BC 长为半径画弧,交AC 于点D ;③以点A 为圆心,以AD 长为半径画弧,交AB 于点E .若AE mAB =,则m 的值为( )A B C 1D 29.当25x ≤≤时,一次函数2(1)1y m x m =+++有最大值6,则实数m 的值为( )A .3-或0B .0或1C .5-或3-D .5-或1【答案】A【分析】本题主要考查了一次函数的性质,以及解一元二次方程,分两种情况,当10m +>时和当10+<m ,根据一次函数性质列出关于m 的一元二次方程,求解即可得出答案.【详解】解:当10m +>即1m >-时,一次函数y 随x 的增大而增大,∴当5x =时,6y =,即25(1)16m m +++=,整理得:250m m +=解得:0m =或5m =-(舍去)当10+<m 即1m <-时,一次函数y 随x 的增大而减小,∴当2x =时,6y =,即22(1)16m m +++=,整理得:2230m m +-=解得:3m =-或1m =(舍去)综上,0m =或3m =-,故选:A10.如图是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”,它是由四个全等的直角三角形和一个小正方形组成.在正方形ABCD 中,10AB =.下列三个结论:①若3tan 4ADF ∠=,则2EF =;②若Rt ABG △的面积是正方形EFGH 面积的3倍,则点F 是AG 的三等分点;③将ABG 绕点A 逆时针旋转90︒得到ADG '△,则BG '的最大值为5.其中正确的结论是( )A.①②B.①③C.②③D.①②③∴2255BO OA AB =+=∴555BG BO OG ''≤+=+即:BG '的最大值为55+故选D .【点睛】本题考查解直角三角形,勾股定理,旋转的性质,解一元二次方程,求圆外一点到圆上一点的最值,熟练掌握相关知识点,并灵活运用,是解题的关键.二、填空题11.计算---a b a b a b 的结果为 .12.若一组数据6,6,m ,7,7,8的众数为7,则这组数据的中位数为.【答案】7【分析】本题考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是数据13.如图,AB 是O 的直径,位于AB 两侧的点C ,D 均在O 上,30BOC ∠=︒,则ADC ∠= 度.14.已知m 是方程2410x x -=+的一个根,则(5)(1)m m +-的值为.【答案】4-【分析】本题主要考查了二元一次方程的解,以及已知式子的值求代数式的值,根据m 是方程2410x x -=+的一个根,可得出241m m +=,再化简代数式,整体代入即可求解.【详解】解:∵m 是方程2410x x -=+的一个根,∴241m m +=(5)(1)m m +-255m m m =-+-245m m =+-15=-4=-,故答案为:4-.15.如图,在矩形ABCD 中,E 为AD 边上一点,30ABE ∠=︒,将ABE 沿BE 折叠得FBE ,连接CF ,DF ,若CF 平分BCD ∠,2AB =,则DF 的长为 .∴90CMF CNF ∠=∠=︒,∵四边形ABCD 是矩形,∴90DCM ABC ∠=∠=︒,∴四边形CMFN 是矩形,16.已知抛物线21:C y x mx m =++与x 轴交于两点A ,B (A 在B 的左侧),抛物线22:()C y x nx n m n =++≠与x 轴交于两点C ,D (C 在D 的左侧),且AB CD =.下列四个结论:①1C 与2C 交点为(1,1)-;②4m n +=;③0mn >;④A ,D 两点关于(1,0)-对称.其中正确的结论是 .(填写序号)【点睛】本题考查了二次函数的图象与性质,二次函数与一元二次方程的关系,解一元二次方程,根的判别式,熟练掌握知识点的应用是解题的关键.三、解答题17.先化简,再求值:()23(2)3x x x x +-+÷,其中2 x =-.【答案】41x +,7-【分析】本题主要考查了整式的化简求值,运用完全平方公式展开,先算除法,再算加减法,最后代入求值即可.【详解】解:原式()()22443x x x =++-+22443x x x =++--41x =+,当2x =-时,原式4(2)17=⨯-+=-.18.如图,在ABC 中,点D 为BC 边的中点,过点B 作BE AC ∥交AD 的延长线于点E .(1)求证:BDE CDA ≌ .(2)若AD BC ⊥,求证:BA BE =【答案】(1)见解析(2)见解析【分析】本题考查全等三角形的判定和性质,中垂线的判定和性质:(1)由中点,得到BD CD =,由BE AC ∥,得到,E DAC DBE C ∠=∠∠=∠,即可得证;(2)由全等三角形的性质,得到ED AD =,进而推出BD 垂直平分AE ,即可得证.【详解】(1)证明:D 为BC 的中点,BD CD ∴=.,BE AC ∥,E DAC DBE C ∴∠=∠∠=∠;在BDE 和CDA 中,E DAC DBE C BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS BDE CDA ∴ ≌;(2)证明:,BDE CDA △≌△ED AD∴=,AD BC ⊥ BD ∴垂直平分AE ,BA BE ∴=.19.某研学基地开设有A ,B ,C ,D 四类研学项目.为了解学生对四类研学项目的喜爱情况,随机抽取部分参加完研学项目的学生进行调查统计(每名学生必须选择一项,并且只能选择一项),并将调查结果绘制成两幅不完整的统计图,(如图).根据图中信息,解答下列问题:(1)参加调查统计的学生中喜爱B 类研学项目有多少人?在扇形统计图中,求C 类研学项目所在扇形的圆心角的度数.(2)从参加调查统计喜爱D 类研学项目的4名学生(2名男生2名女生)中随机选取2人接受访谈,求恰好选中一名男生一名女生的概率.20.已知1x ,2x 是关于x 的方程22210x kx k k -+-+=的两个不相等的实数根.(1)求k 的取值范围.(2)若5k <,且k ,1x ,2x 都是整数,求k 的值.【答案】(1)1k >(2)2【分析】本题主要考查了根据一元二次方程根的情况求参数范围、解一元二次方程,熟练掌握一元二次方程根的情况与判别式的关系是解题的关键.(1)根据“1x ,2x 是关于x 的方程22210x kx k k -+-+=的两个不相等的实数根”,则0∆>,得出关于k 的不等式求解即可;(2)根据5k <,结合(1)所求k 的取值范围,得出整数k 的值有2,3,4,分别计算讨21.如图,直线y kx b =+经过(0,2),(1,0)A B --两点,与双曲线(0)my x x=<交于点(,2)C a .(1)求直线和双曲线的解析式.(2)过点C 作CD x ⊥轴于点D ,点P 在x 轴上,若以O ,A ,P 为顶点的三角形与BCD △相似,直接写出点P 的坐标.综上:点P 坐标为(4,0)-或(1,0)-或(1,0)或(4,0).22.如图,在O 中,AB 是直径,AE 是弦,点F 是»AE 上一点,AF BE =,,AE BF 交于点C ,点D 为BF 延长线上一点,且CAD CDA ∠=∠.(1)求证:AD 是O 的切线.(2)若4,BE AD ==,求O 的半径长.23.2024年“五一”假期期间,阆中古城景区某特产店销售A ,B 两类特产.A 类特产进价50元/件,B 类特产进价60元/件.已知购买1件A 类特产和1件B 类特产需132元,购买3件A 类特产和5件B 类特产需540元.(1)求A 类特产和B 类特产每件的售价各是多少元?(2)A 类特产供货充足,按原价销售每天可售出60件.市场调查反映,若每降价1元,每天可多售出10件(每件售价不低于进价).设每件A 类特产降价x 元,每天的销售量为y 件,求y 与x 的函数关系式,并写出自变量x 的取值范围.(3)在(2)的条件下,由于B 类特产供货紧张,每天只能购进100件且能按原价售完.设该店每天销售这两类特产的总利润为w 元,求w 与x 的函数关系式,并求出每件A 类特产降价多少元时总利润w 最大,最大利润是多少元?(利润=售价-进价)【答案】(1)A 类特产的售价为60元/件,B 类特产的售价为72元/件(2)1060y x =+(010x ≤≤)(3)A 类特产每件售价降价2元时,每天销售利润最犬,最大利润为1840元【分析】本题主要考查一元一次方程的应用、函数关系式和二次函数的性质,()1根据题意设每件A 类特产的售价为x 元,则每件B 类特产的售价为()132x -元,进一步得到关于x 的一元一次方程求解即可;()2根据降价1元,每天可多售出10件列出函数关系式,结合进价与售价,且每件售价不低于进价得到x 得取值范围;()3结合(2)中A 类特产降价x 元与每天的销售量y 件,得到A 类特产的利润,同时求得B类特产的利润,整理得到关于x 的二次函数,利用二次函数的性质求解即可.【详解】(1)解:设每件A 类特产的售价为x 元,则每件B 类特产的售价为()132x -元.根据题意得()35132540x x +-=.解得60x =.则每件B 类特产的售价1326072-=(元).答:A 类特产的售价为60元/件,B 类特产的售价为72元/件.(2)由题意得1060y x =+∵A 类特产进价50元/件,售价为60元/件,且每件售价不低于进价∴010x ≤≤.答:1060y x =+(010x ≤≤).(3)(6050)(1060)100(7260)w x x =--++⨯-221040180010(2)1840x x x =-++=--+.100,-<Q ∴当2x =时,w 有最大值1840.答:A 类特产每件售价降价2元时,每天销售利润最大,最大利润为1840元.24.如图,正方形ABCD 边长为6cm ,点E 为对角线AC 上一点,2CE AE =,点P 在AB 边上以1cm /s 的速度由点A 向点B 运动,同时点Q 在BC 边上以2cm /s 的速度由点C 向点B 运动,设运动时间为t 秒(03t <≤).(1)求证:AEP CEQ ∽.(2)当EPQ △是直角三角形时,求t 的值.(3)连接AQ ,当1tan 3AQE ∠=时,求AEQ △的面积.①当90EPQ ∠=︒时,有即22416324t t t -+=-解得12623,6t t =-=②当90PEQ ∠=︒时,有又2CE AE = ,13AE AE AC AF ∴==1tan 3AFE ∴∠=.125.已知抛物线2y x bx c =-++与x 轴交于点()1,0A -,()3,0B .(1)求抛物线的解析式;(2)如图1,抛物线与y 轴交于点C ,点P 为线段OC 上一点(不与端点重合),直线PA ,PB 分别交抛物线于点E ,D ,设PAD 面积为1S ,PBE △面积为2S ,求12S S 的值;(3)如图2,点K 是抛物线对称轴与x 轴的交点,过点K 的直线(不与对称轴重合)与抛物线交于点M ,N ,过抛物线顶点G 作直线l x ∥轴,点Q 是直线l 上一动点.求QM QN +的最小值.l y=,则(N'由题意得直线:4。
2023年四川省南充市中考数学试卷(含答案)142341

2023年四川省南充市中考数学试卷试卷考试总分:141 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 9 小题 ,每题 4 分 ,共计36分 )1. 如图,在方格纸中(假设每个小方格的边长为单位),将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个长方形,那么下面的平移方法中,正确的是( )A.先向下平移个单位长度,再向右平移个单位长度B.先向下平移个单位长度,再向右平移个单位长度C.先向下平移个单位长度,再向右平移个单位长度D.先向下平移个单位长度,再向右平移个单位长度2. 如图,在某时段有辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这辆车车速的众数(单位:)为 A.B.C.D.3. 如图,活动课小明利用一个锐角是的三角板测量一棵树的高度,已知他与树之间的水平距离为,为(即小明的眼睛距地面的距离),那么这棵树高是 A.B.C.D.5×51313222215050km/h ()6050403530∘BE 9m AB 1.5m ()3m3–√27m3–√(3+)m 3–√32(27+)m 3–√324. 《九章算术》中记载着这样一个问题:“今有牛、马、羊食人苗,苗主责之粟五斗.羊主曰:‘我羊食半马.’马主曰:‘我马食半牛.’今欲衰偿之,问各出几何?”其大意是:牛、马、羊吃了别人地里的青苗,要赔偿粟斗.羊吃的是马的一半,马吃的是牛的一半,问牛、马、羊的主人各应赔多少?设羊的主人赔斗,根据题意,可列方程为 ( )A.B.C.D.5. 小亮同学身高,经太阳照射,在地面上的影长为,此时测得一棵树在同一地面的影长为,则树高为A.B.C.D.6. 抛物线的顶点坐标是( )A.B.C.D.7. 如图,平分,为上一点,、分别在、上且,若,则的度数是( )A.B.C.D.8. 下列计算中,正确的是( )A.B.C.D.9. 如图是二次函数,,是常数,图象的一部分,与轴的交点在点5x +x+2x =5x 24x+2x+x =5x++=5x 2x 4x+2x+3x =51.8m 3m 10m ()10m8m6m4my =(x−2+3)2(2,3)(−2,3)(2,−3)(−2,−3)OC ∠AOB P OC D E OA OB PD =PE ∠EPD =135∘∠AOB 40∘30∘60∘45∘+=x 3x 3x 6(=x 3)3x 6⋅x 3=x 3x 6÷=xx 3x 3y =a +bx+c(a x 2b c a ≠0)x A9. 如图是二次函数,,是常数,图象的一部分,与轴的交点在点和之间,对称轴是.对于下列说法:①;②;③;④(为实数);⑤当时,,其中正确的是( )A.①②④B.①②⑤C.②③④D.③④⑤二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )10. 若分式的值为,则________.11. 在一个不透明的袋中,装有个黄球和个红球,它们除颜色外都相同.从袋中任意摸出两个球,则这两个球颜色不同的概率是________.12. 如图,四边形内接于,为直径,点是中点.若=,=,则的长________.13. 近视眼镜的度数(度)与镜片焦距(米)呈反比例,其函数关系式为.如果近似眼镜镜片的焦距=米,那么近视眼镜的度数为________.14. 方程组的解是________;直线与直线的交点是________.15. (如图所示)两个长宽分别为、的矩形如图叠放在一起,则图中阴影部分的面积是________.三、 解答题 (本题共计 9 小题 ,每题 9 分 ,共计81分 )16. 化简求值: ,其中 .17. 