精品-高三数学专题复习教案--函数
高三数学一轮复习教学案:三角函数

三角函数1.了解任意角的概念、弧度的意义、正确进行弧度与角度的换算;理解任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;会利用单位圆中的三角函数线表示正弦、余弦、正切.2.掌握三角函数的公式(同角三角函数基本关系式、诱导公式、和、差角及倍角公式)及运用.3.能正确运用三角公式进行简单的三角函数式的化简、求值和条件等式及恒等式的证明.4.掌握正弦函数、余弦函数、正切函数的图象和性质;会用单位圆中的三角函数线画出正弦函数、正切函数的图象、并在此基础上由诱导公式画出余弦函数的图象.会用“五点法”画出正弦函数、余弦函数和)(sin ϕω+=x A y 的简图,理解ϕω、A 、的物理意义.5.会由已知三角函数值求角,并会用符号arcsinx ,arccosx ,arctanx 表示角.6.掌握正弦定理、余弦定理,并能初步运用它们解斜三角形,能利用计算器解决解三角形的计算问题.三角部分的知识是每年高考中必考的内容,近几年的高考对这部分知识的命题有如下特点:1.降低了对三角函数恒等变形的要求,加强了对三角函数图象和性质的考查.尤其是三角函数的最大值与最小值、周期.2.以小题为主.一般以选择题、填空题的形式出现,多数为基础题,难度属中档偏易.其次在解答题中多数是三角函数式的恒等变形,如运用三角公式进行化简、求值解决简单的综合题等.3.更加强调三角函数的工具性,加强了三角函数与其它知识的综合,如在解三角形、立体几何、平面解析几何中考查三角函数的知识.第1课时 任意角的三角函数一、角的概念的推广1.与角α终边相同的角的集合为 .2.与角α终边互为反向延长线的角的集合为 .3.轴线角(终边在坐标轴上的角)终边在x 轴上的角的集合为 ,终边在y 轴上的角的集合为 ,终边在坐标轴上的角的集合为 .4.象限角是指: .5.区间角是指: .6.弧度制的意义:圆周上弧长等于半径长的弧所对的圆心角的大小为1弧度的角,它将任意角的集合与实数集合之间建立了一一对应关系.7.弧度与角度互化:180º= 弧度,1º= 弧度,1弧度= ≈ º.8.弧长公式:l = ;扇形面积公式:S = .二、任意角的三角函数9.定义:设P(x, y)是角α终边上任意一点,且 |PO| =r ,则sin α= ; cos α= ;tan α= ;10.三角函数的符号与角所在象限的关系:1213的正弦线、余弦线、正切线.- + -+cos x , + + --sin x ,- + +-tan x ,x y O xy O x y O2α,2α ,3α的终边所在位置.解: ∵α是第二象限的角,∴k·360°+90°<α<k·360°+180°(k ∈Z ).(1)∵2k·360°+180°<2α<2k·360°+360°(k ∈Z ),∴2α是第三或第四象限的角,或角的终边在y 轴的非正半轴上.(2)∵k·180°+45°<2α<k·180°+90°(k ∈Z ),当k=2n (n ∈Z )时,n·360°+45°<2α<n·360°+90°;当k=2n+1(n ∈Z )时,n·360°+225°<2α<n·360°+270°.∴2α是第一或第三象限的角.(3)∵k·120°+30°<3α<k·120°+60°(k ∈Z ),当k=3n (n ∈Z )时,n·360°+30°<3α<n·360°+60°;当k=3n+1(n ∈Z )时,n·360°+150°<3α<n·360°+180°;当k=3n+2(n ∈Z )时,n·360°+270°<3α<n·360°+300°.∴3α是第一或第二或第四象限的角.变式训练1:已知α是第三象限角,问3α是哪个象限的角?解: ∵α是第三象限角,∴180°+k·360°<α<270°+k·360°(k ∈Z ),60°+k·120°<3α<90°+k·120°.①当k=3m(m ∈Z )时,可得60°+m·360°<3α<90°+m·360°(m ∈Z ).故3α的终边在第一象限.②当k=3m+1 (m ∈Z )时,可得180°+m·360°<3α<210°+m·360°(m ∈Z ).故3α的终边在第三象限.③当k=3m+2 (m ∈Z )时,可得300°+m·360°<3α<330°+m·360°(m ∈Z ).故3α的终边在第四象限.综上可知,3α是第一、第三或第四象限的角. 例2. 