面神经损伤修复研究进展_李小辉

面神经损伤修复研究进展_李小辉
面神经损伤修复研究进展_李小辉

细胞外基质成分可影响周围神经损伤的修复与再生

细胞外基质成分可影响周围神经损伤的修复与再生 瑞士洛桑联邦理工学院生物材料-材料-组织接口联合实验室di Summa教授所带团队研究人员正在合作开发一种新型多功能促进周围神经损伤修复的再生导管,这种导管整合仿生材料,微细加工技术和细胞治疗技术。在《中国神经再生研究(英文版)》最新一期杂志中,作者介绍了他们在细胞外基质分子在周围神经损伤修复在的重要作用及试验应用结果,表明其可以成为人工导管的最佳选择。 周围神经损伤严重影响患者的生活。人工导管是周围神经损伤修复的有效替代方法,能够为周围神经修复创造适宜微环境,并指引轴突生长方向。好的生物材料需要具备良好的生物相容性,能够减轻炎症和瘢痕组织形成。充填细胞外基质的神经组织能延长细胞的存活,促进移植细胞在损伤部位生长,减少所需的内源雪旺氏细胞的滞后时间,在修复神经缺损方面表现出较好的应用潜能。 “我们的最新研究成果显示出促进周围神经再生是有希望”,作者如此说。“未来我们团队的研 究将集中于导管内腔的完善,使其可以更好的与涂覆有的细胞外基质成分结合,以增强细胞表面的相互作用,从而更好的促进损伤神经的再生”。 Article: "Extracellular matrix components in peripheral nerve repair: how to affect neural cellular response and nerve regeneration?" by Alba C. de Luca 1, Stephanie P. Lacour1, Wassim Raffoul2, Pietro G. di Summa2 (1 EPFL, Centre for Neuroprosthetics, Laboratory for Soft Bioelectronic Interfaces, Station 17, 1015 Lausanne, Switzerland; 2 Department of Plastic, Reconstructive and Hand Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland) de Luca AC, Lacour SP, Raffoul W, di Summa PG. Extracellular matrix components in peripheral nerve repair: how to affect neural cellular response and nerve regeneration? Neural Regen Res. 2014;9(22): 1943-1948. 欲获更多资讯:N eural Regen Res Impact and effect of the ECM molecules in peripheral nerve repair and regeneration SUMMARY Peripheral nerve injury is a serious problem affecting significantly patients’ life. New advanced strategies have been developed to improve the regeneration of the injured nerve, including artificial conduits. Biomimetic materials aim at simulating the native neural tissue, creating a friendly environment for cells and tissue to growth. This allows the regeneration of longer gaps and extending cell survival.

环境修复材料项目立项申请报告范文

环境修复材料项目立项申请报告范文 配合制造业的发展,创新亦须加快驱动,形成以创新为主要引领和支撑经济体系和发展模式。全力推动科技进步和劳工素质的提升。必须强化科技与经济对接、创新成果与产业对接、创新项目与现实生产力对接,加强研发人员创新动力与收入挂钩,让科技进步能贡献及带动经济的发展。 一、项目名称及承办单位 (一)项目名称 环境修复材料项目 (二)项目承办单位 xxx有限责任公司 二、项目建设地址及负责人 (一)项目选址 xx新区 (二)项目负责人 崔xx 三、项目承办单位基本情况

公司坚持诚信为本、铸就品牌,优质服务、赢得市场的经营理念,秉承以人为本,宾客至上服务理念,将一整套针对用户使用过程中完善的服务方案。 公司致力于高新技术产业发展,拥有有效专利和软件著作权50多项,全国质量管理先进企业、全国用户满意企业、国家标准化良好行为AAAA企业,全国工业知识产权运用标杆企业。 产品的研发效率和质量是产品创新的保障,公司将进一步加大研发基础建设。通过研发平台的建设,使产品研发管理更加规范化和信息化;通过产品监测中心的建设,不断完善产品标准,提高专业检测能力,提升产品可靠性。 四、项目建设地基本情况 通过几年发展,我市装备制造业规模不断扩大、产品种类逐步增多、产品档次不断提升,初步形成了以乘用车、重型汽车、专用车及零部件为主的汽车制造,以煤炭综采设备为主的煤矿及矿用设备制造,以风机整机组装及叶片、塔筒等零部件制造为主的风力发电设备制造和以压力容器为主的化工设备制造的装备制造产业体系。 五、项目提出理由 项目承办单位自成立以来始终坚持“自主创新、自主研发”的理念,始终把提升创新能力作为企业竞争的最重要手段,因此,积累了一定的项目产品技术优势。项目承办单位在项目产品开发、设计、制造、检测等方