如图所示,在▱中,对角线与相交于点,点,在对角线上,且,求证:y =a +bx+c(a x 2b c a ≠0)x A (2,0)(3,0)x =1ab <02a +b =03a +c >0a +b ≥m(am+b)m −1<x <3y >0|x|−22−x0x =23ABCD ⊙O AB C AB 26AD 10BC y x y =120x x 0.3y {y =3x−1,y =x+3y =3x−1y =x+37cm 3cm 2x(2x−1)+4x(+x−1)−4(1+2)x 2x 2x =−2ABCD AC BD O M N AC AM =CN BM//DN.18. 随着手机的日益普及,学生使用手机给学校管理和学生发展带来诸多不利影响,为了保护学生视力,防止学生沉迷网络和游戏,让学生在学校专心学习,促进学生身心健康发展,教育部办公厅于年月日颁发了《教育部办公厅关于加强中小学生手机管理工作的通知》,为贯彻《通知》精神、某学校团委组织了“我与手机说再见”为主题的演讲比赛,根据参赛同学的得分情况绘制了如图所示的两幅不完整的统计图.(其中表示一等奖”,表示“二等奖”,表示“三等奖”,表示“优秀奖”)请你根据统计图中所提供的信息解答下列问题:获奖总人数为________人,________.请将条形统计图补充完整;学校将从获得一等奖的名同学(其中有一名男生,三名女生)中随机抽取两名参加全市的比赛,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率. 19. 已知关于的一元二次方程有实数根.求的取值范围;设方程的两个实数根分别为,若,求的值.20. 如图,一次函数=的图象与反比例函数的图象相交于,两点,与轴相交于点.(1)求一次函数与反比例函数的表达式;(2)若点与点关于轴对称,求的面积. 21. 如图,是的外接圆,,交的延长线于,交于.求证:是的切线;若,求图中阴影部分(弦和劣弧围成的部分)的面积. 22. 的一场湖人对勇士的篮球比赛中,湖人球员詹姆斯正在投篮,已知球出手时离地面高2021115A B C D (1)m=(2)(3)4x +(2k +1)x+=0x 2k 2(1)k (2),x 1x 22−−=1x 1x 2x 1x 2k y kx+b y =m x A(−1,n)B(2,−1)y C D C x △ABD ⊙O △ABC ∠ABC =,OC//AD 45∘AD BC D AB OC E (1)AD ⊙O (2)AE =2,CE =410−−√AC AC NBA 20,与篮圈中心的水平距离.当球出手后水平距离为时到达最大高度,设篮球运行的轨迹为抛物线,假设篮圈距地面.建立适当的平面直角坐标系,求出此轨迹所在抛物线的解析;问此球能否准确投中?此时,若勇士球员杜兰特在詹姆斯前面处跳起拦截,已知杜兰特这次起跳的最大摸高为,那么他能否拦截成功?为什么? 23. 如图,在中,,,,四边形是矩形,,,与边交于点,点从点出发沿以每秒个单位长的速度向点匀速运动,伴随点的运动,矩形在射线上滑动;点从点出发沿折线以每秒个单位长的速度匀速运动.点,同时出发,当点到达点时停止运动,点也随之停止.设点,运动的时间是秒(1)当时,________,________;(2)当点到达点时,求出的值;(3)为何值时,是直角三角形?24. 如图,抛物线与直线相交于,两点,与轴相交于点 ,其中点的横坐标为.计算,的值;求出抛物线与轴的交点坐标.m 2097m 4m 4m 3m (1)(2)2m 3.1m Rt △ABC ∠C =90∘AC =6BC =8PDEF PD =2PF =4DE AB G P B BC 1C P PDEF BC Q P PD−DE 1P Q Q E P P Q t (t >0)t =1QD =DG =Q G t t △PQC y =a +c(a ≠0)x 2y =3A B y C(0,−1)A −4(1)a c (2)y =a +c x 2x参考答案与试题解析2023年四川省南充市中考数学试卷试卷一、 选择题 (本题共计 9 小题 ,每题 4 分 ,共计36分 )1.【答案】B【考点】平移的性质【解析】根据图形,对比图与图中位置关系,对选项进行分析,排除错误答案.【解答】解:观察图形可知:平移是先向下平移个单位长度,再向右平移个单位长度.故选.2.【答案】C【考点】众数条形统计图【解析】根据中位数的定义求解可得.【解答】解:由条形图知,车速的车辆有辆,为最多,所以众数为.故选.3.【答案】C【考点】解直角三角形的应用【解析】此题暂无解析【解答】解:由题中图知,,,①②32B 40km/h 1540C =tan CD AD30∘AD =BE =9m D =AD×tan=BE×tan =9×–√所以,所以.故选.4.【答案】B【考点】由实际问题抽象出一元一次方程【解析】此题暂无解析【解答】解:设羊的主人赔斗,则马的主人赔斗,牛的主人赔斗,由题意可得,故选.5.【答案】C【考点】相似三角形的应用【解析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【解答】解:设树高为米,由同一时刻物高与影子长成比例可得,解得.故选.6.【答案】A【考点】二次函数图象上点的坐标特征【解析】已知解析式为抛物线的顶点式,可直接写出顶点坐标.【解答】解:∵抛物线为顶点式,∴抛物线顶点坐标为.CD =AD×tan =BE×tan =9×30∘30∘3–√3CE =CD+DE =(3+)m3–√32C x 2x 4x x+2x+4x =5B x =x 10 1.83x =6C y =(x−2+3)2(2,3)故选.7.【答案】D【考点】角平分线的性质全等三角形的性质与判定多边形的内角和【解析】过点分别作,,垂足为,,然后证明,得出,最后根据即可求出的度数.【解答】解:如图,过点分别作,,垂足为,.∵平分,∴.∵,∴.∴.∴.∵,∴.故选.8.【答案】C【考点】同底数幂的除法幂的乘方与积的乘方合并同类项同底数幂的乘法【解析】只有同类项才能相加减,不是同类项不能合并,合并同类项时,字母和字母的系数不变,系数相加减;积的乘方等于乘方的积;同底数相除,底数不变,指数相减.【解答】解:,,故本选项不符合题意;,,故本选项不符合题意;A P PM ⊥OA PN ⊥OB M N Rt △PMD ≅Rt △PNE∠MPN =∠EPD =135∘∠AOB+∠PMO +∠MPN +∠PNO =360∘∠AOB P PM ⊥OA PN ⊥OB M N OC ∠AOB PM =PN PD =PE Rt △PMD ≅Rt △PNE(HL)∠MPD =∠NPE ∠MPN =∠EPD =135∘∠AOB+∠PMO +∠MPN +∠PNO =360∘∠AOB =−∠PMO −∠MPN −∠PNO360∘=−−−=360∘90∘90∘135∘45∘D A +=2x 3x 3x 3B =()x 33x 9⋅=336,,故本选项符合题意;,,故本选项不符合题意.故选.9.【答案】A【考点】抛物线与x 轴的交点二次函数图象与系数的关系【解析】由抛物线的开口方向判断与的关系,由抛物线与轴的交点判断与的关系,然后根据对称轴判定与的关系以及;当时,;然后由图象确定当取何值时,.【解答】解:①∵对称轴在轴右侧,∴、异号,∴,故正确;②∵对称轴,∴,故正确;③∵,∴,∵当时,,∴,故错误;④根据图示知,当时,有最大值;当时,有,所以(为实数),故正确;⑤根据题图知,当时,不只是大于,故错误.综上,正确的是①②④.故选.二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )10.【答案】【考点】分式的值为零的条件【解析】根据分式的分子分子为零,分母不为零,可得答案.【解答】解:∵分式的值为,∴,且,解得.故答案为:.11.【答案】C ⋅=x 3x 3x 6D ÷=1x 3x 3C a 0y c 0b 02a +b =0x =−1y =a −b +c x y >0y a b ab <0x =−=1b 2a2a +b =02a +b =0b =−2a x =−1y =a −b +c <0a −(−2a)+c =3a +c <0m=1m≠1a +bm+c ≤a +b +c m 2a +b ≥m(am+b)m −1<x <3y 0A −2|x|−22−x 0|x|−2=02−x ≠0x =−2−23【考点】概率公式【解析】此题暂无解析【解答】解:∵一个不透明的袋中,装有个黄球和个红球,任意摸出两个球有种等可能结果,其中摸出的球颜色不同的结果有种,∴从袋中任意摸出两个球,颜色不同的概率.故答案为: .12.【答案】【考点】圆心角、弧、弦的关系垂径定理圆周角定理【解析】此题暂无解析【解答】此题暂无解答13.【答案】【考点】反比例函数的应用【解析】把=代入,即可算出的值.【解答】把=代入,=,14.【答案】3523106=61035354400x 0.3y =120xy x 0.3120x y 400,【考点】一次函数与二元一次方程(组)一次函数图象上点的坐标特征一次函数的图象【解析】此题暂无解析【解答】解:对原方程组使用加减消元法,两式相减得,解得,带入原方程得.所以方程组的解为所以直线与直线的交点为.故答案为:.15.【答案】【考点】菱形的判定与性质矩形的性质【解析】由两个长宽分别为、的矩形如图叠放在一起,可证得阴影部分是菱形,然后设,则,,利用勾股定理可得方程:,则可求得的长,继而求得答案.【解答】解:如图:根据题意得:,,∴四边形是平行四边形,∵两个矩形等高,即,∴,∴,∴四边形是菱形,∴,设,则,,在中,,∴,解得:,∴,∴.故答案为:.三、 解答题 (本题共计 9 小题 ,每题 9 分 ,共计81分 )16.{x =2,y =5(2,5)2x−4=0x =2y =5{x =2,y =5,y =3x−1y =x+3(2,5){x =2,y =5;(2,5)c 877m 27cm 3cm BF =xcm DF =xcm AF =AD−DF =7−x(cm)+(7−x =32)2x 2BE AD//BC BF //DE ABCD DH =AB =BE ⋅AB =BF ⋅DH S ▱BEDF BE =BF BEDF BF =DF BF =xcm DF =xcm AF =AD−DF =7−x(cm)Rt △ABF A +A =B B 2F 2F 2+(7−x =32)2x 2x =297BE =cm 297=BE ⋅AB =c S 菱形BEDF 877m 2c 877m 2【答案】解:原式 ,当 时,原式 .【考点】整式的混合运算——化简求值【解析】此题暂无解析【解答】解:原式 ,当 时,原式 .17.【答案】证明:∵四边形是平行四边形,∴,,∵,∴,即,∴在和中,∴,∴,∴【考点】平行四边形的性质全等三角形的性质与判定平行线的判定【解析】由平行四边形的性质得出,,再证出,由证明,得出对应角相等,再由内错角相等,两直线平行,即可得出结论.【解答】证明:∵四边形是平行四边形,∴,,∵,∴,即,∴在和中,∴,∴,∴18.【答案】(1),=4−2x+4+4−4x−4−8x 2x 3x 2x 2=4−6x−4x 3x =−2=4×(−2−6×(−2)−4=−24)3=4−2x+4+4−4x−4−8x 2x 3x 2x 2=4−6x−4x 3x =−2=4×(−2−6×(−2)−4=−24)3ABCD OA =OC OB =OD AM =CN OA−AM =OC −CN OM =ON △BOM △DON OB =OD ,∠BOM =∠DON ,OM =ON ,△BOM ≅△DON(SAS)∠OBM =∠ODN BM//DN.OA =OC OB =OD OM =ON SAS △BOM ≅△DON ∠OBM =∠ODN ABCD OA =OC OB =OD AM =CN OA−AM =OC −CN OM =ON △BOM △DON OB =OD ,∠BOM =∠DON ,OM =ON ,△BOM ≅△DON(SAS)∠OBM =∠ODN BM//DN.4030(2)“三等奖”人数为(人),条形统计图补充为:获奖情况条形统计图(3)画树状图为:共有种等可能的结果,抽取同学中恰有一名男生和一名女生的结果数为,所以抽取同学中恰有一名男生和一名女生的概率.【考点】列表法与树状图法扇形统计图【解析】此题暂无解析【解答】解:()获奖总人数为 (人),,即,故答案为:.(2)“三等奖”人数为(人),条形统计图补充为:获奖情况条形统计图(3)画树状图为:共有种等可能的结果,抽取同学中恰有一名男生和一名女生的结果数为,所以抽取同学中恰有一名男生和一名女生的概率.19.【答案】解:由题意得,40−4−8−16=12126==6121218÷20%=40m%=×100%=30%40−4−8−1640m=3040;3040−4−8−16=12126==61212(1)Δ≥0∴Δ=−4ac b 2=(2k +1−4)2k 2,;由题意得,分别为方程的两个实数根,,∴,,,,,由知,.【考点】根与系数的关系根的判别式【解析】此题暂无解析【解答】解:由题意得,,;由题意得,分别为方程的两个实数根,,∴,,,,,由知,.20.【答案】∵反比例函数的图象经过点,∴==,∴反比例函数解析式为;∵点在的图象上,∴=,则,把点,的坐标代入=,得,解得∴一次函数的表达式为=;∵直线=交轴于点,∴.∵点与点关于轴对称,∴.∵,∴轴.∴=.【考点】=4k +1≥0∴k ≥−14(2)x 1x 2∴=,+=−(2k +1)x 1x 2k 2x 1x 22−−=2−(+)x 1x 2x 1x 2x 1x 2x 1x 2=2+(2k +1)k 2=2+2k +1=1k 2∴2k(k +1)=0∴=0k 1=−1k 2(1)k ≥−14∴k =0(1)Δ≥0∴Δ=−4acb 2=(2k +1−4)2k 2=4k +1≥0∴k ≥−14(2)x 1x 2∴=,+=−(2k +1)x 1x 2k 2x 1x 22−−=2−(+)x 1x 2x 1x 2x 1x 2x 1x 2=2+(2k +1)k 2=2+2k +1=1k 2∴2k(k +1)=0∴=0k 1=−1k 2(1)k ≥−14∴k =0y =m x B(2,−1)m 2×(−1)−2y =−2xA(−1,n)y =−2x n 2A(−1,2)A B y kx+b { −k +b =2,2k +b =−1.{k =−1,b =1.y −x+1y −x+1y C C(0,1)D C x D(0,−1)B(2,−1)BD//x =×2×3S △ABD 123反比例函数与一次函数的综合【解析】(1)先把点坐标代入中求出得到反比例函数解析式为;再利用确定点坐标,然后利用待定系数法求一次函数解析式;(2)先利用一次函数解析式确定.利用关于轴对称的性质得到.则轴,然后根据三角形面积公式计算.【解答】∵反比例函数的图象经过点,∴==,∴反比例函数解析式为;∵点在的图象上,∴=,则,把点,的坐标代入=,得,解得∴一次函数的表达式为=;∵直线=交轴于点,∴.∵点与点关于轴对称,∴.∵,∴轴.∴=.21.【答案】证明:连接,如图,∵,∴.∵,∴,∴.又为的半径,是的切线.解:设的半径为,则,,在中,,,解得.(负根已经舍去).