在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合:(1)sin α≥23;(2)cos α≤21-.解:(1)作直线y=23交单位圆于A 、B 两点,连结OA 、OB ,则OA 与OB 围成的区域即为角α的终边的范围,故满足条件的角α的集合为α|2k π+3π≤α≤2k π+32π,k ∈Z .(2)作直线x=21-交单位圆于C 、D 两点,连结OC 、OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围.故满足条件的角α的集合为⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k k ,342322|ππαππα.变式训练2:求下列函数的定义域:(1)y=1cos 2-x ;(2)y=lg(3-4sin 2x ).解:(1)∵2cosx-1≥0,∴cosx≥21.由三角函数线画出x 满足条件的终边范围(如图阴影所示).∴x ∈⎥⎦⎤⎢⎣⎡+-32,32ππππk k (k ∈Z ).(2)∵3-4sin 2x >0,∴sin 2x <43,∴-23<sinx <23.利用三角函数线画出x 满足条件的终边范围(如右图阴影),∴x ∈(k π-3π,k π+3π)(k ∈Z ).例3. 已知角α的终边在直线3x+4y=0上,求sin α,cos α,tan α的值.解:∵角α的终边在直线3x+4y=0上,∴在角α的终边上任取一点P(4t,-3t) (t≠0),则x=4t,y=-3t,r=5)3()4(2222=-+=+t t y x |t|,当t >0时,r=5t, sin α=5353-=-=t t r y ,cos α=5454==t t r x , tan α=4343-=-=t t x y ; 当t <0时,r=-5t,sin α=5353=--=t t r y , cos α=5454-=-=t t rx , tan α=4343-=-=t t x y . 综上可知,t >0时,sin α=53-,cos α=54,tan α=43-; t <0时,sin α=53,cos α=-54,tan α=43-.变式训练3:已知角θ的终边经过点P ()(0),sin m m m θ≠=且,试判断角θ所在的象限,并求cos tan θθ和的值.解:由题意,得0,4r m m ==≠∴= 故角θ是第二或第三象限角.当m =,r =P 的坐标为(,cos tan x y r x θθ∴======当m =,r =P 的坐标为(,cos tan x y r x θθ∴======例4. 已知一扇形中心角为α,所在圆半径为R . (1) 若α3π=,R =2cm ,求扇形的弧长及该弧所在弓形面积;(2) 若扇形周长为一定值C(C>0),当α为何值时,该扇形面积最大,并求此最大值.解:(1)设弧长为l ,弓形面积为S 弓。
高中数学函数教案板书

高中数学函数教案板书
课题:函数
教学目标:
1. 理解函数的概念,掌握函数的基本性质和特点。
2. 掌握函数的表示方法及其图像的特征。
3. 能够灵活运用函数的性质解决实际问题。
教学重点:
1. 函数的概念和特点
2. 函数的表示方法和图像
教学难点:
1. 函数的图像特征和性质的理解
2. 函数的实际应用
教学准备:
1. 教案、黑板、彩色粉笔
2. 教学PPT
3. 实例题及练习题目
4. 学生练习册
教学过程:
一、引入(5分钟)
教师通过引入实际生活中的例子,引起学生对函数概念的兴趣。
二、讲解函数的概念和特点(15分钟)
1. 引导学生了解函数的定义,函数的自变量、因变量和定义域、值域的概念。
2. 讲解函数的性质,如奇偶性、周期性等。
三、函数的表示方法和图像(15分钟)
1. 介绍函数的表示方法,包括表达式、图像、函数图像的特征。
2. 分析函数的图像在坐标系中的位置和特点。
四、实例分析和练习(15分钟)
1. 给学生展示一些函数的实例,并引导学生分析函数的图像特征。
2. 给学生练习相关的题目,巩固所学知识。
五、课堂小结(5分钟)
教师对本节课的要点进行回顾,并巩固学生对函数概念的理解。
六、作业布置(5分钟)
布置相关练习题目,要求学生认真完成并及时复习所学知识。
教学反思:
通过本节课的教学,学生对函数的概念有了更深的理解,能够灵活运用函数的性质解决实际问题。