污染土壤微生物修复技术研究进展

污染土壤微生物修复技术研究进展课程论文 摘要针对2014年4月环境环保部公布的首次全国土壤污染状况调查结果,撰写我国最严重的耕地污染中主要污染物镉、砷、滴滴涕和多环芳烃的微生物修复研究进展。 关键词土壤污染;微生物修复;重金属污染;有机物污染 2005年4月至2013年12月我国开展的首次全国土壤污染状况调查结果显示全国土壤环境状况总体不容乐观,部分地区土壤污染较重,耕地土壤环境质量堪忧,工矿业废弃地土壤环境问题突出。全国土壤总的超标率为16.1%,其中轻微、轻度、中度和重度污染点位比例分别为11.2%、2.3%、1.5%和1.1%。人类赖以生存的耕地中土壤点位超标率高达19.4%,迫在眉睫的主要污染物为镉、砷、滴滴涕和多环芳烃[1]。 微生物修复是指利用天然存在的或所培养的功能微生物群,在适宜环境条件下,促进或强化微生物代谢功能,从而达到降低有毒污染物活性或降解成无毒物质的生物修复技术,它已成为污染土壤生物修复技术的重要组成部分和生力军[2]。由于我国土壤调查结果显示在农田耕地中重金属污染物镉、镍、砷、有机污染物滴滴涕和多环芳烃超标最严重,对这些污染物的治理已经迫在眉睫。所以,本文重点阐述针对这5种污染物的微生物修复技术研究进展。 1、重金属污染土壤微生物修复研究进展 土壤微生物种类繁多、数量庞大,是土壤的活性有机胶体,比表面大、带电荷和代谢活动旺盛,在重金属污染物的土壤生物地球化学循环过程中起到了积极作用。微生物可以对土壤中重金属进行固定、移动或转化,改变它们在土壤中的环境化学行为,可促进有毒、有害物质解毒或降低毒性,从而达到生物修复的目的[3]。因此,重金属污染土壤的微生物修复原理主要包括生物富集 (如生物积累、吸附作用)、生物转化(如生物氧化还原、甲基化与去甲基化以及重金属的溶解和有机络合配位降解)、生物固定(如与S2-的共沉淀)、生物滤除(如细菌的淋滤作用)等作用方式。 1.1镉污染 将具有重金属吸附能力的天然蛋白或人工合成肽展示在微生物细胞表面,可以提高微生物对重金属的吸附能力。Kuro da等[4]改造了微生物表面蛋白使得当酵母金属硫蛋白( YMT )串联体在酵母表面展示表达后,4 聚体对重金属吸附能力提高5.9 倍, 8 聚

周围神经损伤及修复(20200405113224)

周围神经损伤及修复 北京积水潭医院朱瑾 一、周围神经的显微功能解剖 周围神经的显微功能解剖包括两部分: (一) 神经元: 包括运动神经元、感觉神经元和交感神经元。 神经元是组成神经系统的基本结构及功能单位,神经元具有感受刺激,传导兴奋的功能,即神经元能完成神经的基本功能。神经元是由细胞体和细胞突起(轴索)所组成;轴索排列成束形成神经纤维束,由脊髓内发出分布到四肢及躯干形成周围神经。 运动神经元位于脊髓的前脚细胞中,感觉神经元和交感神经元位于脊髓椎旁的交感神经节中。 (二) 神经干 神经干由三部分组成,神经纤维、支持组织和营养血管。 1.神经纤维 神经纤维包括轴索、髓鞘以及神经内膜,其中轴索里面都是轴浆,轴浆由近端向远端形成一定的压力,造成轴浆的流动;髓鞘是一种脂类结构,主要功能是防止兴奋扩散;神经膜内包覆着 一层雪旺氏细胞,雪旺氏细胞是神经再生的通道,也是神经结构中非常重要的一部分。 2.支持组织 神经干的支持组织,包括神经外膜及神经束膜。

在轴突的最外层,包绕着神经内膜。若干轴突组成一个神经束,有神经束膜包绕。若干神经 束组成神经干,由神经外膜包绕。神经外膜为一层结缔组织,有很多纵形的纤维,在对抗关节曲 伸活动,以及短束神经牵拉时起到一定的缓冲作用。 3.营养血管 神经的营养血管由神经系膜发出来,然后延伸到外膜发布于神经中。伴行的血管随神经系膜 发出后,在神经外膜分别向近端和远端纵形走向,在这些纵形走向血管形成广泛的吻合支,使得 神经的血液供应非常丰富。有研究证明,游离神经在7cm以内时,不会对神经的血供造成很大的影响。因此,在手术操作中,一定要注意保护神经的血管。 二、周围神经损伤的类型

环境修复原理与技术

环境修复原理与技术 一、单选(13分) 1、微生物降解有机污染物的基本反应类型不包括() A中和反应 B、氧化反应 C、还原反应 D、水解反应 正确答案:A 2、以下不属于物理修复技术的是() A、原位可渗透反应墙技术 B、固化稳定化修复技术 C、电动力学修复技术 D、热力学修复技术 正确答案:A 3、以下不属于环境生物修复技术局限性的是() A.需要大型设备,造价昂贵 B、耗时长 C、条件苛刻 D、并非所有进入环境的污染物都能被利用 正确答案:A 4.可处理性试验方法不包括( A.水体灭菌实验 B.土壤柱试验 C、反应器实验 D.摇瓶实验 正确答案:A 5、微生物修复的影响因素不包括() A大气性质 B、微生物活性 C、污染物特性 D、土壤性质 正确答案:A 6、土壤污染的特点不包括() A.隐蔽性 B、可逆性 C、长期性 D、后果严重性 正确答案:B

7、稳定塘修复技术可以分为微生物稳定塘和水生生物塘,下列选项中不属于微生物稳定塘的是() A好氧塘 B、养殖塘 C、厌氧塘 D、曝气塘 正确答案:B 8、干扰可以分为自然干抗和人为干扰,以下不属于自然干扰的是( A.文化活动或过程干扰 B、火干扰 C.土壤性干扰 D.动物性干扰 正确答案:B 9、修复不包括() A恢复 B、重建 C、整顿 D、改建 正确答案:C 10、气体抽提修复技术优点不包括() A、处理量大 B、干扰小 C、对不易挥发有机污染物处理效果明显 D、易于与其他技术组合使用 正确答案:C 11、生命现象的典型表现是() A同化作用 B.异化作用 C、新陈代谢 D、呼吸作用 正确答案:C 12、大气污染的修复净化技术不包括() A.植物修复技术 B.微生物修复技术 C、无机矿物材料修复技术 D、原位修复技术 正确答案:D