【考点】切线的判定圆周角定理勾股定理B y =m x m y =−2x y =−2x A C(0,1)x D(0,−1)BD//x y =m x B(2,−1)m 2×(−1)−2y =−2x A(−1,n)y =−2xn 2A(−1,2)A B y kx+b {−k +b =2,2k +b =−1.{ k =−1,b =1.y −x+1y −x+1y C C(0,1)D C x D(0,−1)B(2,−1)BD//x =×2×3S △ABD 123(1)OA AD//OC ∠AOC +∠OAD =180∘∠AOC =2∠ABC =2×=45∘90∘∠OAD =90∘OA ⊥AD OA ⊙O ∴AD ⊙O (2)⊙O R OA =R OE =R−4Rt △OAE ∵A +O =A O 2E 2E 2∴+(R−4=(2R 2)210−−√)2R =6∴=−S 阴影S 扇形OAC S △OAC=−×90⋅π⋅623601262=9π−18扇形面积的计算求阴影部分的面积【解析】左侧图片未给出解析.左侧图片未给出解析.【解答】证明:连接,如图,∵,∴.∵,∴,∴.又为的半径,是的切线.解:设的半径为,则,,在中,,,解得.(负根已经舍去).22.【答案】解:根据题意,球出手点、最高点和篮圈的坐标分别为:,,,设二次函数解析式为,将点代入可得:,解得:,∴抛物线解析式为:;将点坐标代入抛物线解析式得:∴,∴左边右边,即点在抛物线上,∴此球一定能投中.不能拦截成功,理由:将代入得,∵,(1)OA AD//OC ∠AOC +∠OAD =180∘∠AOC =2∠ABC =2×=45∘90∘∠OAD =90∘OA ⊥AD OA ⊙O ∴AD ⊙O (2)⊙O R OA =R OE =R−4Rt △OAE ∵A +O =A O 2E 2E 2∴+(R−4=(2R 2)210−−√)2R =6∴=−S 阴影S 扇形OAC S △OAC=−×90⋅π⋅623601262=9π−18(1)A(0,)209B(4,4)C(7,3)y =a(x−4+4)2(0,)20916a +4=209a =−19y =−(x−4+419)2C(7,3)−(7−4+4=319)2=C (2)x =2y =−(x−4+419)2y =3593>3.159∴他不能拦截成功.【考点】二次函数的应用【解析】(1)根据抛物线的顶点坐标及球出手时的坐标,可确定抛物线的解析式;【解答】解:根据题意,球出手点、最高点和篮圈的坐标分别为:,,,设二次函数解析式为,将点代入可得:,解得:,∴抛物线解析式为:;将点坐标代入抛物线解析式得:∴,∴左边右边,即点在抛物线上,∴此球一定能投中.不能拦截成功,理由:将代入得,∵,∴他不能拦截成功.23.【答案】,当时,,点到达点时:,解得,∴时,点到达点.①当点在上时,即时,是直角三角形②如图中,当点在线段上时,作于.当时,,可得,∴,解得或,(1)A(0,)209B(4,4)C(7,3)y =a(x−4+4)2(0,)20916a +4=209a =−19y =−(x−4+419)2C(7,3)−(7−4+4=319)2=C (2)x =2y =−(x−4+419)2y =3593>3.159153t =0DG =PD ⋅=4383Q G t−2=−t 83t =73t =s 73Q G Q PD 0<t ≤2△QPC (∠QPC =)90∘2Q DE QH ⊥PC H ∠PQC =90∘△QHP ∽△CHQ Q =PH ⋅HC H 2=(t−2)(8−t−t+2)22t =34∴或时,,综上所述,当或或时,是直角三角形.【考点】四边形综合题【解析】(1)如图中,设交于点.利用,可得,由此求出.(2)根据的长度,构建方程即可解决问题;(3)分两种情形分别求解即可解决问题;【解答】如图中,设交于点.时,,∴,∵,∴,,∵,∴,∴,∴,故答案为,.当时,,点到达点时:,解得,∴时,点到达点.①当点在上时,即时,是直角三角形②如图中,当点在线段上时,作于.当时,,可得,∴,解得或,∴或时,,综上所述,当或或时,是直角三角形.24.t =34∠PQC =90∘0<t ≤2t =3t =4△PCQ 1BG PD K DG//PB =DG PB DK PKDG DG 1BG PD K t =1PB =PQ =1DQ =1tan ∠KBP ==KP PB 34PK =34DK =54DG//PB =DG PB DK PK =DG 15434DG =53153t =0DG =PD ⋅=4383Q G t−2=−t 83t =73t =s 73Q G Q PD 0<t ≤2△QPC (∠QPC =)90∘2Q DE QH ⊥PC H ∠PQC =90∘△QHP ∽△CHQ Q =PH ⋅HC H 2=(t−2)(8−t−t+2)22t =34t =34∠PQC =90∘0<t ≤2t =3t =4△PCQ【答案】解:(1)由题意,得抛物线过点,点,∴解得即的值为,的值为.(2)由(1)知,当时,,解得,即抛物线与轴的交点坐标为.【考点】二次函数综合题【解析】此题暂无解析【解答】解:(1)由题意,得抛物线过点,点,∴解得即的值为,的值为.(2)由(1)知,当时,,解得,即抛物线与轴的交点坐标为.y =a +c x 2A(−4,3)C(0,−1){16a +c =3,c =−1,a =,14c =−1,a 14c −1y =−114x 2y =00=−114x 2=−2,=2x 1x 2y =a +c x 2x (−2,0),(2,0)y =a +c x 2A(−4,3)C(0,−1){16a +c =3,c =−1,a =,14c =−1,a 14c −1y =−114x 2y =00=−114x 2=−2,=2x 1x 2y =a +c x 2x (−2,0),(2,0)。
2023年四川省南充市中考数学真题(含答案)

2023年四川省南充市中考数学真题学校:___________姓名:___________班级:___________考号:___________A .2B .3.某女鞋专卖店在一周内销售了某种女鞋到条形统计图(如图).根据图中信息,建议下次进货量最多的女鞋尺码是(A .22cmB .22.5cm 4.如图,小兵同学从A 处出发向正东方向走已知BAC α∠=,则A ,C 两处相距()A .sin xα米B .cos xα米5.《孙子算经》记载:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”(尺、寸是长度单位,知道其长短.用一根绳子去度量长木,绳子还剩余木还剩余1尺.问长木长多少?设长木长为A .6.4mB .7.若点(),P m n 在抛物线y ()A .(),1m n +B .8.如图,在Rt ABC △中,画弧,分别交AC AB ,于点弧,两弧在CAB ∠的内部相交于点下列结论错误的是()A .CAD BAD ∠=∠B .CD DE =9.关于x ,y 的方程组3x y x y n+=⎧⎨-=⎩A .1B .210.抛物线254y x kx k =-++-与取值范围是()A .2114k -≤≤二、填空题14.小伟用撬棍撬动一块大石头,已知阻力和阻力臂分别为由1.5m 增加到2m 时,撬动这块石头可以节省力臂=动力⨯动力臂)15.如图,直线2y kx k =-的值是________.16.如图,在等边ABC 将ABC 沿MN 折叠,使点下列四个结论:①CN NB +点N 与C 重合时,AB ∠'________(填写序号)三、解答题=;(1)AE CF(2)BE DF∥.19.为培养学生劳动习惯,提升学生劳动技能,某校在五月第二周开展了劳动教育实践周活动.七(1)班提供了四类活动:具制作.要求每个学生选择其中一项活动参加,动情况进行了统计,并绘制成统计图(如图)(1)已知该班有15人参加(2)该班参加D类活动的学生中有丽,若从获得一等奖的学生中随机抽取两人参加学校和1名男生的概率.20.已知关于x的一元二次方程(1)求证:无论m为何值,方程总有实数根;(1)求反比例函数与一次函数的解析式;(2)点M 在x 轴上,若OAM S S =△△22.如图,AB 与O 相切于点A (1)求证:OCA ADC ∠∠=;(2)若12,tan 3AD B ==,求OC 的长.23.某工厂计划从A ,B 两种产品中选择一种生产并销售,每日产销成本价m 元/件(m 为常数,且日共支付专利费30元;B 产品成本价同时每日支付专利费y 元,y (元)与每日产销(1)若产销A ,B 两种产品的日利润分别为关系式,并写出x 的取值范围;(2)分别求出产销A ,B 两种产品的最大日利润.(1)求证:ED EC =;(2)将BE 绕点E 逆时针旋转,使点B 的对应点B '落在AC 上,连接MB '.当点M 在边BC 上运动时(点M 不与B ,C 重合),判断CMB ' 的形状,并说明理由.(3)在(2)的条件下,已知1AB =,当45DEB ∠'=︒时,求BM 的长.25.如图1,抛物线23y ax bx =++(0a ≠)与x 轴交于()1,0A -,()3,0B 两点,与y 轴交于点C .(1)求抛物线的解析式;(2)点P 在抛物线上,点Q 在x 轴上,以B ,C ,P ,Q 为顶点的四边形为平行四边形,求点P 的坐标;(3)如图2,抛物线顶点为D ,对称轴与x 轴交于点E ,过点()1,3K 的直线(直线KD 除外)与抛物线交于G ,H 两点,直线DG ,DH 分别交x 轴于点M ,N .试探究EM EN ⋅是否为定值,若是,求出该定值;若不是,说明理由.参考答案:由图可知,AB BD ⊥,CD 90ABC CDE \Ð=Ð=°.根据镜面的反射性质,∴ACF ECF ∠=∠,∴9090ACF ECF ︒-∠=︒-∠ACB ECD ∴∠=∠,ABC EDC ∴ ∽,AB BCDE CD∴=. 小菲的眼睛离地面高度为平距离为10m ,1.6m AB ∴=,2m BC =,依题意,当2x =-时,54204k k --+-≥解得:214k ≤-,当1x =时,5104k k -++-≤,解得k ≤即214k ≤-,当1k ≥时,当2x =-时,54204k k --+-≤,解得:214k ≥-∴1k ≥综上所述,k ≤214-或1k ≥,故选:B .【点睛】本题考查了二次函数的性质,熟练掌握二次函数的性质是解题的关键.11.1-【分析】根据分式12x x +-的值为0,得到【详解】解: 分式12x x +-的值为1020x x +=⎧∴⎨-≠⎩,解得:=1x -,故答案为:1-.【点睛】本题考查了解分式方程,的分母不能为零.12.6【分析】设袋中红球有x 个,然后根据概率计算公式列出方程求解即可.【详解】解:设袋中红球有x 个,由题意得:0.64x x =+,解得6x =,检验,当6x =时,40x +≠,∴6x =是原方程的解,CD BC ⊥ ,90BCD ∴∠=︒,由折叠的性质得:B C BC '=AC B C '∴=,ACB BCD '∠=∠(11802AB C CAB ''∴∠=∠=⨯AB C AB M MB '∠-∠∴∠'=当AB '最短时,则AB CD '⊥如图,过点M 作ME BC ⊥共有12种等可能结果,符合题意的有4种,∴恰好选中王丽和1名男生的概率为:41=123【点睛】本题主要考查了扇形统计图的综合运用,样本估计总体,画树状图法求概率,读懂统计图,从统计图中得到必要的信息是解决问题的关键.20.(1)见解析(2)25或1.【分析】(1)根据一元二次方程根的情况与判别式的关系,只要判定(2)根据一元二次方程根与系数的关系得到12x x +=到2230m m +-=求解即可得到答案.【详解】(1)证明: 关于x 的一元二次方程2(2x m -∵AB 与O 相切于点A ,∴90OAB ∠=︒,∵OC AB ∥,∴90AOC ∠=︒,∴45ADC ∠=︒,∵OC OA =,∴45OCA ∠=︒,∴OCA ADC ∠∠=;(2)过点A 作AH BC ⊥,过点C 由(1)得45OCA ADC ∠∠==︒,(3)结合已知信息推出CME AMC ∽,从而利用相似三角形的性质以及勾股定理进行计算求解即可.【详解】(1)证:∵四边形ABCD 为正方形,∴90BAD ABC ∠=∠=︒,AD BC =,∵点E 是AM 的中点,∴EA EB =,∴EAB EBA ∠=∠,∴BAD EAB ABC EBA ∠-∠=∠-∠,即:EAD EBC ∠=∠,在EAD 与EBC 中,EA EB EAD EBC AD BC =⎧⎪∠=∠⎨⎪=⎩∴()SAS EAD EBC ≌,∴ED EC =;(2)解:'CMB 为等腰直角三角形,理由如下:由旋转的性质得:EB EB '=,∴EB AE EM '==,∴EAB EB A ''∠=∠,EMB EB M ''∠=∠,∵180EAB EB A EMB EB M ''''∠+∠+∠+∠=︒,∴90EB A EB M ''∠+∠=︒,即:90AB M '∠=︒,∴90MB C '∠=︒,∴9045B MC ACB '∠=︒-∠=︒,∴45B MC ACB '∠=∠=︒,∴B M B C ''=,∴'CMB 为等腰直角三角形;(3)解:如图所示,延长BE 交AD 于点F ,∵EAB EBA ∠=∠,EAB EB A ''∠=∠,∴2MEB EAB ∠=∠,2MEB EAB ''∠=∠,∴22290BEB MEB MEB EAB EAB BAB ''''∠=∠+∠=∠+∠=∠=︒,∵45DEB ∠'=︒,【点睛】本题考查正方形的性质,旋转的性质,全等三角形和相似三角形的判定与性质等,理解并熟练运用基本图形的证明方法和性质,掌握勾股定理等相关计算方式是解题关键.25.(1)223y x x =-++(2)()2,3或()17,3--或(3)定值,理由见详解∴四边形11BCPQ 是平行四边形,13P y ∴=,∴四边形22BCQ P 是平行四边形,222CBQ P Q B ∴∠=∠,在2CBQ 和22P Q B 中,如上图,根据对称性:()317,3P +-,③当BC 为平行四边形的对角线时,由①知,点足条件,此时点P 的坐标仍为()2,3;综上所述:P 的坐标为()2,3或(17,-(3)解:是定值,理由:如图, 直线GH 经过()1,3K ,∴可设直线GH 的解析式为()13y k x =-+,G 、H 在抛物线上,∴可设()2,23G m m m -++,()2,23H n n n -++,次函数与二次函数图象的交点,与对应一元二次方程根的关系,掌握具体的解法,并会根据题意设合适的辅助未知数是解题的关键.。
南充市中考数学试题含答案

B
C
A
D
l
(第 9 题图)
A. 25 π 2
B.13π
C. 25π
【答案】B
D. 25 2
10.(四川南充,10,3 分)二次函数 y = ax2 bx c ( a ≠0)图象如图所示,下列结
论:① abc >0;② 2a b =0;③当 m ≠1 时, a b > am2 bm ;④ a b c >0;⑤
y
(2)解方程组
y
x 7 10 x
得
x1 y1
2 5
或
x2 y2
2 5
∴另一交点 B 的坐标为(5,2).
6 / 10
根据图象可知,当 x<2 或 x>5 时, y1 < y2 .