希望学生能够加强练习,巩固所学内容,提升数学学习能力。
高中数学单元复习教案

高中数学单元复习教案
主题:函数
目标:通过本次复习,学生能够掌握函数的基本概念、性质和解题方法。
一、函数的基本概念
1. 函数的定义和表示方法
2. 函数的定义域和值域
3. 函数的图像和性质
二、函数的性质
1. 奇函数和偶函数的性质
2. 函数的单调性和最值
3. 函数的周期性和奇偶性
三、函数的解题方法
1. 求函数的导数和导函数
2. 求函数的极值和拐点
3. 求函数的零点和不等式解法
四、综合练习
1. 完成选择题、填空题和解答题
2. 解答实际问题中的函数应用题
五、作业布置
1. 完成课堂上的习题
2. 预习下节课的内容
六、自主学习
1. 利用课外时间复习函数相关知识
2. 尝试解决一些较难的函数题目
备注:本次复习教案主要围绕函数这一重要概念展开,学生需要掌握函数的基本定义和性质,能够熟练运用函数的解题方法。
希望学生能够认真复习,做到知识点全面掌握,能够灵活运用。
数学教案高中函数

数学教案高中函数
教学目标:
1. 熟练掌握高中函数的定义和基本性质;
2. 能够灵活运用函数的概念解决实际问题;
3. 培养学生的数学思维能力和解决问题的能力。
教学重点:
1. 函数的定义;
2. 函数的图像和性质;
3. 函数的运算。
教学难点:
1. 函数的复合运算;
2. 函数的图像的绘制。
教学准备:
1. 教师准备教学课件和教学用具;
2. 学生准备笔记本和铅笔。
教学过程:
第一步:引入问题
教师通过一个实际问题引入函数的概念,让学生了解函数的定义和意义。
第二步:讲解函数的定义和性质
教师简要介绍函数的定义和性质,包括定义域、值域、自变量和因变量等概念。
第三步:举例说明函数
教师通过一些例题让学生掌握函数的基本性质和运算规则。
第四步:绘制函数的图像
教师示范如何绘制函数的图像,并要求学生根据函数的公式自行绘制函数的图像。
第五步:巩固练习
教师出一些练习题让学生巩固所学的内容,提高解题能力。
第六步:课堂讨论
教师组织学生互相讨论解题方法和答案,促进学生思维的交流。
第七步:作业布置
教师布置相关作业,巩固所学知识。
教学反思:
通过这节课的教学,学生能够熟练掌握函数的基本概念和运算方法,提高数学解题能力和思维能力。
学生在课后应多做练习,巩固所学内容,提高数学学习的效果。
高中数学下册函数教案模板

高中数学下册函数教案模板教学目标:
1. 理解函数的定义和基本性质。
2. 掌握函数的概念和代数表达式。
3. 熟练运用函数的基本操作和性质解决实际问题。
4. 提高学生的数学思维能力和解题能力。
教学内容:
1. 函数的定义和基本性质
2. 函数的概念和代数表达式
3. 函数的基本操作和性质
4. 函数的图像和应用
教学步骤:
一、复习导入
1. 让学生回顾函数的定义和基本性质。
2. 提出一个函数的实际问题,引导学生思考如何解决。
二、讲解与练习
1. 介绍函数的概念和代数表达式,示范几个例题。
2. 给学生练习一些简单的函数操作题,巩固基本知识。
三、拓展应用
1. 引导学生观察函数的图像特点,分析其变化规律。
2. 提出一些应用题,让学生运用函数解决实际问题。
四、总结反馈
1. 总结本节课学习的内容,强调函数的重要性和应用价值。
2. 收集学生的反馈意见,了解他们的学习情况和问题。
教学资源:
1. PowerPoint课件
2. 作业本和练习题
3. 教学实例和案例
评价标准:
1. 能够准确理解和运用函数的基本概念和性质。
2. 能够正确解答相关的应用题和练习题。
3. 能够发展数学思维,提出合理的解题方法和思路。
教学反思:
教师在教学过程中应注重引导学生主动思考和探索,激发他们学习的兴趣和动力。
同时,要根据学生的实际情况进行差异化教学,关注学生个体发展的需要,帮助他们更好地掌握函数知识。
高三数学 函数的单调性专题复习 教案

芯衣州星海市涌泉学校三仓中学2021届高三数学函数的单调性专题复习教案导学目的:①理解函数的单调性、最大〔小〕值及其几何意义;②理解函数单调性的定义,掌握函数单调性的断定与证明,能利用函数的单调性解决一些问题.自主梳理1.增函数和减函数一般地,设函数()f x的定义域为I:假设对于定义域I内某个区间D上的任意两个自变量的值12,x x,当12x x<时,都有12()()f x x<,那么就说函数()f x在区间D上是___________.假设对于定义域I内某个区间D上的任意两个自变量的值12,x x,当12x x<时,都有12()()f x x>,那么就说函数()f x在区间D上是___________.2.单调性与单调区间假设一个函数在某个区间M上是_____________或者者是____________,就说这个函数在这个区间M上具有_____________〔区间M称为____________〕。