自修复高分子材料的研究现状及发展

自修复高分子材料的研究现状及发展 发表时间:2020-01-15T14:41:52.863Z 来源:《科学与技术》2019年17期作者:李果兴陈恒 [导读] 近年来,智能自修复高分子材料越来越引人注目 摘要:近年来,智能自修复高分子材料越来越引人注目。未来的开发阶段包括(1)改进的维修效率和维修,以便快速维修。(2)简化合成工艺,降低材料成本;(3)绿色环保,开展符合环境保护的可持续发展项目。综上所述,聚合物自修复材料具有非常广泛的发展前景。但是我国这个领域的研究还与世界先进水平有所不同,因此我们需要继续进行更深入的研究,将其迅速应用到科学技术和商业市场,以谋求全人类的利益。本文基于自修复高分子材料的研究现状及发展展开论述。 关键词:自修复;高分子材料;研究现状及发展 引言 今天,随着社会的快速发展,对材料的性能要求越来越高。自修复聚合物材料由于其自修复功能性质,具有延长材料寿命和降低材料使用过程中维护和维护成本的优点,因此自修复聚合物材料在未来的各个领域具有良好的应用和发展前景。 1自修复高分子材料概述 自修复型高分子材料是指高分子材料在受到损伤后可在宏观和微观自行修复,并在一定程度上恢复其力学性能的一类高分子材料。依据修复的特征,自修复型高分子材料可分为本征型和外援型两大类。外援型聚合物自修复材料通常是指向聚合物基体中引入包覆有修复剂的微胶囊、微管或中空纤维等的复合材料。当材料受到损伤时,包覆层破裂并释放出修复剂,修复剂之间相互反应从而完成修复过程。如White等首次向环氧树脂中同时引入了包覆有环戊二烯修复剂的微胶囊和分散于基体中的Grubbs催化剂,当复合体系受到损伤时,微胶囊破裂,修复剂释放出来并与催化剂反应,形成新的聚合物从而实现裂纹的修复。本征型聚合物自修复材料则是指聚合物通过大分子链自身的运动、缠结或可逆的化学反应(Diels-Alder反应、可逆酰腙键的形成、可逆双硫键的形成、硼酸酯键的形成等)、非共价键作用(超分子相互作用,如氢键、离子键、π-π堆叠等)而引发修复功能的一类高分子材料。外援型自修复材料由于受修复剂的限制而无法实现多次修复,且修复的效果强烈依赖于修复剂的包覆效果。 2外植型自修复材料 外植体自修复材料系统主要是微胶囊自修复系统和液芯纤维自修复系统[。微胶囊法,顾名思义,起恢复作用的是事先在身体里的微胶囊。内部含有治愈剂,出现裂纹时,裂纹尖端的应力作用释放出内部治愈剂,与埋在材料内部的催化剂发生化学反应,达到修复裂纹的目的。其优点是能更好地防止微裂纹扩散,有效地提高聚合物材料的寿命。微胶囊自我治愈的概念首先由白色等[2]提出,这种微胶囊材料的保守剂内层是双环戊二烯(DCPD),外层用脲醛树脂包裹。然后将微胶囊与Grubbs催化剂均匀分散在环氧树脂体系中。微胶囊方法也有缺点。因为可以将治愈剂事先埋在材料中,然后在材料准备中添加催化剂,从而修复裂纹。因此,还有很多要考虑的因素,包括微裂纹扩展速度、治愈剂是否与催化剂反应良好、治愈剂是否扩展良好等。催化剂对治愈剂反应非常有效,只有当材料中的裂纹扩展速度高于材料内部的裂纹时,才能很好地防止裂纹的扩散,从而有效地保证了具有高分子材料的性能。由于修复核纤维的系统与微胶囊系统具有相同的机制,当材料出现裂缝时,会释放修复的物质并修复材料缺口。但是,液体的核纤维类型是将还原的材料倒入纤维材料中,然后将其隐藏在材料中。纤维素型是微胶囊自我修复系统的扩展。 3本征型自修复高分子材料 本征型自修复高分子材料是一种在外力或外能作用下被一定程度的破坏后,无需施加能量和力量即可自我修复的材料。目前,国内外相关团队都进行了大量自我修复材料的研究,开发出的自我修复聚合物材料大致分为具有可逆共享耦合的自我修复聚合物材料两种。具有可逆非共结的聚合物材料 3.1可逆Dieal-Alder(DA)反应自修复 DA反应是一种受温度影响的可逆化学反应,其作用原理的本质是加成成环反应受温度控制的可逆反应。具体是一个含有活泼双键或三键的化合物与共轭二烯类化合物进行加成成环反应,此反应活化能低,反应速度快,当温度升高,反应方向调转,生成活性基团。所以,在温度的影响下,DA可逆反应便是该高分子材料的自修复原理。 3.2基于酰腙键型的自修复高分子材料 基于酰肼结合的价耦合自愈系统的机理是醛固反应产生的酰肼结合断裂后自发生长。s . BOD等,如果ph大于4,则转换为凝胶状态;如果ph小于4,则转换为溶胶状态;如果调整ph值,则可以自我修复。这种材料在聚乙二醇两端修改二苯甲酰肼后,与3[(4-醛基苯氧化物-甲基]乙烷反应,从而在缩合反应机制中产生自修复聚合物。如果系统ph值在一定范围内发生变化,酰九头蛇关键点将被破坏和重建,宏观上表现为材质的自愈行为。 3.3可逆N-O键自修复 可逆N-O键是一种键能比较低的化学键,在60℃便可发生热可逆反应,因此只需要外界提供较少的能量就能重新成键,来达到自修复的效果。Otsuka等将烷氧胺基(C-O-N)单元创造性地与高分子材料结合,使得原来无法进行自修复的高分子材料具有了自修复的能力,并且还保留了该种高分子原有的可降解的性能。Sakai等在C-O-N重复单元与单体进行共聚,形成了一种嵌段共聚物,这种高分子材料可以通过烷氧胺基的断裂与重组来实现自修复行为。但是,此种材料的自修复温度要达到126℃,并且需要修复6~12h才能完成,修复温度较高且修复时间较长,这一自修复条件限制了该种材料的应用前景。 4自修复高分子材料的应用 科学家们不断改善其性能,以满足人类日常需求,从而大规模应用聚合物自修复材料。善俊基等制造了模拟荷叶表面蜡治疗的自愈超水性涂料,刮伤表面后光的氧化会削弱超疏水性的氟硅烷群疏水性,开始吸收环境中的水,然后将材料内部的氟硅烷群移到表面,恢复涂层的超疏水性功能。haraguchi等制造了具有有机聚合物-无机粘土网络结构的纳米复合水凝胶,当材料横截面接触时,表面的聚合物链相互交织,通过氢键形成新的共享键合,从而恢复断裂链接。智能自修复聚合物材料目前在人工肌肉等生物工程领域以及宇宙飞船、火箭发动机零部件等航天领域初次使用。另外,墙壁结构、桥梁建设等建筑领域也在逐渐发挥其优越性。相信不久将给全人类带来技术革命。 结束语 材料在使用的过程中使用时间、温度和其他因素,则会出现材料损坏、疲劳等现象,主要是裂纹,如果出现裂纹,则会降低材料的机