22. (四川南充,22,8 分)(8 分)马航 MH370 失联后,我国政府积极参与搜救.某日,我两艘 专业救助船 A、B 同时收到有关可疑漂浮物的讯息,可疑漂浮物 P 在救助船 A 的北偏东 53.50 方向上,在救助船 B 的西北方向上,船 B 在船 A 正东方向 140 海里处。(参考数 据:sin36.5≈0.6,cos36.5≈0.8,tan36.5≈0.75). (1)求可疑漂浮物 P 到 A、B 两船所在直线的距离; (2)若救助船 A、救助船 B 分别以 40 海里/时,30 海里/时的速度同时出发,匀速直线前 往搜救,试通过计算判断哪艘船先到达 P 处。
【答案】A
6.(四川南充,6,3
分)不等式组
1 2
(
x
1)
2
的解集在数轴上表示正确的是(
)
x 3 3x 1
-2
3
-2
3
-2
3
-2
3
2023南充中考数学试题及答案

2023南充中考数学试题及答案一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的数是()A. 3B. -2C. 0D. 1答案:C2. 计算(-3)÷(-2)的结果是()A. 1.5B. -1.5C. 0.75D. -0.75答案:A3. 一个数的相反数是-3,这个数是()A. 3B. -3C. 0D. 6答案:A4. 已知a=-2,b=-1,则a+b的值是()A. -3B. 1C. 3D. -1答案:A5. 下列各数中,是无理数的是()A. 0.5C. √2D. 0.1答案:C6. 已知x=2是方程x-3=1的解,则方程的另一个解是()A. 1B. 2C. 3D. 4答案:D7. 已知a=3,b=-2,则a-b的值是()A. 1B. 5C. -5答案:B8. 计算(-2)²的结果是()A. 4B. -4C. 2D. -2答案:A9. 已知a=-1,b=2,则ab的值是()A. -2B. 2C. 1D. -1答案:A10. 已知x=3是方程2x-6=0的解,则方程的另一个解是()A. 1.5B. 3C. 6D. 0答案:A二、填空题(每题3分,共30分)11. 一个数的平方是25,这个数是_____答案:±512. 计算(-3)³的结果是_____答案:-2713. 已知a=-4,b=5,则a-b的值是_____14. 已知x=-2是方程x+4=2的解,则方程的另一个解是_____答案:-615. 一个数的立方根是-2,这个数是_____答案:-816. 已知a=1,b=-3,则a+b的值是_____答案:-217. 计算(-1)⁴的结果是_____答案:118. 已知a=2,b=-1,则ab的值是_____答案:-219. 已知x=1是方程3x-5=-2的解,则方程的另一个解是_____20. 一个数的平方根是2,这个数是_____答案:4三、解答题(共40分)21. 解方程:2x-3=7(6分)解:2x-3=72x=10x=5答案:x=522. 已知a=-3,b=4,求3a+2b的值(6分)解:3a+2b=3×(-3)+2×4=-9+8=-123. 已知x=2是方程2x-4=0的解,求方程的另一个解(6分)解:2x-4=02x=4x=2由于x=2是方程的解,另一个解为x=0。
2023年四川省南充市中考数学试卷(含解析)

2023年四川省南充市中考数学试卷一、选择题(本大题共10小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 如果向东走10m 记作+10m ,那么向西走8m 记作( )A. ―10mB. +10mC. ―8mD. +8m2.如图,将△ABC 沿BC 向右平移得到△DEF ,若BC =5,BE =2,则CF 的长是( )A. 2B. 2.5C. 3D. 53. 某女鞋专卖店在一周内销售了某种女鞋60双,对这批鞋子尺码及销量进行统计,得到条形统计图(如图).根据图中信息,建议下次进货量最多的女鞋尺码是( )A. 22cmB. 22.5cmC. 23cmD. 23.5cm4.如图,小兵同学从A 处出发向正东方向走x 米到达B 处,再向正北方向走到C 处,已知∠BAC =α,则A ,C 两处相距( )A. x sin α米B. x cos α米C. x ⋅sinα米D. x ⋅cosα米5. 《孙子算经》记载:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”(尺、寸是长度单位,1尺=10寸).意思是,现有一根长木,不知道其长短.用一根绳子去度量长木,绳子还剩余4.5尺;将绳子对折再度量长木,长木还剩余1尺.问长木长多少?设长木长为x 尺,则可列方程为( )A. 12(x +4.5)=x ―1B. 12(x +4.5)=x +1C. 12(x ―4.5)=x +1D. 12(x ―4.5)=x ―16. 如图,数学活动课上,为测量学校旗杆高度,小菲同学在脚下水平放置一平面镜,然后向后退(保持脚、镜和旗杆底端在同一直线上),直到她刚好在镜子中看到旗杆的顶端.已知小菲的眼睛离地面高度为1.6m,同时量得小菲与镜子的水平距离为2m,镜子与旗杆的水平距离为10m,则旗杆高度为( )A. 6.4mB. 8mC. 9.6mD. 12.5m7. 若点P(m,n)在抛物线y=ax2(a≠0)上,则下列各点在抛物线y=a(x+1)2上的是( )A. (m,n+1)B. (m+1,n)C. (m,n―1)D. (m―1,n)8.如图,在Rt△ABC中,∠C=90°,AC=6,AB=10.以点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以M,N为圆心,大于12MN的长为半径画弧,两弧在∠CAB的内部相交于点P,画射线AP与BC交于点D,DE⊥AB,垂足为E.则下列结论错误的是( )A. ∠CAD=∠BADB. CD=DEC. AD=53D. CD:BD=3:59. 关于x,y的方程组3x+y=2m―1,x―y=n的解满足x+y=1,则4m÷2n的值是( )A. 1B. 2C. 4D. 810. 抛物线y=―x2+kx+k―54与x轴的一个交点为A(m,0),若―2≤m≤1,则实数k的取值范围是( )A. ―214≤k≤1 B. k≤―214或k≥1C. ―5≤k≤98D. k≤―5或k≥98二、填空题(本大题共6小题,共24.0分)11. 若x+1x―2=0,则x的值为______ .12. 不透明袋中有红、白两种颜色的小球,这些球除颜色外无其他差别.从袋中随机取出一个球是红球的概率为0.6,若袋中有4个白球,则袋中红球有______ 个.13.如图,AB 是⊙O 的直径,点D ,M 分别是弦AC ,弧AC 的中点,AC =12,BC =5,则MD 的长是______ .14. 小伟用撬棍撬动一块大石头,已知阻力和阻力臂分别为1000N 和0.6m ,当动力臂由1.5m 增加到2m 时,撬动这块石头可以节省______ N 的力.(杜杆原理:阻力×阻力臂=动力×动力臂)15.如图,直线y =kx ―2k +3(k 为常数,k <0)与x ,y 轴分别交于点A ,B ,则2OA +3OB的值是______ .16.如图,在等边△ABC 中,过点C 作射线CD ⊥BC ,点M ,N 分别在边AB ,BC 上,将△ABC 沿MN 折叠,使点B 落在射线CD 上的点B′处,连接AB′,已知AB =2.给出下列四个结论:①CN +NB′为定值;②当BN =2NC 时,四边形BMB′N 为菱形;③当点N 与C 重合时,∠AB′M =18°;④当AB′最短时,MN =72120.其中正确的结论是______ .(填写序号)三、解答题(本大题共9小题,共86.0分。
2023年四川省南充市中考数学试卷(含答案)015522

2023年四川省南充市中考数学试卷试卷考试总分:141 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 9 小题 ,每题 4 分 ,共计36分 )1. 下列各网格中的图形是用其图形中的一部分平移得到的是( ) A. B. C. D.2. 如图,在某时段有辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这辆车车速的众数(单位:)为 A.B.C.D.3. 在台风来临之前,有关部门用钢管加固树木(如图).固定点离地面的高度,钢管与地面所成角,那么钢管的长为( )5050km/h ()60504035A AC =m AB ∠ABC =αAB mA.B.C.D.4. (古代数学问题)今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去买某物品,如果每人出钱,则多了钱;如果每人出钱,则少了钱.问有多少人,物品的价格是多少?设有人,则根据题意列出方程正确的是( )A.B.C.D.5. 如图,为了估计河的宽度,在河的对岸选定一个目标点,在近岸取点和,使点,,在一条直线上,且直线与河垂直,在过点且与垂直的直线上选择适当的点,与过点且与垂直的直线的交点为.如果,,,则河的宽度为 A.B.C.D.6. 若二次函数的图象过,,三点,则,,大小关系是( )A.B.C.D.7. 如图,等腰直角中, ,于点, 的平分线分别交,于,两点,为的中点,延长交 于点,连接.下列结论:① ;②;③ ;④.正确的有 A.①②B.①②③mcosαm ⋅sinαm ⋅cosαm sinα8374x 8x+3=7x−48x−3=7x+48x−3=7x−48x+3=7x+4P Q S P Q S PS S PS a T PT Q PS b R QS=60m ST=120m QR=80m PQ ()40m60m120m180my =−6x+c x 2A(−1,)y 1B(2,)y 2C(3+,)2–√y 3y 1y 2y 3>>y 1y 2y 3>>y 1y 3y 2>>y 2y 1y 3>>y 3y 1y 2△ABC ∠BAC =90∘AD ⊥BC D ∠ABC AC AD E F M EF AM BC N NE AE =AF AM ⊥EF DF =DN AD//NE ()C.①②④D.①②③④8. 下列计算正确的是( )A.B.C.D.9. 如图是二次函数,,是常数,且图象的一部分,它与轴的一个交点在点和之间,图像的对称轴是.对于下列说法:①;②;③;④(为实数);⑤当时,,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )10. 若分式的值为,则________.11. 小明在一次班会中参与知识抢答活动,现有语文题个,数学题个,综合题个,搅匀后从中随机抽取个题,他抽中综合题的概率是________.12. 如图,四边形内接于,为直径,点是中点.若=,=,则的长________.13. 某气球内充满了一定质量的气体,在温度不变的条件下,气球内气体的压强是气球体积的反比例函数,且当时,,当气球内的气压大于时,气球将爆炸,为确保气球不爆炸,气球的体积最小应为________.14. 方程组的解是________;直线与直线的交点是________. +=a 3a 3a 6=()a 23a 5×=a 2a 3a 6÷=a 12a 2a 10y =a +bx+c(a x 2b c a ≠0)x A (2,0)(3,0)x =1ab <02a +b =03a +c >0a +b ≥m(am+b)m −1<x <3y >0|x|−22−x0x =45111ABCD ⊙O AB C AB 26AD 10BC P(Pa)V()m 3V =1.5m 3P =16000Pa 40000Pa m 3{y =3x−1,y =x+3y =3x−1y =x+315. 如图,矩形纸片中,,.将纸片折叠,使点落在边的延长线上的点处,折痕为,点,分别在边和边上.连接,交于点,交于点.给出以下结论:①;②;③;④当点与点重合时,.其中正确的结论是_________(填写序号).三、 解答题 (本题共计 9 小题 ,每题 9 分 ,共计81分 )16. 先化简,再求值:,其中.17. 如图所示,在▱中,对角线与相交于点,点,在对角线上,且,求证: 18. 在初三年级某班的一次体育模拟测试中,班长对全班同学的测试成绩进行了统计,并绘制了如下不完整的统计图表,请根据图表提供的信息元成以下问题:组别成绩人数图表中:________;组的圆心角为________度;组名同学中有男女,从中随机抽取两名同学参加市运会,请你用画树状图或列表法求:①被抽取的名同学恰好是男女的概率;②至少名男生被抽到的概率. 19. 已知关于的一元二次方程有实数根.求的取值范围;设方程的两个实数根分别为,若,求的值.20. 如图,直线=与双曲线交于,两点,与轴交于点,点的纵坐标为,点的坐标为.ABCD AB =3BC =5B AD G EF E F AD BC BG CD K FG CD H EF ⊥BG GE =GF DK =HK F C EF =10−−√a(a +2b)−+2a(a +1)2a =+1,b =−12–√2–√ABCD AC BD O M N AC AM =CN BM//DN.A90≤x ≤1004B80≤x ≤9015C70≤x ≤80m D 60≤x ≤7010(1)m=B (2)A 4222111x +(2k +1)x+=0x 2k 2(1)k (2),x 1x 22−−=1x 1x 2x 1x 2k y ax+b y =k x A B y C A 6B (−3,−2)求双曲线和直线的解析式;若点在轴上,且满足=,求点的坐标.21. 如图,是的直径,点是上一点,点是上一点,连接并延长至点,使,与交于点.求证:为的切线;若平分,求证:. 22. 某公司以元千克的价格收购一批农产品进行销售,为了得到日销售量(千克)与销售价格(元千克)之间的关系,经过市场调查获得部分数据如表:销售价格(元/千克)日销售量(千克)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定与之间的函数表达式;该公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?若该公司的日销售利润不低于元,应该如何确定销售价格?23. 问题:如图,点,分别在正方形的边、上,,试判断,,之间的数量关系.【发现证明】 小聪把绕点顺时针旋转至,可证三点共线,根据,易证,从而发现,请你利用图证明上述结论.【类比延伸】如图,四边形中,,,,点,分别在边,上,则当与满足________关系时,仍有.(不需证明).【探究应用】如图,在某公园的同一水平面上,四条通道围成四边形,已知米,,,,道路上分别有景点,且.米,现要在之间修一条笔直道路,求这条道路的长(结果取整数,参考数据:24. 如图,已知抛物线经过点.