3.最大〔小〕值〔前面已复习过〕4.判断函数单调性的方法〔1〕定义法:利用定义严格判断。
〔2〕导数法①假设()f x在某个区间内可导,当'()0f x>时,()f x为______函数;当'()0f x<时,()f x为______函数。
②假设()f x在某个区间内可导,当()f x在该区间上递增时,那么'()f x______0,当()f x在该区间上递减时,那么'()f x______0。
〔3〕利用函数的运算性质:如假设(),()f xg x为增函数,那么①()()f xg x+为增函数;②1()f x为减函数〔()0f x>〕;③()f x为增函数〔()0f x≥〕;④()()f xg x为增函数〔()0,()0f xg x>>〕;⑤()f x-为减函数。
〔4〕利用复合函数关系判断单调性法那么是“___________〞即两个简单函数的单调性一样,那么这两个函数的复合函数为_______,假设两个简单函数的单调性相反,那么这两个函数的复合函数为_______,〔5〕图像法〔6〕奇函数在两个对称区间上具有____的单调性;偶函数在两个对称区间上具___的单调性;自我检测1.设函数()(21)f x a x b=-+是R上的减函数,那么a的取值范围为.2.函数)(xfy=在定义域R上是单调减函数,且)1(|)1(|fxf>,那么实数x的取值范围是.3.函数2()45f x x mx=-+在区间[2,)-+∞上是增函数,在区间]2,(--∞上是减函数,那么)1(f=.4.:函数()()2411f x x a x=+-+在[)1,+∞上是增函数,那么a的取值范围是_____5.函数132+-=xxy在区间)1,(--∞上是单调________函数.〔填“增〞或者者“减〞〕探究点一函数单调性的判断及应用:【例1】函数,1)(2axxxf-+=其中.0>a假设),1()1(2-=ff求a的值;证明:当1≥a时,函数)(xf在区间),0[+∞上为单调减函数;假设函数)(xf在区间),1[+∞是增函数,求a的取值范围探究点二求函数的单调区间:【例2】求函数)23(log221+-=xxy的单调区间.变式训练:(1)求函数62-+=xxy的单调区间.(2)求函数)352(log)(2+-=xxxfa的单调区间.探究点三函数单调性的应用:【例3】〔1〕假设)(xf是R上的增函数,那么满足)()2(2mfmf<-的实数m的取值范围是.(2)函数)(xfy=是偶函数,)2(-=xfy在[0,2]上是单调减函数,那么)2(),0(),1(fff-的大小顺序是.(3)函数⎪⎩⎪⎨⎧<-≥+=.0,2,0,2)(22xxxxxxxf假设)()2(2afaf>-,那么实数a的取值范围是.探究点四抽象函数的单调性:﹡【例4】函数)(xf对任意的a,b∈R,都有1)()()(-+=+bfafbaf,并且当x>0时,)(xf>1.(1).求证:)(xf是R上的增函数;〔2〕.假设5)4(=f,解不等式3)23(2<--mmf.1.给出如下三个函数:①)2ln(+=xy;②1+-=xy;③xxy1+=.其中在区间),0(+∞内为增函数的是(写出所有增函数的序号)2.函数)(xf是定义在),0[+∞上的函数,且在该区间上单调递增,那么满足不等式)31()12(fxf<-的x的取值范围是.3.函数⎪⎩⎪⎨⎧>+-≤-=,2,)1(,2,)21()(xkxkxkxfx对于任意的21xx≠,都有)()(2121<--xxxfxf,那么k的最大值为.4.设函数)(xf定义在实数集上,它的图象关于直线1=x对称,且当1≥x时,,13)(-=xxf那么)23(),32(),31(f f f 从小到大的顺序为.。
高三数学专题教案函数图像的变换及应用_

芯衣州星海市涌泉学校2021届高三数学专题教案:函数图像的变换及应用一.知识梳理复习函数图像的变换:(1)、奇偶函数图象的对称性;(2)、假设f(x)满足f(a+x)=f(b -x)那么f(x)的图象以2a b x+=为对称轴;特例:假设f(a+x)=f(a -x)那么f(x)的图象关于x=a 对称。