环境化学(黏土矿物材料与环境修复)

黏土矿物材料与环境修复 摘要: 黏土矿物材料、赤潮、水体污染、大气污染、放射性污染、环境替代材料人类应用黏土的历史源远流长,早在新石器时代就开始利用黏土作为烧制各种陶器和砖瓦的原料。而人们有意识地研究黏土则始于20世纪初。在X射线衍射技术诞生以前,人们并不知道黏土的真实本质。黏土科学作为一门21世纪人类将会迎来一个“新石器时代”,人类对非金属矿产的需求将大大超过对金属矿产的需求。黏土矿物在人们的生产领域将会扮演越来越重要的角色。 黏土矿物广泛存在于各种地质体中,特殊的晶体结构赋予黏土矿物许多特性,例如脱水、复水性能,膨胀和收缩性能、可塑性能、离子交换性能等。黏土矿物的粒级又属胶体范围,高的比表面积和表面双电层结构使其具有胶体的特性。在本质上,黏土矿物属热力学不稳定系统。天然黏土矿物大都具有某种活性,这种活性正是晶体结构和胶体性质的反映。 黏土矿物材料治理赤潮污染 赤潮是指由海洋环境条件的改变,促使某些浮游的藻类生物爆发性的繁殖而引起的异常现象。主要发生在近海域。关于赤潮发生的原因虽然尚未完全查明,但根据有关报道看来,科学家们在这一问题上已取得基本一致的共识,认为基本有三条: 1、水域化学因素的变化,是由于城市生活用水、工业废水的大量倾入,使内弯和浅海区无机态氨、磷酸盐和铁、锰等微量元素增加,为赤潮生物的大量繁殖提供了丰富的营养物质; 2、由于水温和盐度的变化,一般为20~33℃的水域中,赤潮水域的盐度一般为27%~37%; 3、气象条件的变化,通常赤潮出现在闷热、风平浪静的夏季。一般认为,赤潮是生物、营养物质、地理条件、海流等各种因素综合作用的结果。 近几年来,有害赤潮对沿海经济产生的危害明显增大,其主要原因是:

自修复涂料的进展

自修复材料的研究方向与研究进展 一、自修复材料研究方向 1.自修复涂料类型从从不同角度考虑,自修复涂料可有以下几种类型: (1)从涂料的基本结构,可有分相结构的助剂型与连续相结构的本征型。 (2)基于涂料的基本组成,在分相结构的助剂型涂料中,已经研究报道了不同配方组成:有包囊、纤维填料、有层状膨胀型填料、纳米高岭土等类型。 (3)从修复机理上看,可以有液体释放型、化学反应型、体积膨胀型、可逆共价键型、可逆非共价键型和可逆聚合物网络型等。 (4)从功能上看,可有外观修复功能、防腐功能修复涂料等 2.目前自修复材料的研究主要集中在以下几个方面: (1) 陶瓷混凝土基自修复材料 在混凝土中掺入某些特殊的组分,如内含粘结剂的空心胶囊、空心玻璃纤维或液芯光纤,使混凝土材料在受到损伤时部分空心胶囊、空心玻璃纤维或液芯光纤破裂,粘结剂流到损伤处,使混凝土裂缝重新愈合。自修复混凝土对土木建筑结构的应力、应变、和温度等参数进行实时、在线监控、对损伤进行及时修复。这一技术被广泛应用在公路、地基、桥墩等建筑物中。 (2) 金属基自修复材料 金属基复合材料由于金属基体特有的属性,一般都是采用能力补

给的方式进行修复。比如高温保温的方法可以对基体内部的缺陷进行修复,严格地讲这并不是自修复的过程,因为它需要外界因素的作用才可以进行修复。也有利用互穿网络高分子膜络合在金属表面,以实现水蒸气滴状冷凝。由于位阻效应,这类高分子容易铺展成片状。涂覆在金属表面时,形成大分子层,从而得到附加热阻小的超薄涂层。由于具有含孤对电子的原子,因而能够与金属离子或原子形成强度较高的配位键(如N→Cu2+和N→Cu 等)。大面积的配位键像图钉一样把高分子膜牢牢地钉在金属表面上。网格状高分子互相牵制的网状结构,能够使个别断裂的配位键有机会重新形成,这种自修复的特性可以防止涂层剥落。其他一些研究主要集中在材料内部分散或复合一些功能性物质来实现。当材料受损时,这些物质发生某种变化(主要是高温下使金属表面形成氧化膜,通过氧化膜对裂纹发展抑制作用),实现自组装。 (3) 金属磨损自修复材料 金属磨损自修复材料是一种由羟基硅酸镁等多种矿物成分、添加剂和催化剂等构成的复杂组分超细粉体组合材料、它的常用组分的粒度为0.1~10μm,可以添加到各种类型的润滑油或润滑脂中使用。以润滑油或脂作为载体,将修复材料的超细粉粒送入摩擦副的工作面上。它不与油品发生化学反应,不改变油的粘度和性质,也无毒副作用。这种自修复材料的保护层不仅能够补偿间隙,使零件恢复原始形状,而且还可以优化配合间隙。因此,有利于降低摩擦振动,减少噪声,节约能源,实现对零件摩擦表面几何形状的修复和配合间隙的优