(1)(2)P x PC OA P AB ⊙O E ⊙O D AEˆAE C ∠CBE=∠BDE BD AE F (1)BC ⊙O (2)BD ∠ABE AD 2=DF ⋅DB 30/p x /x 3035404550p 6004503001500(1)p x (2)(3)2250(1)F E ABCD BC CD ∠EAF =45∘BF EF DE △ABE A 90∘△ADG F ,D ,G SAS △AFG ≅△AFE EF =BE+FD (1)(2)ABCD ∠BAD ≠90∘AB =AD ∠B+∠D =180∘E F BC CD ∠EAF BAD EF =BE+FD (3)ABCD AB =AD =80∠B =60∘∠ADC =120∘∠BAD =150∘BC ,CD E ,F AE ⊥AD DF =40(−1)3–√E ,F EF =1.41,=1.73)2–√3–√L :y =+bx+c x 2A(0,−5),B(5,0)求,的值;连结,交抛物线的对称轴于点.①求点的坐标,②将抛物线向左平移个单位得到抛物线.过点作轴,交抛物线于点.是抛物线上一点,横坐标为一,过点作轴,交抛物线于点,点在抛物线对称轴的右侧.若,求的值.(1)b c (2)AB L M M L m(m>0)L 1M MN//y L 1N P L 11P PE//x L E E L PE+MN =10m参考答案与试题解析2023年四川省南充市中考数学试卷试卷一、 选择题 (本题共计 9 小题 ,每题 4 分 ,共计36分 )1.【答案】D【考点】平移的性质【解析】该题主要考查了图形的平移.【解答】.是利用图形的旋转得到的,故错误;.是利用图形的旋转和平移得到的,故错误;.是利用图形的旋转得到的,故错误;.是利用图形的平移得到的,故正确.故选.2.【答案】C【考点】众数条形统计图【解析】根据中位数的定义求解可得.【解答】解:由条形图知,车速的车辆有辆,为最多,所以众数为.故选.3.【答案】D【考点】解直角三角形的应用【解析】此题暂无解析【解答】A B C D D 40km/h 1540C解:∵固定点离地面的高度,钢管与地面所成角,∴,∴.故选.4.【答案】B【考点】由实际问题抽象出一元一次方程一元一次方程的应用——调配与配套问题解一元一次方程【解析】可设有个人,根据所花总钱数不变列出方程即可.【解答】解:设有人,根据题意,可列方程:,故选:.5.【答案】C【考点】相似三角形的应用【解析】先证明,利用相似比得到,然后根据比例的性质求.【解答】解:∵,,∴,∴,∴,即,∴.故选.6.【答案】B【考点】二次函数图象上点的坐标特征【解析】先根据抛物线的性质得到抛物线的对称轴,然后比较三个点离对称轴的远近.A AC =m AB ∠ABC =αsinα==AC AB m ABAB =m sinαD x x 8x−3=7x+4B △PQR ∽△PST =PQ PQ +6080120PQ RQ ⊥PS TS ⊥PS RQ//TS △PQR ∼△PST =PQ PS QR ST =PQ PQ +6080120PQ =120m C【解答】解:二次函数的解析式为,∴抛物线的对称轴为.∵,,,∴点离对称轴最远,点离对称轴最近.∵抛物线的开口向上,∴,故选.7.【答案】D【考点】角平分线的定义全等三角形的性质与判定平行线的判定三角形内角和定理【解析】根据等腰直角三角形的性质及角平分线的定义求得,继而可得,即可判断①;由为的中点且可判断②;作,证可判断③,证明(),推出,即可判断④.【解答】解:,,,,,∴,∴.平分,,,,,故①正确;为的中点,,故②正确;,,.在和中,,,故③正确;,,,,,,,,故④正确.故选.8.【答案】y =−6x+c x 2x =3A(−1,)y 1B(2,)y 2C(3+,)2–√y 3A B >>y 1y 3y 2B ∠ABE =∠CBE =∠ABC =1222.5∘∠BFD =∠AEB =−=90∘22.5∘67.5∘M EF AE =AP FH ⊥AB △FBD ≅△NAD △EBA ≅△EBN SAS ∠BNE =∠BAM =90∘∵∠BAC =90∘AC =AB AD ⊥BC ∴∠ABC =∠C =45∘∠ADN =∠ADB =90∘∠BAD =∠CAD =45∘AD =BD =CD ∵BE ∠ABC ∴∠ABE =∠CBE =∠ABC =1222.5∘∴∠BFD =∠AEB =−=90∘22.5∘67.5∘∴∠AFE =∠BFD =∠AEB =67.5∘∴AF =AE ∵M EF ∴AM ⊥EF ∵AM ⊥EF ∴∠AMF =∠AME =90∘∴∠DAN =−==∠MBN 90∘67.5∘22.5∘△FBD △NAD ∠FBD =∠NAD,BD =AD,∠BDF =∠ADN,∴△FBD ≅△NAD(ASA)∴DF =DN ∵∠BAM =∠BNM =67.5∘∴BA =BN ∵∠EBA =∠EBN BE =BE ∴△EBA ≅△EBN (SAS)∴∠BNE =∠BAE =90∘∴∠ENC =∠ADC =90∘∴AD//EN DD【考点】同底数幂的除法幂的乘方与积的乘方同底数幂的乘法合并同类项【解析】解析:.应为,故本选项错误;.应为.故本选项错误;.应为.故本选项错误;.,正确.【解答】解:,,故错误;,,故错误;,,故错误;,,故正确.故选.9.【答案】A【考点】抛物线与x 轴的交点二次函数图象与系数的关系【解析】由抛物线的开口方向判断与的关系,由抛物线与轴的交点判断与的关系,然后根据对称轴判定与的关系以及;当时,;然后由图象确定当取何值时,.【解答】解:①∵对称轴在轴右侧,∴、异号,∴,故正确;②∵对称轴,∴,故正确;③∵,∴,∵当时,,∴,故错误;④根据图示知,当时,有最大值;当时,有,所以(为实数),故正确;⑤根据题图知,当时,不只是大于,故错误.综上,正确的是①②④.故选.二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )10.【答案】A 2a 3B a 6C a 5D +=a 12a 2a 12A +=2a 3a 3a 3A B =()a 23a 6B C ×=a 2a 3a 5C D ÷=a 12a 2a 10D D a 0y c 0b 02a +b =0x =−1y =a −b +c x y >0y a b ab <0x =−=1b 2a2a +b =02a +b =0b =−2a x =−1y =a −b +c <0a −(−2a)+c =3a +c <0m=1m≠1a +bm+c ≤a +b +c m 2a +b ≥m(am+b)m −1<x <3y 0A【考点】分式的值为零的条件【解析】根据分式的分子分子为零,分母不为零,可得答案.【解答】解:∵分式的值为,∴,且,解得.故答案为:.11.【答案】【考点】概率公式【解析】由小明在一次班会中参与知识抢答活动,现有语文题个,数学题个,综合题个,直接利用概率公式求解即可求得答案.【解答】解:∵小明在一次班会中参与知识抢答活动,现有语文题个,数学题个,综合题个,∴他从中随机抽取个题,抽中综合题的概率是:.故答案为:.12.【答案】【考点】圆心角、弧、弦的关系垂径定理圆周角定理【解析】此题暂无解析【解答】此题暂无解答13.【答案】−2|x|−22−x 0|x|−2=02−x ≠0x =−2−21120451145111=114+5+111120112040.6反比例函数的应用【解析】设函数解析式为,把代入求,再根据题意可得,解不等式可得.【解答】解:设函数解析式为,当时, ,,.气球内的气压大于时,气球将爆炸,∴,解得:.即气球的体积应不小于.故答案为:.14.【答案】,【考点】一次函数与二元一次方程(组)一次函数图象上点的坐标特征一次函数的图象【解析】此题暂无解析【解答】解:对原方程组使用加减消元法,两式相减得,解得,带入原方程得.所以方程组的解为所以直线与直线的交点为.故答案为:.15.【答案】①②④【考点】翻折变换(折叠问题)矩形的性质全等三角形的性质与判定菱形的判定与性质P =k vy =1.5,p =16000k 24000P =k V ∵V =1.5m 3P =16000Pa ∴k =VP =24000∴P =24000V ∵40000Pa ≤4000024000V V ≥0.60.6m 30.6{x =2,y =5(2,5)2x−4=0x =2y =5{x =2,y =5,y =3x−1y =x+3(2,5){x =2,y =5;(2,5)连接,设与交于点,由折叠的性质可得垂直平分,可判断①;由“”可证,可得,可判断②;通过证明四边形是菱形,可得,由锐角三角函数可求,可得,可判断④,由题意无法证明和的面积相等,即可求解.【解答】解:如图,连接,设与交于点,将纸片折叠,点落在边的延长线上的点处,∴垂直平分,∴,,, ,故①正确;,∴,又,∴,∴,∴,故②正确;∵平分,∴,由角平分线定理,,∴,故③错误;∵,∴四边形是菱形,∴,当点与点重合时,则,∴,,∴,故④正确.综上,①②④正确.故答案为:①②④.三、 解答题 (本题共计 9 小题 ,每题 9 分 ,共计81分 )16.【答案】解:原式,当时,原式.【考点】整式的混合运算——化简求值【解析】此题暂无解析【解答】解:原式,当时,原式.17.【答案】BE EF BG O EF BG ASA △BOF ≅△GOE BF =EG =G F BEGF ∠BEF =∠GEF ∠AEB =30∘∠DEF =75∘△GDK △GKH BE EF BG O ∵B AD G EF BG EF ⊥BG BO =GO BE =EG BF =FG ∵AD//BC ∠EGO =∠FBO ∵∠EOG =∠BOF △BOF ≅△GOE(ASA)BF =EG BF =EG =GF BG ∠EGF DG ≠GH =DG GH DK KH DK ≠KH BE =EG =BF =FG BEGF ∠BFE =∠GEF F C BF =BC =BE =5AE ==4−5232−−−−−−√DE =1EF ==+3212−−−−−−√10−−√=+2ab −−2a −1+2a =2ab −1a 2a 2a =+1,b =−12–√2–√=2(+1)(−1)−1=2−1=12–√2–√=+2ab −−2a −1+2a =2ab −1a 2a 2a =+1,b =−12–√2–√=2(+1)(−1)−1=2−1=12–√2–√证明:∵四边形是平行四边形,∴,,∵,∴,即,∴在和中,∴,∴,∴【考点】平行四边形的性质全等三角形的性质与判定平行线的判定【解析】由平行四边形的性质得出,,再证出,由证明,得出对应角相等,再由内错角相等,两直线平行,即可得出结论.【解答】证明:∵四边形是平行四边形,∴,,∵,∴,即,∴在和中,∴,∴,∴18.【答案】,画出树状图如图所示,①被抽取的名同学恰好是男女的有种情况,∴被抽取的名同学恰好是男女的概率为;②至少名男生被抽到的有种情况,∴至少名男生被抽到的概率为.【考点】扇形统计图列表法与树状图法【解析】先求出总人数,进而求解即可;ABCD OA =OC OB =OD AM =CN OA−AM =OC −CN OM =ON △BOM △DON OB =OD ,∠BOM =∠DON ,OM =ON ,△BOM ≅△DON(SAS)∠OBM =∠ODN BM//DN.OA =OC OB =OD OM =ON SAS △BOM ≅△DON ∠OBM =∠ODN ABCD OA =OC OB =OD AM =CN OA−AM =OC −CN OM =ON △BOM △DON OB =OD ,∠BOM =∠DON ,OM =ON ,△BOM ≅△DON(SAS)∠OBM =∠ODN BM//DN.21108(2)2118211=812231101=101256(1)利用列举法求概率.【解答】解:由题意可得:全班人数为(人),∴;组的圆心角为.故答案为:;.画出树状图如图所示,①被抽取的名同学恰好是男女的有种情况,∴被抽取的名同学恰好是男女的概率为;②至少名男生被抽到的有种情况,∴至少名男生被抽到的概率为.19.【答案】解:由题意得,,;由题意得,分别为方程的两个实数根,,∴,,,,,由知,.【考点】根与系数的关系根的判别式【解析】此题暂无解析【解答】解:由题意得,,;由题意得,分别为方程的两个实数根,,∴,,(2)(1)10÷20%=50m=50−4−15−10=21B ×=1550360∘108∘21108(2)2118211=812231101=101256(1)Δ≥0∴Δ=−4ac b 2=(2k +1−4)2k 2=4k +1≥0∴k ≥−14(2)x 1x 2∴=,+=−(2k +1)x 1x 2k 2x 1x 22−−=2−(+)x 1x 2x 1x 2x 1x 2x 1x 2=2+(2k +1)k 2=2+2k +1=1k 2∴2k(k +1)=0∴=0k 1=−1k 2(1)k ≥−14∴k =0(1)Δ≥0∴Δ=−4acb 2=(2k +1−4)2k 2=4k +1≥0∴k ≥−14(2)x 1x 2∴=,+=−(2k +1)x 1x 2k 2x 1x 22−−=2−(+)x 1x 2x 1x 2x 1x 2x 1x 2=2+(2k +1)k 2=2+2k +1=1k 2,,,由知,.20.【答案】解:∵点在双曲线上,∴==,∴双曲线的解析式为.把=代入,得:=,∴的坐标为,∵直线=经过,两点,∴解得:∴直线的解析式为直线=;∵=,∴=时,=,∴点的坐标为.∵,又点在轴上,且满足=,∴点的坐标为或.【考点】反比例函数与一次函数的综合【解析】(1)由点的坐标求出=,得出双曲线的解析式为.求出的坐标为,由点和的坐标以及待定系数法即可求出直线的解析式为直线=;(2)先根据直线的解析式求出点坐标,再根据点在轴上,且满足=,即可求出点的坐标.【解答】解:∵点在双曲线上,∴==,∴双曲线的解析式为.把=代入,得:=,∴的坐标为,∵直线=经过,两点,∴解得:∴直线的解析式为直线=;∵=,∴=时,=,∴点的坐标为.∵,又点在轴上,且满足=,∴点的坐标为或.21.【答案】证明:∵是的直径,∴,∴.∵,,∴2k(k +1)=0∴=0k 1=−1k 2(1)k ≥−14∴k =0(1)B(−3,−2)y =k x k −3×(−2)6y =6x y 6y =6x x 1A (1,6)y ax+b A B { a +b =6,−3a +b =−2,{ a =2,b =4.y 2x+4(2)y 2x+4y 0x −2C (−2,0)OA ==+1262−−−−−−√37−−√P x PC OA P (−2−,0)37−−√(−2+,0)37−−√B k 6y =6x A (1,6)A B y 12x+4C P x PC OA P (1)B(−3,−2)y =k x k −3×(−2)6y =6x y 6y =6x x 1A (1,6)y ax+b A B { a +b =6,−3a +b =−2,{ a =2,b =4.y 2x+4(2)y 2x+4y 0x −2C (−2,0)OA ==+1262−−−−−−√37−−√P x PC OA P (−2−,0)37−−√(−2+,0)37−−√(1)AB ⊙O ∠AEB=90∘∠EAB+∠EBA =90∘∠CBE=∠BDE ∠BDE=∠EAB∴,∴,即,∴.∵是的直径,∴是的切线.∵平分,∴.∵,∴.∵,∴,∴,∴.【考点】圆周角定理切线的判定相似三角形的性质与判定【解析】(1)根据圆周角定理即可得出=,再由已知得出=,则,从而证得是的切线;(2)通过证得,得出相似三角形的对应边成比例即可证得结论.【解答】证明:∵是的直径,∴,∴.