(3)、假设f(x)满足f(a+x)=-f(b -x)那么f(x)的图象以(,0)2a b +为对称中心;特例:假设f(a+x)=-f(a -x)那么f(x)的图象以点〔a,0〕为对称中心。
(4)、假设f(x)满足f(a+x)+f(b-x)=c 那么f(x)的图象关于点(,)22a b c +中心对称。
二.例题讲解例1、求函数y=f 〔1-x 〕与函数y=f 〔x-1〕的图象对称轴方程?〔1〕.对于定义在R 上的函数)(x f ,有下述命题: ①假设)(x f 是奇函数,那么)1(-x f 的图像关于点)0,1(A 对称;②假设对R x ∈,恒有)1()1(-=+x f x f ,那么)(x f 的图像关于直线1=x 对称; ③假设函数)1(-x f 的图像关于直线1=x 对称,那么)(x f 为偶函数; ④函数)1(x f +与函数)1(x f -的图像关于直线1=x 对称.其中正确命题的序号为______________________.例2、设f(x)=x+1,求f(x+1)关于直线x=2对称的曲线的解析式。
例3、设函数y=f(x)的图象关于直线x=1对称,在x≤1时,f(x)=(x+1)2-1,求f(x)的解析式。
例3、设定义域为R 的函数⎩⎨⎧=≠-=1,01,||1|lg |)(x x x x f ,那么关于x 的方程0)()(2=++c x bf x f有7个不同实数解的充要条件是〔〕(A)0<b 且0>c(B)0>b 且0<c (C)0<b 且0=c (D)0≥b 且0=c 例4.函数)(x f 的图像与函数21++=x x y 的图像关于点)1,0(A 对称. 〔1〕求)(x f 的解析式;〔2〕假设xa x f x g +=)()(且)(x g 在区间]2,0(上为减函数,求正数a 的取值范围. 例5、函数4(1)|1|()2(1)x x f x x ⎧≠⎪-=⎨⎪=⎩〔1〕作出函数()y f x =的大致图像. 〔2〕〔考虑题〕假设关于x 的方程2()()0f x bf x c ++=有三个不同的实数解123x x x 、、,求222123x x x ++的值.三、课后习题:1、设函数y=f(x)的图象关于直线x=1对称,在x≤1时,f(x)=(x+1)2-1,求f(x)的解析式。
高三数学第一轮复习教案第7课时-函数的概念

第二章 函数——第7课时:函数的概念一.课题:函数的概念二.教学目标:了解映射的概念,在此基础上加深对函数概念的理解;能根据函数的三要素判断两个函数是否为同一函数;理解分段函数的意义.三.教学重点:函数是一种特殊的映射,而映射是一种特殊的对应;函数的三要素中对应法则是核心,定义域是灵魂.四.教学过程: (一)主要知识:1.对应、映射、像和原像、一一映射的定义; 2.函数的传统定义和近代定义; 3.函数的三要素及表示法. (二)主要方法:1.对映射有两个关键点:一是有象,二是象惟一,缺一不可;2.对函数三要素及其之间的关系给以深刻理解,这是处理函数问题的关键; 3.理解函数和映射的关系,函数式和方程式的关系.(三)例题分析:例1.(1)A R =,{|0}B y y =>,:||f x y x →=;(2)*{|2,}A x x x N =≥∈,{}|0,B y y y N =≥∈,2:22f x y x x →=-+; (3){|0}A x x =>,{|}B y y R =∈,:f x y →= 上述三个对应(2)是A 到B 的映射.例2.已知集合{}(,)|1M x y x y =+=,映射:f M N →,在f 作用下点(,)x y 的象是(2,2)x y ,则集合N = ( D )()A {}(,)|2,0,0x y x y x y +=>> ()B {}(,)|1,0,0x y xy x y =>> ()C {}(,)|2,0,0x y xy x y =<< ()D {}(,)|2,0,0x y xy x y =>>解法要点:因为2x y +=,所以2222xyx y+⋅==.例3.设集合{1,0,1}M =-,{2,1,0,1,2}N =--,如果从M 到N 的映射f 满足条件:对M 中的每个元素x 与它在N 中的象()f x 的和都为奇数,则映射f 的个数是 ( D )()A 8个 ()B 12个 ()C 16个 ()D 18个解法要点:∵()x f x +为奇数,∴当x 为奇数1-、1时,它们在N 中的象只能为偶数2-、0或2,由分步计数原理和对应方法有239=种;而当0x =时,它在N 中的象为奇数1-或1,共有2种对应方法.