【最新】人教版九年级上册数学第一次月考试卷含答案

合集下载

人教版九年级上册数学第一次月考试卷及答案

人教版九年级上册数学第一次月考试卷及答案

人教版九年级上册数学第一次月考试题一、单选题1.方程x 2-4x-3=0的一次项系数和常数项分别为()A .4和3B .4和﹣3C .﹣4和﹣3D .﹣4和32.抛物线24y x =-与y 轴的交点坐标为()A .()0,4B .()4,0C .()0,4-D .()4,0-3.把方程x 2﹣4x ﹣1=0转化成(x+m )2=n 的形式,则m ,n 的值是()A .2,3B .2,5C .﹣2,3D .﹣2,54.若关于x 的一元二次方程230x x a -+=的一个根为1,则a 的值为()A .2B .3C .-2D .-15.一元二次方程2x 2-3x +1=0根的情况是()A .只有一个实数根B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根6.某年级举办篮球友谊赛,参赛的每两个队之间都要比赛一场,共要比赛36场,则参加此次比赛的球队数是()A .6B .7C .8D .97.已知抛物线y =x 2+x-1经过点P(m ,5),则代数式m 2+m+100的值为()A .104B .105C .106D .1078.把二次函数y =-x 2的图象先向右平移2个单位,再向上平移5个单位后得到一个新图象,则新图象,则新图象所表示的二次函数的解析式是()A .y =-(x -2)2+5B .y =-(x +2)2+5C .y =-(x -2)2-5D .y =-(x +2)2-59.设1(2,)A y -,2(1,)B y -,3(1,)C y ,是抛物线2(1)y x m =+-上的三点,则y 1,y 2,y 3的大小关系为()A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 3>y 1>y 210.已知二次函数y =ax 2+bx+c (a≠0)的图象如图所示,有下列4个结论:①abc >0;②b 2<4ac ;③9a+3b+c <0;④2c <3b .其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题11.方程x2﹣4x=0的解为______.12.方程(m-1)21m x++3x+5=0为一元二次方程,则m的值为___.x x+=______.13.已知方程2+-=的两根分别为1x和2x,则12x x243014.抛物线y=2(x-3)2+1的顶点坐标为_______.15.有一人感染了传染性很强的病毒,经过两轮传染后共有625人患病,每轮传染中平均一人传染______人.16.二次函数y=ax2+bx+c(a≠0)的图象如图所示,请直接写出不等式ax2+bx+c>0的解集_____.x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和原点O(0,17.如图,把抛物线y=12x2交于点Q,则图中阴影部分的面积为.0),它的顶点为P,它的对称轴与抛物线y=12三、解答题18.解方程:2670-+=x x19.已知二次函数y=﹣2x2+5x﹣2.(1)写出该函数的对称轴,顶点坐标;(2)求该函数与坐标轴的交点坐标.20.一条抛物线经过点A(-2,0)且抛物线的顶点是(1,-3),求满足此条件的函数解析式.21.已知关于x的方程x2﹣2(m+1)x+m2﹣3=0的两实根为x1,x2.(1)求m的取值范围;(2)如果x12+x22=x1x2+33,求m的值.22.如图,依靠一面长18米的墙,用34米长的篱笆围成一个矩形场地花圃ABCD,AB边上留有2米宽的小门EF(用其他材料做,不用篱笆围).(1)设花圃的一边AD长为x米,请你用含x的代数式表示另一边CD的长为米;(2)当矩形场地面积为160平方米时,求AD的长.23.