∵,,∴,∴,即,∴.∵是的直径,∴是的切线.∵平分,∴.∵,∴.∵,∴,∴,∴.22.【答案】解:假设与成一次函数关系,设函数关系式为,则解得:,,∴.检验:当,;当,;当,,符合一次函数解析式,∴所求的函数关系为.设日销售利润,即,∴当时,有最大值元,∠EAB=∠CBE ∠EBA+∠CBE =90∘∠ABC=90∘CB ⊥AB AB ⊙O BC ⊙O (2)BD ∠ABE ∠ABD=∠DBE ∠DAF=∠DBE ∠DAF=∠ABD ∠ADB=∠ADF △ADF ∽△BDA =AD BD DF AD AD 2=DF ⋅DB ∠EAB+∠EBA 90∘∠ABE+∠CBE 90∘CB ⊥AB BC ⊙O △ADF ∽△BDA (1)AB ⊙O ∠AEB=90∘∠EAB+∠EBA =90∘∠CBE=∠BDE ∠BDE=∠EAB ∠EAB=∠CBE ∠EBA+∠CBE =90∘∠ABC=90∘CB ⊥AB AB ⊙O BC ⊙O (2)BD ∠ABE ∠ABD=∠DBE ∠DAF=∠DBE ∠DAF=∠ABD ∠ADB=∠ADF △ADF ∽△BDA =AD BD DF AD AD 2=DF ⋅DB (1)y x y =kx+b {30k +b =600,40k +b =300,k =−30b =1500y =−30x+1500x =35y =450x =45y =150x =50y =0y =−30x+1500(2)w =y(x−30)=(−30x+1500)(x−30)w =−30+2400x−45000x 2x =−=4024002×(−30)w 3000故这批农产品的销售价格定为元,才能使日销售利润最大.令,解得或,所以销售价格应该不低于元且不高于元.【考点】待定系数法求一次函数解析式二次函数的应用一元二次方程的应用——利润问题【解析】此题暂无解析【解答】解:假设与成一次函数关系,设函数关系式为,则解得:,,∴.检验:当,;当,;当,,符合一次函数解析式,∴所求的函数关系为.设日销售利润,即,∴当时,有最大值元,故这批农产品的销售价格定为元,才能使日销售利润最大.令,解得或,所以销售价格应该不低于元且不高于元.23.【答案】解:如图∵,∴,,,又∵, 即 ∴在和中,∴,∴,又∵,∴,∴;【类比引申】【探究应用】如图,把绕点逆时针旋转至,链接,过作,垂足为.∵,.40(3)w =−30+2400x−45000=2250x 2x =35453545(1)y x y =kx+b {30k +b =600,40k +b =300,k =−30b =1500y =−30x+1500x =35y =450x =45y =150x =50y =0y =−30x+1500(2)w =y(x−30)=(−30x+1500)(x−30)w =−30+2400x−45000x 2x =−=4024002×(−30)w 300040(3)w =−30+2400x−45000=2250x 2x =35453545(1)△ADG ≅△ABE AG =AE ∠DAG =∠BAE DG =BE ∠EAF =45∘∠DAF +∠BAE =∠EAF =45∘∠GAF =∠FAE△GAF △FAE AG =AE ∠GAF =∠FAEAF =AF△AFG ≅△AFE(SAS)GF =EF DG =BE GF =BE+DFBE+DF =EF ∠BAD =2∠EAF(3)△ABE A 150∘△ADG AF A AH ⊥GD H ∠BAD =150∘∠DAE =90∘∴,又∵,∴是等边三角形,∴米.根据旋转的性质得到:,又∵,∴,即点在的延长线上,易得,,∴,,,又∵,.故.∴.又∵∴根据上述推论有:(米),即这条道路的长约为米,【考点】四边形综合题【解析】(1)根据全等三角形的判定定理证明,根据全等三角形的性质解答即可;(2)把绕点逆时针旋转至,可使与重合,证明即可;(3)把绕点逆时针旋转得到,连接,根据勾股定理得到,由(1)得,得到,代入已知数据计算即可.【解答】解:如图∵,∴,,,又∵, 即 ∴在和中,∴,∴,又∵,∴,∴;【类比引申】∠BAE =60∘∠B =60∘△ABE BE =AB =80∠ADG =∠B =60∘∠ADF =120∘∠GDF =180∘G CD △ADG ≅△ABE AG =AE ∠DAG =∠BAE DG =BE AH =80×=403–√23–√HF =HD+DF =40+40(−1)=403–√3–√∠HAF =45∘∠EAF =∠EAD−∠DAF =−=90∘15∘75∘∠BAD ==2×=2∠EAF 150∘75∘EF =BE+DF =80+40(−1)≈1093–√EF 109△GAF ≅△EAF △ABF A 90∘△ADG AB AD △AFE ≅△AGE △ABM A 90∘△ACG NG N =N +C G 2C 2G 2△ANM ≅△ANG NG =NM (1)△ADG ≅△ABE AG =AE ∠DAG =∠BAE DG =BE ∠EAF =45∘∠DAF +∠BAE =∠EAF =45∘∠GAF =∠FAE△GAF △FAE AG =AE ∠GAF =∠FAEAF =AF△AFG ≅△AFE(SAS)GF =EF DG =BE GF =BE+DFBE+DF =EF ∠BAD =2∠EAF【探究应用】如图,把绕点逆时针旋转至,链接,过作,垂足为.∵,.∴,又∵,∴是等边三角形,∴米.根据旋转的性质得到:,又∵,∴,即点在的延长线上,易得,,∴,,,又∵,.故.∴.又∵∴根据上述推论有:(米),即这条道路的长约为米,24.【答案】解:()∵抛物线经过点和点,∴解得:,∴,的值分别为,.(2)①设直线的解析式为,把, 的坐标分别代入表达式,得解得,∴直线的函数表达式为,由()得,抛物线的对称轴是直线,当时,,∴点的坐标是,②设抛物线的表达式为,轴,∴点的坐标是,∴点的横坐标为,∴点的坐标是 ,设交抛物线于另一点,∵抛物线的对称轴是直线, 轴,∴根据抛物线的对称性,点的坐标是,①如图,当点在点及下方,即时,, ,由平移的性质得, ,,,(3)△ABE A 150∘△ADG AF A AH ⊥GD H ∠BAD =150∘∠DAE =90∘∠BAE =60∘∠B =60∘△ABE BE =AB =80∠ADG =∠B =60∘∠ADF =120∘∠GDF =180∘G CD △ADG ≅△ABE AG =AE ∠DAG =∠BAE DG =BE AH =80×=403–√23–√HF =HD+DF =40+40(−1)=403–√3–√∠HAF =45∘∠EAF =∠EAD−∠DAF =−=90∘15∘75∘∠BAD ==2×=2∠EAF 150∘75∘EF =BE+DF =80+40(−1)≈1093–√EF 1091y =+bx+c x 2A(0,−5)B(5,0){,c =525+5b +c =0{b =4c =−5b c −4−5AB y =kx+n(k ≠0)A(0,−5)B(5,0){,n =−55k +n =0{k =1n =−5AB y =x−51L x =2x =2y =x−5=−3M (2,−3)L 1y =−9(x−2+m)2MN//y N (2,−9)m 2P −1P (−1,−6m)m 2PE L 1Q L 1x =2−m PE//x Q (5−2m,−6m)m 21N M 0<m≤6–√PQ =5−2m−(−1)=6−2m MN =−3−(−9)=6−m 2m 2QE =m PE =6−2m+m=6−m PE+MN =106−m+6−=102,解得,(舍去), ,②如图,当点在点及上方,点在点及右侧,即时,,,∵,∴,解得, (舍去), (舍去),③如图,当点在上方,点在点左侧,即时, ,,∵,∴,解得, (舍去), ,综合以上可得的值是或.【考点】二次函数综合题【解析】此题暂无解析【解答】解:()∵抛物线经过点和点,∴解得:,∴,的值分别为,.6−m+6−=10m 2=−2m 1=1m 22N M C P <m≤36–√PE =6−m MN =−6m 2PE+MN =106−m+−6=10m 2=m 11+41−−√2=m 21−41−−√23N M C P m>3PE =m MN =−6m 2PE+MN =10m+−6=10m 2=m 1−1−65−−√2=m 2−1+65−−√2m 1−1+65−−√21y =+bx+c x 2A(0,−5)B(5,0){,c =525+5b +c =0{b =4c =−5b c −4−5(2)①设直线的解析式为,把, 的坐标分别代入表达式,得解得,∴直线的函数表达式为,由()得,抛物线的对称轴是直线,当时,,∴点的坐标是,②设抛物线的表达式为,轴,∴点的坐标是,∴点的横坐标为,∴点的坐标是 ,设交抛物线于另一点,∵抛物线的对称轴是直线, 轴,∴根据抛物线的对称性,点的坐标是,①如图,当点在点及下方,即时,, ,由平移的性质得, ,,,,解得,(舍去), ,②如图,当点在点及上方,点在点及右侧,即时,,,∵,∴,解得, (舍去), (舍去),③如图,当点在上方,点在点左侧,即时, ,,∵,∴,解得, (舍去),,综合以上可得的值是或.AB y =kx+n(k ≠0)A(0,−5)B(5,0){,n =−55k +n =0{k =1n =−5AB y =x−51L x =2x =2y =x−5=−3M (2,−3)L 1y =−9(x−2+m)2MN//y N (2,−9)m 2P −1P (−1,−6m)m 2PE L 1Q L 1x =2−m PE//x Q (5−2m,−6m)m 21N M 0<m≤6–√PQ =5−2m−(−1)=6−2m MN =−3−(−9)=6−m 2m 2QE =m PE =6−2m+m=6−m PE+MN =106−m+6−=10m 2=−2m 1=1m 22N M C P <m≤36–√PE =6−m MN =−6m 2PE+MN =106−m+−6=10m 2=m 11+41−−√2=m 21−41−−√23N M C P m>3PE =m MN =−6m 2PE+MN =10m+−6=10m 2=m 1−1−65−−√2=m 2−1+65−−√2m 1−1+65−−√2。
2023年四川省南充市中考数学试卷(含答案)181624

2023年四川省南充市中考数学试卷试卷考试总分:141 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 9 小题 ,每题 4 分 ,共计36分 )1. 如图,俄罗斯方块游戏中,图形经过平移使其填补空位,则正确的平移方式是( )A.先向右平移格,再向下平移格B.先向右平移格,再向下平移格C.先向右平移格,再向下平移格D.先向右平移格,再向下平移格2. 如图,在某时段有辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这辆车车速的众数(单位:)为 A.B.C.D.3. 如图,电线杆的高度为,两根拉线与相互垂直,,则拉线的长度为(,,在同一条直线上)( )A.B.C.D.4. 设某数为,如果比它的大的数的相反数是,则可以列出方程 A 534544355050km/h ()60504035CD h AC BC ∠CAB =αBC A D B h sinαh cosαhtanαh ⋅cosαx 3415()(x+1)=53A.B.C.D.5. 如图,为了测量某棵树的高度,小明用长为的竹竿作测量工具,移动竹竿,使竹竿顶端的影子与树的顶端的影子恰好落在地面的同一点.此时竹竿与这一点相距,与树相距,则树的高度为 A.B.C.D.6. 若,,为二次函数的图象上的三点,则,,的大小关系是 A.B.C.D.无法确定7. 如图,四边形的对角线,交于点,则不能判断四边形是平行四边形的是( )A.,B.,C.,D.,8. 下列运算正确的是( )A.B.C.D.−(x+1)=534−x+1=534x−1=534−x(x+1)=5342m 5m 10m ()5m6m7m8mA(−3,)y 1B(−2,)y 2C(1,)y 3y =+4x−5x 2y 1y 2y 3()>>y 1y 2y 3>>y 1y 3y 2<<y 2y 1y 3ABCD AC BD O ABCD ∠ABD =∠BDC OA =OC∠ABC =∠ADC AB =CD∠ABC =∠ADC AD//BC∠ABD =∠BDC ∠BAD =∠DCB2⋅3=6a 2a 3a 6=(−)12a 2318a 6−|−2|=2=1(2−)3–√09. 已知二次函数是常数,下列结论正确的是 A.当时,函数图象经过点B.当时,函数图象与轴没有交点C.当时,函数图象的顶点始终在轴下方D.当时,则时,随的增大而增大二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )10. 若分式的值为,则________.11. 小明在一次班会中参与知识抢答活动,现有语文题个,数学题个,综合题个,搅匀后从中随机抽取个题,他抽中综合题的概率是________.12. 如图,四边形内接于,为直径,点是中点.若=,=,则的长________.13. 小刚同学家里要用的空调,已知家里保险丝通过的最大电流是,额定电压为,那么他家最多还可以有________只的灯泡与空调同时使用.14. 方程组的解是________;直线与直线的交点是________. 15. 如图,在中,,,.点在边上,过点作▱,使点,在边上,点在边上.设的长为.当▱为正方形时,________;当时,▱________成为菱形;(填“能”或“不能”)若▱是菱形,并且只能作出个,则的取值范围是________.三、 解答题 (本题共计 9 小题 ,每题 9 分 ,共计81分 )16. 先化简,再求值:,其中.17. 如图所示,在▱中,对角线与相交于点,点,在对角线上,且,求证:y=a −2ax−1(a x 2)()a=−1(−1,1)a=−1x a <2x a >0x ≥1y x |x|−22−x0x =45111ABCD ⊙O AB C AB 26AD 10BC 1500W 10A 220V 50W {y =3x−1,y =x+3y =3x−1y =x+3△ABC ∠C =90∘AB =10AC =8M AC M MNPQ N P AB Q BC AM x (1)MNPQ x =(2)x =5MNPQ (3)MNPQ 1x 5x(1−2x)+(x+1)(10x−2)x =−213ABCD AC BD O M N AC AM =CN BM//DN.18. 随着手机的日益普及,学生使用手机给学校管理和学生发展带来诸多不利影响,为了保护学生视力,防止学生沉迷网络和游戏,让学生在学校专心学习,促进学生身心健康发展,教育部办公厅于年月日颁发了《教育部办公厅关于加强中小学生手机管理工作的通知》,为贯彻《通知》精神、某学校团委组织了“我与手机说再见”为主题的演讲比赛,根据参赛同学的得分情况绘制了如图所示的两幅不完整的统计图.(其中表示一等奖”,表示“二等奖”,表示“三等奖”,表示“优秀奖”)请你根据统计图中所提供的信息解答下列问题:获奖总人数为________人,________.