故映射f 的个数是9218⨯=.第二章 函数——第7课时:函数的概念例4.矩形ABCD 的长8AB =,宽5AD =,动点E 、F 分别在BC 、CD 上,且CE CF x ==,(1)将AEF ∆的面积S 表示为x 的函数()f x ,求函数()S f x =的解析式; (2)求S 的最大值. 解:(1)2111()408(5)5(8)222ABCD CEF ABE ADF S f x SS S S x x x ∆∆∆==---=--⨯⨯--⨯⨯- 22113113169()22228x x x =-+=--+.∵CE CB CD ≤≤,∴05x <≤,∴函数()S f x =的解析式:2113169()()(05)228S f x x x ==--+<≤; (2)∵()f x 在(]0,5x ∈上单调递增,∴max (5)20S f ==,即S 的最大值为20.例5.函数()f x 对一切实数x ,y 均有()()(21)f x y f y x y x +-=++成立,且(1)0f =, (1)求(0)f 的值;(2)对任意的11(0,)2x ∈,21(0,)2x ∈,都有12()2log a f x x +<成立时,求a 的取值范围.解:(1)由已知等式()()(21)f x y f y x y x +-=++,令1x =,0y =得(1)(0)2f f -=,又∵(1)0f =,∴(0)2f =-.(2)由()()(21)f x y f y x y x +-=++,令0y =得()(0)(1)f x f x x -=+,由(1)知(0)2f =-,∴2()2f x x x +=+.∵11(0,)2x ∈,∴22111111()2()24f x x x x +=+=+-在11(0,)2x ∈上单调递增,∴13()2(0,)4f x +∈.要使任意11(0,)2x ∈,21(0,)2x ∈都有12()2log a f x x +<成立,当1a >时,21log log 2a ax <,显然不成立. 当01a <<时,21log log 2a a x >,∴0113log 24a a <<⎧⎪⎨≥⎪⎩1a ≤< ∴a的取值范围是[4.(四)巩固练习:1.给定映射:(,)(2,)f x y x y xy →+,点11(,)66-的原象是11(,)32-或12(,)43-.2.下列函数中,与函数y x =相同的函数是( C )()A2xyx=()B2y=()C lg10xy=()D2log2xy=3.设函数3,(10)()((5)),(10)x xf xf f x x-≥⎧=⎨+<⎩,则(5)f=8.五.课后作业:《高考A计划》考点7,智能训练5,7,9,10,13,14.经典语录1、最疼的疼是原谅,最黑的黑是背叛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学专题复习――函数一、本章知识结构:二、考点回顾1.理解函数的概念,了解映射的概念.2.了解函数的单调性和奇偶性的概念,掌握判断一些简单函数的单调性和奇偶性的方法,并能利用函数的性质简化函数图像的绘制过程.3.了解反函数的概念及互为反函数的函数图像间的关系.4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质.5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图像和性质.6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.7、掌握函数零点的概念,用二分法求函数的近似解,会应用函数知识解决一些实际问题。
三、经典例题剖析考点一:函数的性质与图像函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫.复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是:1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性.2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法.3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力.函数的图像是函数性质的直观载体,函数的性质可以通过函数的图像直观地表现出来。