某商品的进价为每件20元,售价为每件30元,每个月可卖出180件;如果每件商品的售价每上涨1元,则每个月就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨x元(x为整数),每个月的销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;求x为何值时y的值为1920;(2)每件商品的售价为多少元时,每个月可获得最大利润?最大利润是多少.24.阅读下列材料,并用相关的思想方法解决问题.材料:为解方程x4﹣x2﹣6=0可将方程变形为(x2)2﹣x2﹣6=0然后设x2=y,则(x2)2=y2,原方程化为y2﹣y﹣6=0…①解得y1=﹣2,y2=3,当y1=﹣2时,x2=﹣2无意义,舍去;当y2=3时,x2=﹣3,解得x=所以原方程的解为x1x2问题:(1)在原方程得到方程①的过程中,利用法达到了降次的目的,体现了的数学思想;(2)利用以上学习到的方法解下列方程(x2+5x+1)(x2+5x+7)=7.-,与y 25.如图,抛物线2y x bx c=++与x轴交于A,B两点,其中点A的坐标为(3,0)D--在抛物线上.轴交于点C,点(2,3)(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点P,求出PA PD的最小值;△的面积为6,求点Q的坐标.(3)若抛物线上有一动点Q,使ABQ参考答案1.C【分析】根据ax2+bx+c=0(a,b,c是常数且a≠0)a,b,c分别叫二次项系数,一次项系数,常数项,可得答案.【详解】解:x2-4x-3=0的一次项系数和常数项分别为-4,-3.故选:C.【点睛】本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c 是常数且a≠0)特别要注意a≠0的条件.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.2.C【解析】【分析】求图象与y轴的交点坐标,令x=0,求y即可.【详解】当x=0时,y=-4,所以y轴的交点坐标是(0,-4).故选:C.【点睛】主要考查了二次函数图象与y轴的交点坐标特点,解题的关键是熟知函数图像的特点.3.D【解析】【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可得出答案.【详解】解:∵x2﹣4x﹣1=0,∴x2﹣4x=1,则x2﹣4x+4=1+4,即(x﹣2)2=5,∴m=﹣2,n=5,故选:D.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的集中常用方法:直接开方法、因式分解法、公式法、配方法,结合方程特点选择合适、简便的方法是解题关键.4.A【解析】【分析】根据方程的解的定义,把x=1代入方程,即可得到关于a的方程,再求解即可.【详解】解:根据题意得:1-3+a=0解得:a=2.故选A.【点睛】本题主要考查了一元二次方程的解的定义,特别需要注意的条件是二次项系数不等于0.5.B 【解析】【分析】根据一元二次方程根的判别式24b ac -与0的大小关系,即可得出方程根的情况.【详解】解:2x 2-3x +1=0,2,3,1a b c ==-=,∴224(3)42110b ac -=--⨯⨯=>,∴方程有两个不相等的实数根,故选:B .【点睛】本题主要考查了一元二次方程根的判别式,解题的关键在于掌握根的判别式的应用,即240b ac ->,方程有两个不相等的实数根;240b ac -=,方程有两个相等的实数根;240b ac -<,方程无实数根.6.D 【解析】【分析】根据球赛问题模型列出方程即可求解.【详解】解:设参加此次比赛的球队数为x 队,根据题意得:12x (x ﹣1)=36,化简,得x 2﹣x ﹣72=0,解得x 1=9,x 2=﹣8(舍去),答:参加此次比赛的球队数是9队.故选:D .【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握一元二次方程应用问题中的球赛问题.7.C【解析】【分析】把P(m,5)代入y=x2+x﹣1得m2+m=6,然后利用整体代入的方法计算代数式的值.