环境生物修复技术复习题

2016环境生物修复技术复习题 一、名词解释 1、原位生物修复 指在污染的原地点采用一定的工程措施进行生物修复。采用工程措施但不挖掘或抽取地下水等方法。 2、环境生物技术 直接或间接利用完整的生物体或生物体的某些组成部分或某些机能.建立降低或消除污染物产生的生产工艺,或者能够高效净化环境污染以及同时生产有用物质的人工技术系统,称之为环境生物技术。 3、膜污染 膜污染是指在膜过滤过程中,水中的微粒、胶体粒子或溶质大分子由于与膜存在物理化学相互作用或机械作用而引起的在膜表面或膜孔内吸附、沉积造成膜孔径变小或堵塞,使膜产生透过流量与分离特性的不可逆变化现象。 4、稳定塘处理技术 稳定塘旧称氧化塘或生物塘,是一种利用天然净化能力对污水进行处理的构筑物的总称。其净化过程与自然水体的自净过程相似。通常是将土地进行适当的人工修整,建成池塘,并设置围堤和防渗层,依靠塘内生长的微生物来处理污水。主要利用菌藻的共同作用处理废水中的有机污染物。稳定塘污水处理系统具有基建投资和运转费用低、维护和维修简单、便于操作、能有效去除污水中的有机物和病原体、无需污泥处理等优点。 5、植物促进 也称之为植物提取,植物根系将土壤中重金属或有机污染物从污染的土壤中转移到植物的地上部分。一般指那些能累积超过叶子干重%的Mn,或者%

的Co、Cu、Pb、 Ni、Zn,或者%的Cd的植物。目前世界上有 500多种这样的植物。 6、湿地处理系统 人工湿地处理系统是由人工优化模拟湿地系统而建造的具有自然生态系统综合降解净化功能,且可认为监督控制的废水处理系统,是一种集物理,化学,生化反应于一体的废水处理技术;一般由人工基制和生长在其上的水生植物组成,是一个独特的土壤,植物,微生物综合生态系统。 7、土地处理技术 利用土壤-植物系统的自我调控机制和对污染物的综合净化功能对被污染的河水进行异位处理的技术。 8、矿化作用 指有机污染物在一种或多种微生物的作用下彻底分解为H2O、CO2和简单的无机化合物如含氮化合物、含磷化合物、含硫化合物和含氯化合物等的过程。 9、生物强化 是指通过向传统的生物处理系统中引入具有特定功能的微生物,提高有效微生物的浓度,增强对难降解有机物的降解能力,提高其降解速率,并改善原有生物处理体系对难降解有机物的去除效能。 10、生物冶金 生物冶金技术,又称生物浸出技术,通常指矿石的细菌氧化或生物氧化,由自然界存在的微生物进行。这些微生物被称作适温细菌,大约有微米长、微米宽,只能在显微镜下看到,靠无机物生存,对生命无害。这些细菌靠黄铁矿、砷黄铁矿和其他金属硫化物如黄铜矿和铜铀云母为生。 12、颗粒污泥 颗粒污泥是指UASB工艺中起净化污水作用的污泥颗粒。好氧颗粒污泥

自修复混凝土的现状及发展

自修复混凝土的现状及发展 、自修复混凝土的基本特征 自修复是生物的重要特征之一[4]。自修复的核心是物质补给和能量补给,其过程由生长活性因子来完成[5]。自修复混凝土是模仿动物的骨组织结构受创伤后的再生,恢复机理,采用修复胶粘剂和混凝土材料相复合的方法,对材料损伤破坏具有自修复和再生的功能,恢复甚至提高材料性能的一种新型复合材料。 据此,学者们设想具有自修复行为的智能材料模型为,在材料的基体中布有许多细小纤维的管道。管中装有可流动的物质修复剂。在外界环境作用下,一旦材料基体开裂,则纤维随即裂开,其内装的修复剂流淌到开裂处,由化学作用自动实现粘合,从而抑制开裂修复材料。这可以提高开裂部分的强度,增强延性弯曲的能力,从而提高整个结构的性能[6]。若采用低模量的胶粘剂修复混凝土,则可以改善建筑结构的阻尼特性,以减轻地震的大风对建筑物的破坏;如果胶粘剂弹性模量较大,则可以恢复结构的刚度和强度;不同凝固时间的胶粘剂可以用于对结构的弯曲进行控制。 自修复混凝土,从严格意义上来说,应该是一种机敏混凝土。机敏混凝土是一种具有感知和修复性能的混凝土,是智能混凝土的初级阶段,是混凝土材料发展的高级阶段[7]。由这种材料构建的混凝上结构出现裂纹和损伤后,如何利用自身的材料特性达到自修复、自钝化,对混凝土结构起到自防护的作用,是我们关注的主要问题。近年来,损伤自诊断混凝土、温度自调节混凝土、仿生自愈合混凝土等一系列机敏混凝土的相继

出现为智能混凝土的研究和发展打下了坚实的基础。未来,可在自修复混凝土的基础上,进一步融入信息科学的内容,如感知、识别和驱动控制等。从而达到适应环境、调节环境、材料结构和健康状况的自诊断和自修复等目的。使其具有多种完善的仿生功能,包括骨骼系统(基材)提供的承载能力,神经系统(传感网络)提供的检测和感知能力,肌肉系统(驱动元件)提供的康复能力,真正达到混凝土材料的结构智能一体化的境界[8] 2、国内外的研究状况与存在的问题 智能混凝土是材料学的一个研究分支,其起源可追溯到上世纪六十年代,当时的苏联科学家采用碳墨为导电组分制备了水泥基导电复合材料。八十年代末期,日本土木工程界的研究人员设想并着手开发构筑高智能结构的所谓对混进变化具有感知和控制功能的智能建筑材料。美国在1993年,由于有国家科学基金的资助,开办了与土木建筑有关的智能材料与智能结构的工厂。然而,正如前面所说,智能混凝土材料是具有若干个S行为的材料[9],即具有自我诊断功能(self-diagnosis)、自我调节功能(self-tuning)、自我恢复功能(self-recovery)、自我修复功能(self-repair)等多种功能的综合,缺一不可,以目前的科技水平,制备完善的智能混凝土材料是相当困难的,也是不现实的。 2.1 国外的研究现状 近年来,国内外虽然先后开展了智能仿生混凝土的研究,并取得了一些有价值的成果。如相继出现的水泥基导电复合材料、水泥基磁性复合材料、具有屏蔽磁场和电磁波的水泥基复合材料、损伤自诊断水泥基复