因此,掌握函数的图像是学好函数性质的关键,这也正是“数形结合思想”的体现。
复习函数图像要注意以下方面。
1.掌握描绘函数图像的两种基本方法——描点法和图像变换法.2.会利用函数图像,进一步研究函数的性质,解决方程、不等式中的问题.3.用数形结合的思想、分类讨论的思想和转化变换的思想分析解决数学问题.4.掌握知识之间的联系,进一步培养观察、分析、归纳、概括和综合分析能力.例1、设集合A={x|x<-1或x>1},B={x|log2x>0},则A∩B=( )A.{x| x>1} B.{x|x>0} C.{x|x<-1} D.{x|x<-1或x>1}【解析】:由集合B得x>1 , A∩B={x| x>1},故选(A)。
[点评]本题主要考查对数函数图像的性质,是函数与集合结合的试题,难度不大,属基础题。
例2、“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…用S1、S2分别表示乌龟和兔子所行的路程,t为时间,则下图与故事情节相吻合的是()A B C D【解析】:选(B),在(B)中,乌龟到达终点时,兔子在同一时间的路程比乌龟短。
[点评]函数图像是近年高考的热点的试题,考查函数图像的实际应用,考查学生解决问题、分析问题的能力,在复习时应引起重视。
例3、设 ()11xf x x+=-,又记 ()()()()()11,,1,2,,k k f x f x f x f f x k +===L 则()2008f x = ( )A .11x x +-; B .11x x -+; C .x ; D .1x-; 【解析】:本题考查周期函数的运算。
()()1121111,11f x f x f x x f x++===---, ()()323423111,111f f x f x f x x f x f ++-====-+-,据此,()()414211,1n n x f x f x x x+++==--,()()4341,1n n x f x f x x x +-==+,因2008为4n 型,故选C . [点评]本题考查复合函数的求法,以及是函数周期性,考查学生观察问题的能力,通过观察,关于总结、归纳,要有从特殊到一般的思想。
例4、函数3()sin 1()f x x x x R =++∈,若()2f a =,则()f a -的值为( ) A.3 B.0 C.-1 D.-2【解析】:3()1sin f x x x -=+为奇函数,又()2f a =∴()11f a -=故()11f a --=-即()0f a -=.[点评]本题考查函数的奇偶性,考查学生观察问题的能力,通过观察能够发现如何通过变换式子与学过的知识相联系,使问题迎刃而解。
例5、已知集合{}a x y y x P +≥=),(,集合{}b x y y x Q +-≤=),(,若Φ≠⋂Q P ,求实数a 和b 之间的大小关系。
【解析】:利用数形结合,分别讨论当a >0,a <0和a=0三种情况下,a 与b 之间的关系。
(1) 当a >0时,b ≥a >0; (2) 当a=0时,b ≥a=0; (3) 当a <0时,b ≥-a >0。
综上所述,a b ≥。
[点评]在作含有绝对值的函数图像时,可利用奇偶性、对称性等。
此外,在解集合的题目时,一定要看清楚集合中的元素到底表示什么含义,比如此题中集合的元素是点。
考点二:二次函数二次函数是中学代数的基本内容之一,它既简单又具有丰富的内涵和外延. 作为最基本的初等函数,可以以它为素材来研究函数的单调性、奇偶性、最值等性质,还可建立起函数、方程、不等式之间的有机联系;作为抛物线,可以联系其它平面曲线讨论相互之间关系. 这些纵横联系,使得围绕二次函数可以编制出层出不穷、灵活多变的数学问题. 同时,有关二次函数的内容又与近、现代数学发展紧密联系,是学生进入高校继续深造的重要知识基础. 因此,从这个意义上说,有关二次函数的问题在高考中频繁出现,也就不足为奇了.学习二次函数,可以从两个方面入手:一是解析式,二是图像特征. 从解析式出发,可以进行纯粹的代数推理,这种代数推理、论证的能力反映出一个人的基本数学素养;从图像特征出发,可以实现数与形的自然结合,这正是中学数学中一种非常重要的思想方法.例6、设二次函数()()f x a x b x c a =++>20,方程()f x x -=0的两个根x x 12,满足ax x 1021<<<。