【详解】解:把P(m,5)代入y=x2+x﹣1得m2+m﹣1=5,所以m2+m=6,所以m2+m+100=6+100=106.故选:C.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式,也考查了整体思想的应用.8.A【解析】【分析】根据函数图象“左加右减,上加下减”可得答案.【详解】解:把二次函数y=-x2的图象先向右平移2个单位,再向上平移5个单位后得到一个新图象是y=-(x-2)2+5,故选:A.【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.9.D【解析】【分析】根据二次函数的对称性,可利用对称性,找出点C的对称点C ,再利用二次函数的增减性可判断y值的大小.【详解】解: 函数的解析式是2(1)y x m =+-,∴对称轴是直线1x =-,∴点C 关于对称轴的点C '是1(3,)y -,那么点A 、B 、C '都在对称轴的左边,而对称轴左边y 随x 的增大而减小,于是312y y y >>.故选:D .【点睛】本题考查了二次函数图象上点的坐标的特征,解题的关键是利用二次函数的对称性得出C 关于对称轴的点C '.10.B 【解析】【分析】①函数对称轴在y 轴右侧,则ab <0,c >0,即可求解;②根据抛物线与x 轴有两个交点,由判别式即可得解;③当x=3时,y <0,即可求解;④函数的对称轴为:x=1,故b=-2a ,结合③的结论,代入9a+3b+c <0,即可得解;【详解】解:①函数对称轴在y 轴右侧,则ab <0,c >0,故①错误,不符合题意;②抛物线与x 轴有两个交点,则b 2﹣4ac >0,所以b 2>4ac ,故②错误,不符合题意;③x =3时,y =9a+3b+c <0,故正确,符合题意;④函数的对称轴为:x =1,故b =﹣2a ,∴2b a =-,由③知9a+3b+c <0,代入得302bc -+<,故2c <3b 正确,符合题意;故选:B .【点睛】本题考查的是二次函数图象与系数的关系,要求学生熟悉函数的基本性质,能熟练求解函数与坐标轴的交点及顶点的坐标等.11.x 1=0,x 2=4【解析】【分析】24x x -提取公因式x ,再根据“两式的乘积为0,则至少有一个式子的值为0”求解.【详解】解:240x x -=,(4)0x x -=,0x =或40x -=,10x =,24x =,故答案是:10x =,24x =.【点睛】本题考查一元二次方程的解法,解题的关键是掌握在解一元二次方程时应当注意要根据实际情况选择最合适快捷的解法,该题运用了因式分解法.12.-1【解析】【分析】把含有一个未知数且未知数的最高次数为二次的整式方程是一元二次方程,根据一元二次方程的概念即可完成.【详解】由题意得:212m +=且m-1≠0解得:m=-1即当m=-1时,方程(m-1)21m x ++3x+5=0是一元二次方程.【点睛】本题考查了一元二次方程的概念,其一般形式为20ax bx c ++=,其中a≠0,且a ,b ,c 是常数,理解概念是关键.13.2-【解析】【分析】方程()200++=≠ax bx c a 的两根分别为1x 和2x ,则1212,,b c x x x x a a+=-=根据根与系数的关系直接计算即可.【详解】解: 方程22430x x +-=的两根分别为1x 和2x ,1242.2b x x a ∴+=-=-=-故答案为: 2.-【点睛】本题考查的是一元二次方程的根与系数的关系,掌握“一元二次方程的根与系数的关系”是解题的关键.14.(3,1)【解析】【分析】由抛物线解析式可求得答案.【详解】根据二次函数的性质,由顶点式直接得出顶点坐标为(3,1).故答案是(3,1).【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在()2y a x h k =-+中,对称轴为直线x=h ,顶点坐标为(h ,k ).15.24【解析】【分析】根据题意列一元二次方程,解方程即可【详解】设每轮传染中平均一人传染x 人,则第一轮有(1)x +人感染,第二轮有2(1)x +人感染,根据题意可得:2(1)=625x +解得:1224,26x x ==-(不符题意,舍去)故答案为24【点睛】本题考查了一元二次方程的应用,解一元二次方程,根据题意列出方程是解题的关键.16.1<x <3【解析】【分析】直接写出抛物线在x 轴上方所对应的自变量的范围即可.