第六周环境修复材料

第五部分:合成可降解材料和天然可降解材料 一、概述 所谓环境降解材料,一般指可被环境自然吸收、消化、分解,从而不产生固体废弃物的一类材料。一些天然成分的材料如木材、竹材,以及一些由天然纤维加工的纸制品,一些天然提取物如甲壳素、玉米蛋白等是自然的环境降解材料。人工合成的环境降解材料,目前主要有两类,一类是仿生物材料中的生物降解磷酸盐陶瓷材料,另一类就是目的产量最大、用途最多的生物降解塑料。 1、生物降解塑料的研究背景 塑料具有优异的特性,广泛应用于国民经济的各个领域。塑料的产量和用量不断增加,随之出现的问题是废弃塑料量也不断增加。通常所说的废塑料主要有三种:一种是聚乙烯,主要用来做农业上的塑料薄膜、购物袋;另一种是聚丙烯。一般用做装水泥与化肥的编织袋,建筑防护用的安全棚,包装用的打包带等;还有一种是聚苯乙烯,主要用做泡沫减震塑料、快餐饭盒,包装填充物。 所谓白色污染就是由各种用过的,难以被大自然消化的塑料饮瓶、塑料包装袋、农用塑料薄膜、塑料填重材料等作为垃圾被抛弃,引起的一种白色垃圾污染现象。 普通的高分子塑料在自然环境分解速度很慢。大量使用和废弃高分子塑料使其长期在环境中大量积累,是白色污染遍及全球的主要原因。 2、生物降解塑料的分类 生物降解塑料是指具有满意的使用性能,且使用后能被自然界微生物或光最后完全分解成二氧化碳、水及其他低分子化合物使之成为自然界中碳素循环的一个组成部分的一类高分子材料。 到目前为止,有关生物降解塑料的开发可分为四大类:淀粉填充型、微生物合成型、化学合成型、天然物质利用型等。 淀粉填充型 淀粉因其价廉物美,又是一种易于工业化的材料,使其成为可降解塑料的一种重要原料。目前市场上出现的淀粉聚合物就是由淀粉制备的生物降解塑料。淀粉填充型可降解塑料的一个缺点是其耐水性较差。改性方法是将原料制备成热塑性淀粉,再与少量的聚烯烃塑料共混,以改善其耐水性;另一种改性方法是把淀粉进行疏水化处理,即在天然淀粉的大分子上接枝疏水性基团以达到增强其耐水性的目的。表5-1是淀粉塑料和聚乙烯塑料的力学性能比较。可见,淀粉塑料的弹性模量、剪切模量和延伸率等性能指标都介于低密度聚乙烯(LDPE)和高密度聚乙烯(HDPE)之间,表明淀粉塑料的性能可与聚乙烯塑料相媲美。 表5-1淀粉塑料和聚乙烯塑料的力学性能比较 微生物合成型 开发生物降解高分子材料。目前的一个研究热点是采用生物工程技术来合成生物降解高分子材料,主要成分是微生物聚酯,以得到更廉价的可降解塑料产品。例如,运用遗传工程把白杨木的叶子干燥,磨碎成细粉末,然后萃取出叶绿体,就可从白杨木的叶绿体中得到聚羟基丁酸酯(PHB)的母粒料,从而获得PHB降解塑料。英国利用原核生物和真菌的细胞在分子水平上合成PHB并已获美国专利。

环境修复技术

环境修复技术 Environmental Bioremediation Technology 一、课程基本信息 学时:32 学分:2.0 考核方式:考查 中文简介:环境修复技术是在上世纪90年代迅速发展的一种治理土壤、沉积物、水体和海洋中有毒化学品污染的新技术。本课程重点围绕生物修复技术,主要讲授生物修复的基本特点及其理论基础,即微生物对污染物的作用及其毒理效应、污染物对生物降解的作用、环境因子对污染物生物降解的影响等。同时,本课程结合实例以专题形式介绍修复技术在不同污染环境中的应用,包括富营养化湖泊和河涌的生态修复、人工湿地在污水处理中的应用、有机污染物土壤的生物修复、重金属污染土壤的生态修复、连作土壤微生物污染的修复和农业非点源污染修复技术等。 通过本课程的学习,使学生了解当前修复技术的发展和应用情况,掌握针对不同污染环境下所采用的生物修复技术,提高学生理论知识应用能力,为培养具有较强实操能力的环境专业人才打下坚实基础。 二、教学目的与要求 环境修复技术是一个多学科的交叉课程,需要化学、微生物学、生物化学、毒理学、工程学、土壤学、水文地质学、植物学等方面的综合知识。本课程从生物修复的基本知识入手,重点介绍不同污染环境下所采用的修复技术、污染物降解的基本过程及其影响因素,以使学生对生物修复的原理、发展、应用以及存在的问题有明晰和透彻的了解。 三、教学方法与手段 本课程教学过程中主要采用的方法和手段有:讲授法、案例教学法、讨论法、体验学习教学法、调查研究和专业网站学习法等。 四、教学内容及目标 教学内容教学目标学时分配 第一章绪论 3 第一节本课程授课内容、成绩评定与学习方法了解 第二节背景知识了解 第三节基本概念掌握