请将条形统计图补充完整;学校将从获得一等奖的名同学(其中有一名男生,三名女生)中随机抽取两名参加全市的比赛,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率. 19. 已知关于的一元二次方程.求证:无论取任何的实数,方程总有两个不相等的实数根;如果方程的两实根为,且:,求的值.20. 如图,一次函数的图象与反比例函数的图象交于,两点(1)观察图象当时,的取值范围是________;(2)求反比例函数的解析式及点坐标;(3)求的面积.21. 如图, 的弦,点是的中点,点是上一动点,若,求的半径.(参考数据: , 22. 如图,两地之间有一座山,以前从地到地需要经过地,现在政府出资打通了一条山岭隧2021115A B C D (1)m=(2)(3)4x −(m−2)x−m=0x 2(1)m (2),x 1x 2+−2=13x 12x 22x 1x 2m =−x+4y 112=y 2m xA(2,3)B(6,n)>y 1y 2x B △OAB ⊙O AB =6.16cm C AB D ADB∠CDB =25∘⊙O sin ≈0.7750∘tan ≈1.19)50∘A ,B A B C道,使从地到地可沿直线直接到达已知.求点到直线的距离;求现在从地到地可比原来少走多少路程.(.),点是线段上的速度为每秒个单位长度,点上的速度为每秒个单位长度,设点的运动时间为________(形,直接写出此时线段的长. 24. 已知是常数,抛物线的对称轴是轴,并且与轴有两个交点.求的值;若点在抛物线上,且到轴的距离是,求点的坐标.A B AB BC =8km,∠A =,∠B =45∘53∘(1)C AB (2)A B 0.1km =1.41,sin ≈0.80,cos ≈0.602–√5353E AC −CB BC P CP k y =+(+k −6)x+3kx 2k 2y x (1)k (2)P y =+(+k −6)x+3k x 2k 2P y 2P参考答案与试题解析2023年四川省南充市中考数学试卷试卷一、 选择题 (本题共计 9 小题 ,每题 4 分 ,共计36分 )1.【答案】C【考点】平移的性质【解析】利用网格特点和平移的性质对各选项进行判断.【解答】图形经过平移使其填补空位,则正确的平移方式是先向右平移格,再向下平移格.2.【答案】C【考点】众数条形统计图【解析】根据中位数的定义求解可得.【解答】解:由条形图知,车速的车辆有辆,为最多,所以众数为.故选.3.【答案】B【考点】解直角三角形的应用-其他问题【解析】根据同角的余角相等得=,由知.【解答】解:∵,,∴.在中,A 4440km/h 1540C ∠CAD ∠BCD cos ∠BCD =CD BC BC ==CD cos ∠BCD h cosα∠CAD+∠ACD =90∘∠ACD+∠BCD =90∘∠CAD =∠BCD Rt △BCD ∠BCD =CD∵,∴.故选.4.【答案】A【考点】由实际问题抽象出一元一次方程【解析】某数为,比它的大的数为,即可得到方程.【解答】解:由题意可列方程:.故选.5.【答案】B【考点】相似三角形的应用【解析】先判定和相似,再根据相似三角形对应边成比例列式求解即可.【解答】解:如图所示:∵,,∴,∴,∴,即,解得:;即树的高度为.故选.6.【答案】C【考点】二次函数图象上点的坐标特征cos ∠BCD =CD BC BC ==CD cos ∠BCD h cosαB x 341x+134−(x+1)=534A △OAB △OCD AB ⊥OD CD ⊥OD AB//CD △OAB ∼△OCD =AB CD OB OD =2CD 55+10CD =66m B【解析】此题暂无解析【解答】解:当时,;当时,;当时,,所以.故选.7.【答案】B【考点】平行四边形的判定全等三角形的性质与判定【解析】,证明,即可根据对角线互相平分的四边形是平行四边形判断;,条件不足无法判断;,证明,即可根据有一组对边平行且相等的四边形是平行四边形判断;,证明,即可根据两组对边分别平行的四边形是平行四边形判断.【解答】解:,在和中,∴,∴,,∴四边形是平行四边形,故此选项正确;,在和中,,不能证明两三角形全等,故此选项错误;,,∴,在和中,∴,∴,∴四边形是平行四边形,故此选项正确;,在和中,∴,,∴.又∵,∴,∴四边形是平行四边形,故此选项正确.x =−3=(−3+4×(−3)−5=−8y 1)2x =−2=(−2+4×(−2)−5=−9y 2)2x =1=+4×1−5=0y 312<<y 2y 1y 3C A △ABO ≅△ADO B C △ABC ≅△CDA D △ABD ≅△CDB A △ABO △CDO ∠ABO =∠CDO ,∠AOB =∠COD ,OA =OC ,△ABO ≅△CDO(AAS)BO =DO OA =OC ABCD B △ABC △CDA AB =CD ,AC =CA ,∠ABC =∠ADC SSA C AD//BC ∠CAD =∠ACB △ABC ΔCDA ∠ABC =∠CDA ,∠ACB =∠CAD ,AC =CA ,△ABC ≅△CDA(AAS)BC =AD ABCD D △ABD △CDB ∠ABD =∠CDB ,∠BAD =∠DCB ,BD =DB ,△ABD ≅△CDB(AAS)∴∠ADB =∠CBD AD//BC ∠ABD =∠BDC AB//CD ABCD故选.8.【答案】D【考点】零指数幂、负整数指数幂同底数幂的乘法幂的乘方与积的乘方绝对值【解析】逐个计算判断即可.【解答】解:,,故错误;,,故错误;,,故错误;,,故正确.故选.9.【答案】D【考点】抛物线与x 轴的交点二次函数图象与系数的关系【解析】、将=代入原函数解析式,令=求出值,由此得出选项不符合题意;、将=代入原函数解析式,令=,根据根的判别式=,可得出当=时,函数图象与轴有两个不同的交点,即选项不符合题意;、利用配方法找出二次函数图象的顶点坐标,令其纵坐标小于零,可得出的取值范围,由此可得出选项不符合题意;、利用配方法找出二次函数图象的对称轴,结合二次函数的性质,即可得出选项符合题意.此题得解.【解答】解:、当时,函数解析式为,当时,,∴当时,函数图象经过点,∴选项不符合题意;、当时,函数解析式为,,∴当时,函数图象与轴有个交点,∴选项不符合题意;、∵,∴二次函数图象的顶点坐标为,当时,有,∴选项不符合题意;、∵,∴二次函数图象的对称轴为.若,则当时,随的增大而增大,∴选项符合题意.B A 2⋅3=6=6a 2a 3a 2+3a 5A B =−(−)12a 2318a 6B C −|−2|=−2C D (2−=13–√)0D D A a 1x −1y A B a 2y 0△8>0a −2x B C a C D D A a=−1y=−+2x−1x 2x=−1y=−1−2−1=−4a=−1(−1,−4)A B a=−1y=−+2x−1x 2Δ=−4×(−1)×(−1)22=0a=−1x 1B C y=a −2ax−1x 2=a(x−1−1−a )2(1,−1−a)−1−a <0a >−1C D y=a −2ax−1x 2=a(x−1−1−a )2x =1a >0x ≥1y x D故选.二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )10.【答案】【考点】分式的值为零的条件【解析】根据分式的分子分子为零,分母不为零,可得答案.【解答】解:∵分式的值为,∴,且,解得.故答案为:.11.【答案】【考点】概率公式【解析】由小明在一次班会中参与知识抢答活动,现有语文题个,数学题个,综合题个,直接利用概率公式求解即可求得答案.【解答】解:∵小明在一次班会中参与知识抢答活动,现有语文题个,数学题个,综合题个,∴他从中随机抽取个题,抽中综合题的概率是:.故答案为:.12.【答案】【考点】圆心角、弧、弦的关系垂径定理圆周角定理【解析】此题暂无解析【解答】D −2|x|−22−x 0|x|−2=02−x ≠0x =−2−21120451145111=114+5+1111201120413.【答案】【考点】反比例函数的应用【解析】根据物理学知识,即可求解.【解答】通过空调的电流为,设:需要个的灯泡,则:,解得:=,故:答案为.14.【答案】,【考点】一次函数与二元一次方程(组)一次函数图象上点的坐标特征一次函数的图象【解析】此题暂无解析【解答】解:对原方程组使用加减消元法,两式相减得,解得,带入原方程得.所以方程组的解为所以直线与直线的交点为.故答案为:.15.【答案】能或【考点】勾股定理解直角三角形24I =P U I ===P U 150********x 50W (10−)=x 751150220x 1414{x =2,y =5(2,5)2x−4=0x =2y =5{x =2,y =5,y =3x−1y =x+3(2,5){x =2,y =5;(2,5)20037x =20037≤x <5409平行线分线段成比例菱形的判定与性质三角形三边关系【解析】1【解答】解:在中,由勾股定理得,当▱为正方形时,,,∵,,∴∵,,,即,∴,∵,,解得.故答案为:.假设▱为菱形,则,∵,∴,,,,∵,∴,即,解得.在中,,在中,,∴,,符合条件,∴▱为菱形.故答案为:能.由可知当时,▱为正方形,并且只能作出个;当▱不是正方形时,可分两种情况讨论:①当点与点重合时,(1)Rt △ABC BC ==6A −A B 2C 2−−−−−−−−−−√MNPQ ∠MNA =90∘sinA ===MN AM BC AB 35AM =x ∴MN =x 35MQ =MN =x.35MQ//AB ∴CMQ =∠A cos ∠CMQ ===CM MQ AC AB 45=CM x 3545CM =x 1225CM +AM =CA ∴x+x =81225x =2003720037(2)MNPQ MQ =MN =NP =PQ x =5CM =8−5=3cos ∠CMQ ==CM MQ 45∴MQ =154∴MQ =MN =NP =PQ =154MQ//AB =CQ BC MQ AB =BC −BQ BC MQ AB BQ =154△AMN <AN <54354△BPQ 0<BP <152<AN +BP <54654AN +BP =10−NP =254MNPQ (3)(1)x =20037MNPQ 1MNPQ N A可得,即,解得;②当点与点重合时,同理可得.又,即,解得,∴,综上所述,当或时,▱是菱形,并且只能作出个.故答案为:或.三、 解答题 (本题共计 9 小题 ,每题 9 分 ,共计81分 )16.【答案】原式==,当时,原式===.【考点】整式的混合运算——化简求值【解析】直接利用多项式乘以多项式、单项式乘以多项式运算法则计算,进而合并同类项,再把已知数据代入求出答案.【解答】原式==,当时,原式===.=CM AC MQ AB =8−x 8x 10x =409P B BQ =154=MQ AB CM AC =154108−x 8x =5≤x <5409x =20037≤x <5409MNPQ 1x =20037≤x <54095x−10+10−2x+10x−2x 2x 213x−2x =−21313×(−)−2213−2−2−45x−10+10−2x+10x−2x 2x 213x−2x =−21313×(−)−2213−2−2−417.【答案】证明:∵四边形是平行四边形,∴,,∵,∴,即,∴在和中,∴,∴,∴【考点】平行四边形的性质全等三角形的性质与判定平行线的判定【解析】由平行四边形的性质得出,,再证出,由证明,得出对应角相等,再由内错角相等,两直线平行,即可得出结论.【解答】证明:∵四边形是平行四边形,∴,,∵,∴,即,∴在和中,∴,∴,∴18.【答案】(1),(2)“三等奖”人数为(人),条形统计图补充为:获奖情况条形统计图(3)画树状图为:共有种等可能的结果,抽取同学中恰有一名男生和一名女生的结果数为,ABCD OA =OC OB =OD AM =CN OA−AM =OC −CN OM =ON △BOM △DON OB =OD ,∠BOM =∠DON ,OM =ON ,△BOM ≅△DON(SAS)∠OBM =∠ODN BM//DN.OA =OC OB =OD OM =ON SAS △BOM ≅△DON ∠OBM =∠ODN ABCD OA =OC OB =OD AM =CN OA−AM =OC −CN OM =ON △BOM △DON OB =OD ,∠BOM =∠DON ,OM =ON ,△BOM ≅△DON(SAS)∠OBM =∠ODN BM//DN.403040−4−8−16=12126=61所以抽取同学中恰有一名男生和一名女生的概率.【考点】列表法与树状图法扇形统计图【解析】此题暂无解析【解答】解:()获奖总人数为 (人),,即,故答案为:.(2)“三等奖”人数为(人),条形统计图补充为:获奖情况条形统计图(3)画树状图为:共有种等可能的结果,抽取同学中恰有一名男生和一名女生的结果数为,所以抽取同学中恰有一名男生和一名女生的概率.19.【答案】证明:因为,所以,所以无论取任何的实数,方程总有两个不相等的实数根.解:由题可知:,.又,则,所以,解得,,即的值是或.【考点】根的判别式根与系数的关系【解析】此题暂无解析【解答】==6121218÷20%=40m%=×100%=30%40−4−8−1640m=3040;3040−4−8−16=12126==61212(1)−(m−2)x−m=0x 2Δ=[−(x−2−4×1×(−m)=+4>0])2m 2m (2)+=m−2x 1x 2=−m x 1x 2+−2=13x 12x 22x 1x 2(+−4=13x 1x 2)2x 1x 2(m−2−4×(−m)=13)2=3m 1=−3m 2m 3−3−(m−2)x−m=02证明:因为,所以,所以无论取任何的实数,方程总有两个不相等的实数根.解:由题可知:,.又,则,所以,解得,,即的值是或.20.【答案】或把代入,得==,∴反比例函数的解析式为;将代入,得=,∴点坐标为;由直线可知与轴的交点为,又∵,,∴=.【考点】反比例函数与一次函数的综合【解析】(1)观察函数图象得到当或时,一次函数图象在反比例函数图象的上方;(2)把代入,利用待定系数法求反比例函数的解析式;将代入可求出的值,即可求出点坐标;(3)求得直线与轴的交点坐标,根据三角形面积公式即可求得.【解答】根据图象可知,当时,的取值范围是或.故答案为或;把代入,得==,∴反比例函数的解析式为;将代入,得=,∴点坐标为;由直线可知与轴的交点为,又∵,,∴=.(1)−(m−2)x−m=0x 2Δ=[−(x−2−4×1×(−m)=+4>0])2m 2m (2)+=m−2x 1x 2=−m x 1x 2+−2=13x 12x 22x 1x 2(+−4=13x 1x 2)2x 1x 2(m−2−4×(−m)=13)2=3m 1=−3m 2m 3−3x <02<x <6A(2,3)=y 2m x m 2×36=y 26xB(6,n)=−x+4y 112n =−×6+4121B (6,1)=−x+4y 112x (8,0)A(2,3)B(6,1)=×8×3−×8×1S △AOB 12128x <02<x <6A(2,3)=y 2m x B(6,n)=−x+4y 112n B x >y 1y 2x x <02<x <6x <02<x <6A(2,3)=y 2m x m 2×36=y 26xB(6,n)=−x+4y 112n =−×6+4121B (6,1)=−x+4y 112x (8,0)A(2,3)B(6,1)=×8×3−×8×1S △AOB 1212821.