当()x x ∈01,时,证明:1)(x x f x <<。
【解析】:在已知方程()f x x -=0两根的情况下,根据函数与方程根的关系,可以写出函数()x x f -的表达式,从而得到函数)(x f 的表达式.证明:由题意可知))(()(21x x x x a x x f --=-.当()x x ∈01,,且ax x 1021<<<时, 0))((21>--x x x x a ,∴ 当()x x ∈01,时,x x f >)(。
又)1)(())(()(211211+--=-+--=-ax ax x x x x x x x x a x x f , 当ax x x 1021<<<<时,,011,0221>->+-<-ax ax ax x x 且 ∴ 1)(x x f <。
综上可知,所给问题获证.[点评]:本题主要利用函数与方程根的关系,写出二次函数的零点式()().21x x x x a y --=。
例7、设二次函数2()f x x ax a =++,方程()0f x x -=的两根1x 和2x 满足1201x x <<<. (I )求实数a 的取值范围;(第1问 采用解法1中的方法较好) (II )试比较(0)(1)(0)f f f -与116的大小.并说明理由.(第2问 采用解法3中的方法较好) 【解析】法1:(Ⅰ)令2()()(1)g x f x x x a x a =-=+-+,则由题意可得01012(1)0(0)0a g g ∆>⎧⎪-⎪<<⎪⎨⎪>⎪>⎪⎩,,,,01133a a a a ⎧>⎪⇔-<<⎨⎪<->+⎩,,03a ⇔<<- 故所求实数a的取值范围是(03-,. (II )2(0)(1)(0)(0)(1)2f f f g g a -==g ,令2()2h a a =.Q 当0a >时,()h a 单调增加,∴当03a <<-时,20()(32(32(17h a h <<-=-=-1216=<,即1(0)(1)(0)16f f f -<g .法2:(I )同解法1.(II )Q 2(0)(1)(0)(0)(1)2f f f g g a -==,由(I)知03a <<-,1170-<<∴.又10+>,于是221112(321)1)0161616a a -=-=-+<, 即212016a -<,故1(0)(1)(0)16f f f -<.法3:(I )方程()0f x x -=⇔2(1)0x a x a +-+=,由韦达定理得121x x a +=-,12x x a =,于是121212121200010(1)(1)0(1)(1)0x x x x x x x x x x ∆>⎧⎪+>⎪⎪<<<⇔>⎨⎪-+->⎪⎪-->⎩,,,,0133a a a a ⎧>⎪⇔<⎨⎪<->+⎩,,03a ⇔<<- 故所求实数a的取值范围是(03-,. (II )依题意可设12()()()g x x x x x =--,则由1201x x <<<,得12121122(0)(1)(0)(0)(1)(1)(1)[(1)][(1)]f f f g g x x x x x x x x -==--=--2211221112216x x x x +-+-⎛⎫⎛⎫<= ⎪ ⎪⎝⎭⎝⎭,故1(0)(1)(0)16f f f -<. [点评]本小题主要考查二次函数、二次方程的基本性质及二次不等式的解法,考查推理和运算能力.考点三:指数函数与对数函数指数函数,对数函数是两类重要的基本初等函数, 高考中既考查双基, 又考查对蕴含其中的函数思想、等价转化、分类讨论等思想方法的理解与运用. 因此应做到能熟练掌握它们的图像与性质并能进行一定的综合运用.例8、已知函数()log (21)(01)xa f xb a a =+->≠,的图像如图所示,则a b ,满足的关系是( ) A .101a b -<<< B .101b a -<<<C .101ba -<<<D .1101ab --<<<【解析】:由图易得1,a >101;a -∴<<取特殊点01log 0,a x y b =⇒-<=<11log log log 10,aa ab a⇒-=<<=101a b -∴<<<.选A. [点评]:本小题主要考查正确利用对数函数的图像来比较大小。