【详解】解:不等式ax 2+bx+c >0的解集为1<x <3.故答案为1<x <3.【点睛】本题考查了二次函数与不等式(组):对于二次函数y=ax 2+bx+c (a 、b 、c 是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.17.272【解析】【分析】根据点O 与点A 的坐标求出平移后的抛物线的对称轴,然后求出点P 的坐标,过点P 作PM ⊥y 轴于点M ,根据抛物线的对称性可知阴影部分的面积等于四边形NPMO 的面积,然后求解即可.【详解】过点P 作PM ⊥y 轴于点M ,设PQ 交x 轴于点N ,∵抛物线平移后经过原点O 和点A (﹣6,0),∴平移后的抛物线对称轴为x=﹣3.∴平移后的二次函数解析式为:y=12(x+3)2+h ,将(﹣6,0)代入得出:0=12(﹣6+3)2+h ,解得:h=﹣92.∴点P 的坐标是(3,﹣92).根据抛物线的对称性可知,阴影部分的面积等于矩形NPMO 的面积,∴S=9273=22⨯-18.13x =+23x =【解析】【分析】根据方程特点,先将方程变形为267-=-x x ,则利用配方法求解即可.【详解】解:∵2670x x -+=,∴267-=-x x ,则26979x x -+=-+,即2(3)2x -=,∴3x -=∴13x =+23x =【点睛】本题考查了解一元二次方程,熟练掌握解一元二次方程的方法及步骤是解题的关键.19.(1)抛物线的对称轴x=52,顶点坐标为(52,212);(2)抛物线交y 轴于(0,﹣2),交x 轴于(2,0)或(12,0).【解析】【分析】(1)把二次函数y=-2x 2+5x-2化为顶点式的形式,根据二次函数的性质写出答案即可;(2)令x=0可求图象与y 轴的交点坐标,令y=0可求图象与x 轴的交点坐标;【详解】(1)∵y=﹣2(x 2﹣52x+2516﹣2516)﹣2=﹣2(x ﹣54)2+98,∴抛物线的对称轴x=54,顶点坐标为(54,98).(2)对于抛物线y=﹣2x 2+5x ﹣2,令x=0,得到y=﹣2,令y=0,得到﹣2x 2+5x ﹣2=0,解得:x=2或12,∴抛物线交y 轴于(0,﹣2),交x 轴于(2,0)或(12,0).20.()211 3.3y x =--【解析】【分析】设抛物线为:()2,y a x h k =-+根据抛物线的顶点坐标求解,h k ,再把()2,0A -代入解析式可得答案.【详解】解:设抛物线为:()2,y a x h k =-+ 抛物线的顶点是(1,-3),1,3,h k ∴==-∴抛物线为:()213,y a x =--把()2,0A -代入抛物线得:()22130,a ---= 93a ∴=,1,3a ∴=∴抛物线为:()211 3.3y x =--【点睛】本题考查的是利用待定系数法求解抛物线的解析式,根据题意设出合适的抛物线的解析式是解题的关键.21.(1)m≥-2;(2)m=2.【解析】【分析】(1)根据判别式在大于等于0时,方程有两个实数根,确定m 的值;(2)根据根与系数的关系可以求出m 的值.【详解】解:(1)∵△≥0时,一元二次方程有两个实数根,Δ=[2(m+1)]2-4×1×(m 2-3)=8m+16≥0,m≥-2,∴m≥-2时,方程有两个实数根.(2)∵x 12+x 22=x 1x 2+33,∴21212()3x x x x +-=33,∵1222b x x m a+=-=+,2123c x x m a ⋅==-,∴22(22)3(3)m m +--=33,解得m=2或-10(舍去),故m 的值是m=2.【点睛】本题考查了根的判别式和根与系数的关系,要记住12b x x a +=-,12c x x a⋅=-.22.