关于自修复材料的调研

几类自修复材料的研究进展 ———根据不同体系进行分类(未列出催化剂体系)1、无催剂的自修复体系 1、1 胺-环氧修复体系 该体系是利用环氧修复试剂与胺固化剂在伤口处的交联固化反应,从而对材料达到自我修复的效果,胺固化剂的储存在胶囊、中空纤维、微脉管结构里,当胶囊或者纤维在外力作用受损时,释放胺固化剂。 将胺类固化剂包覆在胶囊里面一直是一个难题,直到2009年Kirk et al[1]成功将胺类固化剂包覆在纳米多孔的二氧化硅囊里,但是修复试剂很难流动到伤口处,大多数情况下只能进行局部修复。 Later, Jin et al.[2]在研究中,利用真空渗透技术使得脂肪族胺类固化剂被包覆在PUF囊里,与此同时利用原位聚合的方法将环氧单体包覆在囊里,同时将双组份分散在环氧树脂体系中,利用TDCB观察材料的韧性,当胺胶囊与环氧胶囊的比例为4:6时,修复效率达到了91%,在常温条件下,其修复稳定性较好,能持续6个月。随着修复次数的增加,其修复效率从最高的91%降低到35%。研究中还发现环氧单体的稳定性较好,200℃时仍能稳定存在,但含胺的囊随着温度的增加会逐渐释放胺类固化剂并在修复时会产生过度补偿的现象。在以后的研究中,应该重点放在保护含胺胶囊并提高其热稳定性。在材料收到破坏时,要保证俩种胶囊都能够同时按照比例释放 Pang and Bond[3],利用中空纤维作为载体,环氧树脂修复剂与荧光物质作为芯材,利用荧光物质的来观察整个过程的修复行为。研究中发现,修复试剂的释放速度很快,能很快流动到裂纹处,室温下24h后,其修复效率达到97%。以后的研究中,需要注意的是修复试剂与中空纤维的载体的对应选择,要保证其释放速度要大于其修复速度,尽可能避免在修复试剂抵达裂纹处之前发生修复反应。Toohey et al[4]利用直写技术(direct-write)构建多重的微脉管网状结构并分散在聚合物介质中,这类脉管结构分为俩部分,一部分载有胺类固化剂,另一类载有环氧树脂修复剂,当材料收到破坏,双组份释放到裂纹处交联固化,进行自修复。其修复效率到达了60%以上,对单一裂纹的能进行16次的修复。以后的研究中,需要注意的是1、要确保双组份能稳定的存在于各自的微脉网结构中。2、提高修复效率。3、增加修复次数。 1、2 单组份环氧修复体系 Carlson 等[5]利用聚酰亚胺包裹着含双键的环氧单体修复剂,当材料表面受损时,环氧修复剂释放,流动到裂纹区,在UV光条件下聚合。该文献要收费,所以只是从摘要你们获取信息,文章中未提修复效率,但在UV光照射一分钟后,修复成功。 还有一种方法,是利用具有熔点的环氧树脂作为修复试剂,当涂层收到破坏时,对材料高温加热,使环氧修复试剂能流动到裂纹处,冷却之后填满裂纹,从而达到修复的效果。 单组份环氧其修复效率不高,修复后的性能不能得到保证,且修复条件高温加

神经损伤与修复

神经损伤与修复 摘要:中枢神经损伤后的康复任务是十分繁重和重要的,由此带来的经济负担也十分沉重。本文介绍了神经损伤修复的影响因素以及目前存在的一些治疗手段及相关研究。 关键词:神经损伤修复神经干细胞 简介 脑外伤(traumatic brain injury,TBI)多年来一直是致残致亡的重要因素,主要表现为神经细胞损失、细胞间(神经细胞与组织细胞间)、轴突,突触间联系被破坏等。药物治疗仅仅使损伤部位愈合形成胶质斑痕,而细胞,组织移植治疗可以取代受损部位损失细胞,同时避免胶质斑痕的形成,使脑外伤治疗得到巨大的突破。最初的移植材料来自于流产的胎儿脑组织,方法也是较为简单的直接移植,取得了明显的效果,但是移植材料来源及伦理学限制使移植治疗在临床应用上一直举步维艰。 传统对神经损伤的修复方式,即手术治疗已经不能满足医疗上的需要,在这种背景下,对新型治疗方式的研究需求加大,进而产生了一系列的研究成果。1. 影响神经损伤修复的因素 神经再生过程十分复杂包括以下条件: (1)必须保证神经元的存活,并能启动神经再生所需的代谢反应。 (2)在远离神经损伤的部位(即神经再生的局部环境)能提供良好的营养。 (3)再生后的神经能支配相应组织,并能恢复原有功能。 目前对神经损伤后再生的研究已达到分子水平,其病理过程是受损神经元综合细胞外促进和抑制再生的信号,通过跨膜信号转导启动再生相关基因表达的结果。 在目前研究成果下,原因可能有: (1)神经元本身缺乏再生能力。 (2)神经营养因子生成不足,包括靶源性营养因子的供给因轴突断裂而中 断。 (3)细胞外基质不适宜,损伤后产生了神经元生长的抑制因子。 (4)损伤后局部胶质细胞形成坚硬的瘢痕,阻碍轴突的生长、穿过等。2. 理论突破下的神经损伤修复新方法 20世纪80年代,成年哺乳动物的中枢神经系统(CNS)损伤后不能再生和恢复的理论受到挑战,这种概念上的突破主要基于两方面的实验事实:把外周神经