【答案】解:连接,,交于,∵点是的中点,∴,∴,在中,,.∵,∴,即的半径约为.【考点】锐角三角函数的定义--与圆有关圆周角定理垂径定理的应用圆心角、弧、弦的关系【解析】此题暂无解析【解答】解:连接,,交于,∵点是的中点,∴,∴,在中,,.∵,∴,即的半径约为.22.OC OB AB E C AB OC ⊥AB AE =BE =AB =3.08(cm)12Rt △OBE BE =3.08(cm)∠BOE =2∠CDB =50∘sin =50∘BE OB OB =≈=4(cm)BE sin50∘ 3.080.77⊙O 4cm OC OB AB E C AB OC ⊥AB AE =BE =AB =3.08(cm)12Rt △OBE BE =3.08(cm)∠BOE =2∠CDB =50∘sin =50∘BE OB OB =≈=4(cm)BE sin50∘ 3.080.77⊙O 4cm【答案】解:(1)如图,过点作,垂足为点.在中,,,答:点到直线的距离为.如图,在中,,,在中,,,由得..答:现在从地到地可比原来少走的路程.【考点】二次函数的应用二次函数综合题【解析】此题暂无解析【解答】解:如图,过点作,垂足为点.在中,,,答:点到直线的距离为.如图,在中,,,在中,,,由得..答:现在从地到地可比原来少走的路程.23.【答案】C CE⊥AB E Rt △BCE sinB =CE BC ∴CE =BC ⋅sinB ≈8×0.80=6.4(km)C AB 6.4km (2)Rt △BCE cosB =BE BC ∴BE =BC ⋅cosB ≈8×0.60=4.8(km)Rt △ACE ∠A =45∘∴∠ACE =45∘∴AE =CE =6.4kmsinA =CE AC AC ==≈9.0(km)CE sinA 6.42–√2∴AC +BC −(AE+EB)=9.0+8−(6.4+4.8)=5.8(km)A B 5.9km (1)C CE⊥AB E Rt △BCE sinB =CE BC ∴CE =BC ⋅sinB ≈8×0.80=6.4(km)C AB 6.4km (2)Rt △BCE cosB =BE BC ∴BE =BC ⋅cosB ≈8×0.60=4.8(km)Rt △ACE ∠A =45∘∴∠ACE =45∘∴AE =CE =6.4kmsinA =CE AC AC ==≈9.0(km)CE sinA 6.42–√2∴AC +BC −(AE+EB)=9.0+8−(6.4+4.8)=5.8(km)A B 5.9km-或,过作于,分两种情况:①当在边上时,如图①,中,==,∴=,∴是等腰直角三角形,由题意得:=,∴==,即点到直线的距离是;②当在边上时,如图②,由勾股定理得:=,==,∴=-=-,=,∴=,∴=,即点到直线的距离是,综上所述:点到直线的距离是或;分种情况:①如图③,当四边形是矩形时,是的中点,∴=;②如图④,==,==,∴四边形是等腰梯形,此时=;③如图⑤,过作于,交于,∴,∵是的中点,∴是的中垂线,∴=,=,∴四边形为轴对称图形,2t tP PG ⊥AB G P AC Rt △ADC AD CD 2∠A 45∘△APG AP t AG PG t P AB t P BC AC 4BC BP 3(t−4)4t sin ∠B PG 4−t P AB 4−t P AB t 7−t 4DEPH P BC CP BD BH 4BE PB 2DEPH CP 2−2D DP ⊥BC P CD H EH//BC E BD EH PD PH DH PE DE DEPH==,∴=,∴=,由勾股定理得:===;④如图⑥,过作于,使=,过作于,中,=,∴==,∵,∴,∴,∴,∴=,∴=,∴==,由勾股定理得:====,∴四边形为轴对称图形,此时==;综上所述,的长为或或.【考点】四边形综合题【解析】此题暂无解析【解答】此题暂无解答24.【答案】解:∵抛物线的对称轴是轴.∴,∴,解得或当时,抛物线为,与轴有两个交点,符合题意;当时,抛物线为,与轴没有交点,不符合题意,舍去.∴由可知,抛物线为,∵到轴的距离是,∴点的横坐标为或,∴当或时,,∴点的坐标为或.S △CDB CD ⋅BD 3×42PD PD CP E EP ⊥BC P PH EP H HG ⊥CD G Rt △EPB BE 2EP HP GH//BD △CGH ∽△CDB GH CG DG 6−DH 2DE DEPH CP CH+HP CP −2(1)y =+(+k −6)x+3kx 2k 2y −=0+k −3k 22+k −6=0k 2k =−3 2.k =−3y =−9x 2x k =2y =+6x 2x k =−3.(2)(1)y =−9x 2P y 2P 2−2x =2−2y =−5P (2,−5)(−2,−5)【考点】二次函数综合题【解析】此题暂无解析【解答】解:∵抛物线的对称轴是轴.∴,∴,解得或当时,抛物线为,与轴有两个交点,符合题意;当时,抛物线为,与轴没有交点,不符合题意,舍去.∴由可知,抛物线为,∵到轴的距离是,∴点的横坐标为或,∴当或时,,∴点的坐标为或.(1)y =+(+k −6)x+3kx 2k 2y −=0+k −3k 22+k −6=0k 2k =−3 2.k =−3y =−9x 2x k =2y =+6x 2x k =−3.(2)(1)y =−9x 2P y 2P 2−2x =2−2y =−5P (2,−5)(−2,−5)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南充市二O 一二年高中阶段学校招生统一考试数 学 试 卷(满分100分,时间90分钟)一、选择题(本大题共10个小题,每小题3分,共30分)每小题都有代号为A 、B 、C 、D 四个答案选项,其中只有一个是正确的,请把正确选项的代号填在相应的括号内.填写正确记3分,不填、填错或填出的代号超过一个记0分.1. 计算2-(-3)的结果是( ).(A )5 (B )1 (C )-1 (D )-5 2.下列计算正确的是( )(A )x 3+ x 3=x 6 (B )m 2·m 3=m 6(C )32-2=3 (D )14×7=72 3.下列几何体中,俯视图相同的是( ).(A )①② (B )①③ (C )②③ (D )②④① ② ③ ④ 4.下列函数中是正比例函数的是 ( )( A )y =-8x (B )y =x8 ( C )y =5x 2+6 (D )y = -0.5x -15.方程x (x -2)+x -2=0的解是( )(A )2 (B )-2,1 (C )-1 (D )2,-16.矩形的长为x ,宽为y ,面积为9,则y 与x 之间的函数关系用图像表示大致为( )7.在一次学生田径运动会上。
参加男子跳高的15名运动员的成绩如下表所示: 成绩(m ) 1.50 1.60 1.65 1.70 1.75 1.80 人数124332这些运动员跳高成绩的中位数和众数是(A )1.65,1.70 (B )1.70,1.70 (C )1.70,1.65(D )3,48.在函数y=2121--x x中,自变量的取值范围是 A. x ≠21 B.x ≤21 C.x ﹤21 D.x ≥21 9.一个圆锥的侧面积是底面积的2倍。
则圆锥侧面展开图的扇形的圆心角是A .1200 B.1800 C.2400 D.3000 10.如图,平面直角坐标系中,⊙O 半径长为1.点⊙P (),⊙P 的半径长为2,把⊙P 向左平移,当⊙P 与⊙O 相切时,的值为(A )3 (B )1 (C )1,3 (D )±1,±3二、填空题(本大题共4个小题,每小题3分,共12分)请将答案直接填写在题中横线上.11.不等式x+2>6的解集为 12.分解因式x 2-4x-12=13.如图,把一个圆形转盘按1﹕2﹕3﹕4的比例分成A 、B 、C 、D 四个扇形区域,自由转动转盘,停止后指针落在B 区域的概率为14. 如图,四边形ABCD 中,∠BAD=∠BCD=900,AB=AD,若四边形ABCD 的面积是24cm 2.则AC 长是 cm. 三、(本大题共3个小题,每小题6分,共18分) 15.计算:1+a a +121--a a16.在一个口袋中有4个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球然后放回,再随机地摸出一个小球,求下列事件的概率:(1)两次取的小球的标号相同(2)两次取的小球的标号的和等于417.如图,等腰梯形ABCD中,AD∥BC,点E是AD延长线上的一点,且CE=CD,求证:∠B=∠E四、(本大题共2个小题,每小题8分,共16分)18.关于x的一元二次方程x2+3x+m-1=0的两个实数根分别为x1,x2.(1)求m的取值范围.(2)若2(x1+x2)+ x1x2+10=0.求m的值.19.矩形ABCD中,AB=2AD,E为AD的中点,EF⊥EC交AB于点F,连接FC.(1)求证:⊿AEF∽⊿DCE(2)求tan∠ECF的值.五、(本题满分8分)20.学校6名教师和234名学生集体外出活动,准备租用445座大客车或30座小客车,若租用1辆大车2辆小车供需租车费1000元;若若租用2辆大车1辆小车供需租车费1100元. (1)求大、小车每辆的租车费各是多少元?(2)若每辆车上至少..要有一名教师,且总租车费用不超过...2300元,求最省钱的租车方案。
21.在Rt⊿POQ中,OP=OQ=4,M是PQ中点,把一三角尺的直角顶点放在点M处,以M为旋转中心,旋转三角尺,三角尺的两直角边与⊿POQ的两直角边分别交于点A、B,(1)求证:MA=MB(2)连接AB,探究:在旋转三角尺的过程中,⊿AOB的周长是否存在最小值,若存在,求出最小值,若不存在。
请说明理由。
3,抛物线22.如图,⊙C的内接⊿AOB中,AB=AO=4,tan∠AOB=4y=ax2+bx经过点A(4,0)与点(-2,6)(1)求抛物线的函数解析式.(2)直线m与⊙C相切于点A交y轴于点D,动点P在线段OB 上,从点O出发向点B运动;同时动点Q在线段DA上,从点D出发向点A运动,点P的速度为每秒1个单位长,点Q的速度为每秒2个单位长,当PQ⊥AD时,求运动时间t的值(3)点R在抛物线位于x轴下方部分的图象上,当⊿ROB面积最大时,求点R的坐标.数学试题参考答案及评分意见一、选择题(本大题共10个小题,每小题3分,共30分题号 1 2 3 4 5 6 7 8 9 10 答案ADCADCCCBD二、填空题(本大题共4个小题,每小题3分,共12分)11. x >4 12. (x-6)(x+2); 13. 0.214. 43.三、(本大题共3个小题,每小题6分,共18分) 15. 解:原式=1+a a +)1)(1(1-+-a a a ……(2分) =1+a a +11+a ……(4分) =11++a a …(5分)=1. …(6分)16. 解:画出树状图为:由图可知共有16种等可能的结果,其中两次取得小球队标号相同有4种(记为A ),标号的和等于4的有 3种(记为B ) ∴P (A )=164=41……(4分)P (B )=163…(6分) 17. 证明:∵ABCD 是等腰梯形,AD ∥BC∴∠B=∠BCD, ∠EDC=∠E∴CE=CD ∴∠EDC=∠E ∴∠B=∠E解四、(本大题共2个小题,每小题8分,共16分)18解:(1)∵关于x 的一元二次方程x 2+3x +m-1=0的两个实数根分别为x 1,x 2.∴ ⊿≥0.即 32-4(m-1)≥0,解得,m ≤413. ……(4分) (2)由已知可得 x 1+x 2=3 x 1x 2 = m-1 又2(x 1+x 2)+ x 1x 2+10=0∴2×(-3)+m-1+10=0 ……(6分)∴m=-3……(8分)19.(1)证明:∵ABCD 是矩形∴∠A=∠D=900∴∠DCE+∠DEC=900 ∵EF ⊥EC∴∠AEF+∠DEC=900 ∴∠DCE=∠AEF∴⊿AEF ∽⊿DCE(2)由(1)可知:⊿AEF ∽⊿DCE ∴DC AE =CE EF 在矩形ABCD 中,E 为AD 的中点。
AB=2AD ∴ DC=AB=4AE ∴ tan ∠ECF=CE EF =DC AE =AE AE 4=41 五、 (本题满分8分)20解:(1)设大、小车每辆的租车费各是x、y元则x+2y=1000 x=4002x+y=1100 解得:y=300答:大、小车每辆的租车费各是400元、300元(2)240名师生都有座位,租车总辆数≥6;每辆车上至少要有一名教师,租车总辆数≤6.故租车总数事故6辆,设大车辆数是x辆,则租小车(6-x)辆45x+30(6-x) ≥240 x≥4400x+300(6-x)≤2300 解得:x≤5 ∴4≤x≤5∵x是正整数∴x=4或5于是又两种租车方案,方案1:大车4辆小车2辆总租车费用2200元,方案2:大车5辆小车1辆总租车费用2300元,可见最省钱的是方案1六、(本题满分8分)21(1)证明:连接OM ∵Rt⊿POQ中,OP=OQ =4,M是PQ 的中点1PQ=22∴OM=PM=2∠POM=∠BOM=∠P=450∵∠PMA+∠AMO=∠OMB+∠AMO ∴∠PMA=∠OMB ⊿PMA≌⊿OMB ∴MA=MB(2)解:⊿AOB的周长存在最小值理由是: ⊿PMA≌⊿OMB ∴PA=OB ∴OA+OB=OA+PA=OP=4令OA=x AB=y则y2=x2+(4-x)2=2x2-8x+16=2(x-2)2+8≥8当x=2时y2有最小值=8从而y≥22故⊿AOB的周长存在最小值,其最小值是4+22七、(本题满分8分)22解:(1)把点A(4,0)与点(-2,6)代入抛物线y=ax2+bx,得:116a+4b=0 a=24a-2b=6 解得:b= -21x2-2x∴抛物线的函数解析式为:y=2(2)连AC交OB于E∵直线m切⊙C于A ∴AC⊥m,∵弦AB=AO ∴AB⌒=AO⌒∴AC⊥OB ∴m∥OB ∴∠OAD=∠AOB3∵OA=4 tan∠AOB=43=3∴OD=OA·tan∠OAD=4×4作OF⊥AD于F3=2.4OF=OA·sin∠OAD=4×5t秒时,OP=t,DQ=2t,若PQ⊥AD 则FQ=OP= tDF=DQ-FQ= t ⊿ODF中,t=DF=2OD =1.8秒2OF1x2-2x) (0<x<4)(3)令R(x,2作RG⊥y轴于G 作RH⊥OB于H交y轴于I则RG= x OG= 21x 2+2x Rt ⊿RIG 中,∵∠GIR=∠AOB ∴tan ∠GIR=43 ∴IG=34x IR=35 x, Rt ⊿OIH 中,OI=IG-OG=34x-(21x 2+2x )=21x 2-32 xHI=54 (21x 2-32 x )于是RH=IR-IH=35 x-54(21x 2-32x ) =-52 x 2+1533x=-52 x 2+511x=-52( x-411)2+40121 当x=411时,RH 最大。
S ⊿ROB 最大。
这时21x 2-2x=21×(411)2-2×411=-3255 ∴点R(411,-3255)。