(1)(36﹣2x );(2)AD =10米【解析】【分析】(1)设AD =x 米,则BC =AD =x 米,利用CD 的长=篱笆的长+门的宽﹣2AD ,即可用含x 的代数式表示出CD 的长;(2)利用矩形的面积计算公式,即可得出关于x 的一元二次方程,解之即可得出x 的值,再结合墙的长度为18米,即可确定AD 的长.【详解】(1)设AD =x 米,则BC =AD =x 米,∴CD =34+2﹣2AD =34+2﹣2x =(36﹣2x )米.故答案为:(36﹣2x ).(2)依题意得:x (36﹣2x )=160,化简得:x2﹣18x+80=0,解得:x1=8,x2=10.当x=8时,36﹣2x=36﹣2×8﹣20>18,不合题意,舍去;当x=10时,36﹣2x=36﹣2×10=16<18,符合题意.故AD的长为10米.【点睛】本题考查了列代数式,一元二次方程的应用,注意:求得的两个解要检验是否符合题意.23.(1)x=2;(2)每件商品的售价为34元时,商品的利润最大,为1960元.【解析】【分析】(1)销售利润=每件商品的利润×(180-10×上涨的钱数),根据每件售价不能高于35元,可得自变量的取值;(2)利用公式法结合(1)得到的函数解析式可得二次函数的最值,结合实际意义,求得整数解即可.【详解】解:(1)y=(30﹣20+x)(180﹣10x)=﹣10x2+80x+1800(0≤x≤5,且x为整数);令y=1920得:1920=﹣10x2+80x+1800x2﹣8x+12=0,(x﹣2)(x﹣6)=0,解得x=2或x=6,∵0≤x≤5,∴x=2,(2)由(1)知,y=﹣10x2+80x+1800(0≤x≤5,且x为整数).∵﹣10<0,∴当x=802(10)-⨯-=4时,y最大=1960元;∴每件商品的售价为34元答:每件商品的售价为34元时,商品的利润最大,为1960元.【点睛】本题考查考查二次函数的应用;得到月销售量是解决本题的突破点;注意结合自变量的取值求得相应的售价.24.(1)换元,化归;(2)x 1=0,x 2=﹣5【解析】【分析】(1)利用换元法达到了降次的目的,体现了化归的数学思想,据此可得答案;(2)令y =x 2+5x ,得到关于y 的一元二次方程,解之求出y 的值,从而得到两个关于x 的一元二次方程,分别求解可得.【详解】解:(1)在原方程得到方程①的过程中,利用换元法达到了降次的目的,体现了化归的数学思想;故答案为换元,化归.(2)令y =x 2+5x ,则原方程化为(y+1)(y+7)=7,整理,得:y 2+8y =0,解得y 1=0,y 2=﹣8,当y =0时,x 2+5x =0,解得:x 1=0,x 2=﹣5;当y =﹣8时,x 2+5x =﹣8,即x 2+5x+8=0,∵△=52﹣4×1×8=﹣7<0,∴此方程无解.综上,方程(x 2+5x+1)(x 2+5x+7)=7的解为x 1=0,x 2=﹣5.【点睛】本题考查利用换元法解方程,熟练掌握该方法是解题关键.25.(1)223y x x =+-;(2)(3)点Q 的坐标为(0,3)-或(2,3)--或(1-+或(1-【解析】【分析】(1)将A 、D 点代入抛物线方程2y x bx c =++,即可解出b 、c 的值,抛物线的解析式可得;(2)点C 、D 关于抛物线的对称轴对称,连接AC ,点P 即为AC 与对称轴的交点,PA+PD的最小值即为AC 的长度,用勾股定理即可求得AC 的长度;(3)求得B 点坐标,设点()2,23Q m m m +-,利用三角形面积公式,即可求出m 的值,点Q 的坐标即可求得.【详解】解:(1)∵抛物线2y x bx c =++经过点(3,0),(2,3)A D ---,∴930,423,b c b c -+=⎧⎨-+=-⎩解得2,3,b c =⎧⎨=-⎩∴抛物线的解析式为223y x x =+-.(2)由(1)得抛物线223y x x =+-的对称轴为直线1,(0,3)x C =--.∵(2,3)D --,∴C ,D 关于抛物线的对称轴对称,连接AC ,可知,当点P 为直线AC 与对称轴的交点时,PA PD +取得最小值,∴最小值为AC ==(3)设点()2,23Q m m m +-,令2230y x x =+-=,得3x =-或1,∴点B 的坐标为(1,0),∴4AB =.∵6QAB S = ,∴2142362m m ⨯⨯+-=,∴2260m m +-=或220m m +=,解得:1m =-1-0或2-,∴点Q 的坐标为(0,3)-或(2,3)--或(1-或(1-.【点睛】本题考察了待定系数法求解析式、两点之间线段最短、勾股定理、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答。