聚合物基自修复复合材料的国内外研究进展

聚合物基自修复复合材料的国内外研究进展 【摘要】目前具有自诊断、自修复功能的智能复合材料已成为新材料领域研究的重点之一。本文通过介绍微胶囊、液芯纤维等不同类型的聚合物基自修复复合材料的制备方法和自修复的基本原理总结了微胶囊和液芯纤维在聚合物基自修复复合材料中的详细应用和研究进展 【关键词】微胶囊;液芯纤维;自修复;聚合物基符合材料 智能材料是指能模仿生命系统 ,同时具有感知和激励双重功能的材料。自愈合(自修复)是生物的重要特征之一。材料一旦产生缺陷,在无外界作用的情况下材料本身具有自我恢复的能力称为自修复。自修复复合材料的自修复机理就是源于生物体系损伤后自动愈合的原理。聚合物基复合材料的自修复功能是通过在复合材料中埋置包覆有修复剂的微胶囊或填充有修复剂的液芯纤维等来实现的。1. 自修复填充材料 1.1 微胶囊 1.1.1 微胶囊的特殊性能 用于聚合物基自修复复合材料的微胶囊具有良好的热稳定性、适当的力学性能、与聚合物基体具有良好的相容性等。在制备这类微胶囊时,壁材与囊芯原料的选择十分严格。选择的囊芯应该具有良好的稳定性和较低的粘度,当微胶囊破裂时,能适时流出并填充裂纹,以便有效粘结裂纹。微胶囊壁材应具有良好的密封性、热稳定性和适当的力学性能,这样才能保护囊芯及微胶囊在复合材料制备过程中的完整性与使用性。同时壁材与树脂基体之间应有较好的相容性,以利于微胶囊与基体界面粘接强度的提高。 1.1.2微胶囊的制备方法 微胶囊的制备方法有很多,大致可分为物理法、物理化学法、化学法3类。物理法有空气悬浮法、喷雾干燥法、包结络合法等,物理化学法有相分离法、熔化分散法和 冷凝法等,化学法主要有界面聚合法、原位聚合法等。 1.2 液芯纤维 1.2.1 液芯纤维的制备方法 制备用于聚合物基自修复复合材料的液芯玻璃纤维时,需选择合适直径和容积的空心玻璃纤维,并在其中注入修复剂单体。可选择的修复剂主要有环氧树脂、苯乙烯等。 1.2.1 液芯纤维的制备难点 制备液芯纤维自修复复合材料的主要难点是玻璃纤维在树脂基体中的排列,需要考虑纤维的排列方向、纤维之间的间距等问题。 2. 自修复复合材料的国内外研究成果 2.1微胶囊型自修复材料 在聚合物基自修复材料领域,微胶囊是研究和应用相对较多的一种填充材料。用于复合材料自修复的微胶囊主要是聚脲甲醛包覆双环戊二烯微胶囊[36-38]、聚脲甲醛包覆环氧 树脂微胶囊等[20]。其中报道较多的是用聚脲醛树脂包覆双环戊二烯(DCPD)微胶囊和Grubbs催化剂组成的自修复体系制得的自修复材料。Blaiszik B J等[22]在环氧树脂基体中加入聚脲甲醛包覆DCPD纳米微胶囊时,发现微胶囊几乎可以全部破裂,修复剂充分释放,达到较好的修复效果,但是这种微胶囊的加入会使材料的弹性模量和拉伸模量有一定程度的降低。Keller M W等[39]将微胶囊化的聚二甲基硅氧烷(PDMS)和微胶囊化的交联剂埋覆在PDMS基体中,通过拉伸实验发现,加入该微胶囊体系的基体拉伸形变达到50%时 无明显损伤,并且拉伸强度恢复率可达70%,可见微胶囊的加入不仅能实现材料的自修复,还能提高材料的抗拉强度。对于纤维增强复合材料,纤维之间的空隙可以成为微胶 囊天然的保护场所,因此制备纤维增强的自修复复合材料较为简便。Kessler M R等[36]在纤

西安交通大学17年9月课程考试《环境修复原理与技术》作业考核试题

西安交通大学17年9月课程考试《环境修复原理与技术》作业考核试题 一、单选题(共20 道试题,共40 分。) 1. 微生物修复的影响因素不包括() A. 大气性质 B. 微生物活性 C. 污染物特性 D. 土壤性质 正确答案: 2. 水环境的修复原则不包括() A. 成本最低原则 B. 生态学原则 C. 水体地域性 D. 最小风险和最大利益原则 正确答案: 3. 大气污染的修复净化技术不包括() A. 植物修复技术 B. 微生物修复技术 C. 无机矿物材料修复技术 D. 原位修复技术 正确答案: 4. 以下不属于植物修复技术优点的是() A. 植物修复技术影响因素少 B. 植物修复的开发和应用潜力巨大 C. 植物修复符合可持续发展理念 D. 植物修复过程易于为社会接受 正确答案: 5. 修复不包括() A. 恢复 B. 重建 C. 整顿 D. 改建 正确答案: 6. 可处理性试验方法不包括() A. 水体灭菌实验 B. 土壤柱试验

C. 反应器实验 D. 摇瓶实验 正确答案: 7. 重金属对植物的伤害不包括() A. 细胞壁结构和功能受到破坏 B. 光合作用受到抑制 C. 呼吸作用发生紊乱 D. 细胞核核仁遭到破坏 正确答案: 8. 气体抽提修复技术优点不包括() A. 处理量大 B. 干扰小 C. 对不易挥发有机污染物处理效果明显 D. 易于与其他技术组合使用 正确答案: 9. 以下不属于植物对重金属抗性机制的是() A. 阻止重金属进入体内 B. 将重金属在体内通过酶的作用分解掉 C. 将重金属排出体外 D. 对重金属的活性钝化 正确答案: 10. 干扰可以分为自然干扰和人为干扰,以下不属于自然干扰的是() A. 文化活动或过程干扰 B. 火干扰 C. 土壤性干扰 D. 动物性干扰 正确答案: 11. 以下不属于环境生物修复技术局限性的是() A. 需要大型设备,造价昂贵 B. 耗时长 C. 条件苛刻 D. 并非所有进入环境的污染物都能被利用 正确答案: 12. 我国富营养化湖泊水库的共同特征不包括() A. 总氮和总磷浓度高 B. 透明度差 C. 水体叶绿素过高 D. 恶臭 正确答案: 13. 以下不属于物理修复技术的是() A. 原位可渗透反应墙技术 B. 固化稳定化修复技术 C. 电动力学修复技术

相关文档
最新文档