人教版九年级上册数学第一次月考试卷含答案

人教版九年级上册数学第一次月考试卷含答案

人教版九年级上册数学第一次月考试题一、单选题1.下列方程中,属于一元二次方程的是()A 0=B .2x +1=0C .20y x +=D .21x =12.方程(x+3)(x-4)=0的根是()A .123,4x x =-=B .123,4x x ==C .1234,x x ==-D .123,4x x =-=-3.已知关于x 的方程260--=x kx 的一个根为x=4,则实数k 的值为()A .25B .52C .2D .54.用配方法解方程2250x x --=时,原方程应变形为()A .()216x +=B .()216x -=C .()229x +=D .()229x -=5.已知方程2380x x --=的两个解分别为12,x x ,则1212,x x x x +⋅的值分别是()A .3,-8B .-3,-8C .-3,8D .3,86.某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x ,根据题意所列方程正确的是()A .236(1)3625x -=-B .236(12)25x -=C .236(1)25x -=D .225(1)36x -=7.抛物线22(2)1y x =-+的顶点坐标是()A .()2,1B .()2,1-C .()1,2D .()1,2-8.抛物线2y ax bx c =++的图象如图所示,则一元二次方程20ax bx c ++=的解是()A .x=-1B .x=3C .x=-1或x=3D .无法确认9.将抛物线y=4x 2向右平移1个单位,再向上平移3个单位,得到的抛物线是()A .y=4(x+1)2+3B .y=4(x ﹣1)2+3C .y=4(x+1)2﹣3D .y=4(x ﹣1)2﹣310.二次函数2(2)1y x =+-的图像大致为()A .B .C .D .二、填空题11.将方程()()3152x x x -=+化为一元二次方程的一般式______.12.一元二次方程x 2﹣4=0的解是_________.13.已知关于x 的一元二次方程22(2)(21)10m x m x -+++=有两个不相等的实数根,则m 的取值范围是______14.函数243y x x =-++有_____(填“最大”或“最小”),所求最值是_______15.抛物线2y ax bx c =++与x 轴的交点坐标为(1,0)-和(3,0),则这条抛物线的对称轴是x =______.16.已知二次函数23(1)y x k =-+的图象上三点1(2,)A y ,2(3,)B y ,3(4,)C y -,则1y 、2y 、3y 的大小关系是_____.17.将抛物线247y x x =++沿竖直方向平移,使其顶点在x 轴上,且过点A (m ,n ),B (m+10,n ),则n=________三、解答题18.解方程:(1)2410x x --=(2)()255x x-=-19.已知抛物线y=4x 2-11x-3.(1)求它的对称轴;(2)求它与x 轴,y 轴的交点坐标.20.已知关于x 的方程(1)若该方程的一个根为,求的值及该方程的另一根;(2)求证:不论取何实数,该方程都有两个不相等的实数根.21.如图,抛物线2y x bx c =-++经过坐标原点,并与x 轴交于点A (2,0).(1)求此抛物线的解析式:(2)设抛物线的顶点为B ,求∆OAB 的面积S .22.如图,某农场要建一个长方形的养鸡场,鸡场的一边靠墙,墙长25m ,另外三边木栏围着,木栏长40m .(1)若养鸡场面积为200m 2,求鸡场靠墙的一边长.(2)养鸡场面积能达到250m 2吗?如果能,请给出设计方案,如果不能,请说明理由23.已知抛物线()2114y a x =-+与直线21y x =+的一个交点的横坐标是2(1)求a 的值;(2)请在所给的坐标系中,画出函数21(1)4y a x =-+与21y x =+的图象,并根据图象,直接写出12y y ≥时x 的取值范围24.大润发超市以每件30元的价格购进一种商品,试销中发现每天的销售量y (件)与每件的销售价x (元)之间满足一次函数1623y x=-(1)写出超市每天的销售利润w (元)与每件的销售价x (元)之间的函数关系式;(2)如果超市每天想要获得销售利润420元,则每件商品的销售价应定为多少元?(3)如果超市要想获得最大利润,每件商品的销售价定为多少元最合适?最大销售利润为多少元?25.如图所示,抛物线2y x mx n =-++经过点A (1,0)和点C (4,0),与y 轴交于B(1)求抛物线所对应的解析式.(2)连接直线BC ,抛物线的对称轴与BC 交于点E ,F 为抛物线的顶点,求四边形AECF 的面积.(3)x 轴上是否存在一点P ,使得PB+PE 的值最小,若存在,请求出P 点坐标,若不存在,请说明理由.参考答案1.B 2.A 3.B 4.B 5.A 6.C 7.A 8.C 9.B 10.D11.238100x x --=12.x=±213.34m >且2m ≠14.最大715.116.123y y y <<17.2518.(1)2x =±,(2)5x =或4x =19.(1)x=118(2)该抛物线与x 轴的交点坐标为(3,0),1-,04⎛⎫⎪⎝⎭;该抛物线与y 轴的交点坐标为(0,-3).20.(1)m=1;0(2)见解析21.(1)y =−x 2+2x ;(2)122.(1)20m .(2)不能达到250m 2,理由见解析.23.(1)a=-1;(2)图见解析,-1≤x≤224.(1)w=-32x +252x -4860;(2)40或44;(3)42元,432元25.(1)254y x x =-+-;(2)458;(3)存在,P (2011,0)。

2023-2024学年九年级(上)第一次月考数学试卷-(含答案)

2023-2024学年九年级(上)第一次月考数学试卷-(含答案)

2023-2024学年九年级(上)第一次月考数学试卷一.选择题(共10小题,共30分)1.(3分)用配方法解一元二次方程2x 2﹣3x ﹣1=0,配方正确的是()A .(x ﹣)2=B .(x ﹣)2=C .(x ﹣)2=D .(x ﹣)2=2.(3分)下列说法不正确的是()A .一组同旁内角相等的平行四边形是矩形B .一组邻边相等的菱形是正方形C .有三个角是直角的四边形是矩形D .对角线相等的菱形是正方形3.(3分)若关于x 的一元二次方程x 2﹣2x +kb +1=0有两个不相等的实数根,则一次函数y =kx +b 的大致图象可能是()A .B .C .D .4.(3分)如图,在菱形ABCD 中,CE ⊥AB 于点E ,E 点恰好为AB 的中点,则菱形ABCD 的较大内角度数为()A .100°B .120°C .135°D .150°5.(3分)某市“菜篮子工程”蔬菜基地2022年产量为100吨,预计到2024年产量可达121吨.设该基地蔬菜产量的年平均增长率为x ,则可列方程为()A.100(1+x)2=121B.121(1﹣x)2=100C.100(1+2x)=121D.100(1+x2)=1216.(3分)如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF =60°,点E从点A向点D运动的过程中,AE+CF的长度()A.逐渐增加B.逐渐减小C.保持不变且与EF的长度相等D.保持不变且与AB的长度相等7.(3分)四边形ABCD的对角线AC,BD相交于点O,能判定它是矩形的是()A.AO=CO,BO=OD B.AB=BC,AO=COC.AO=CO,BO=DO,AC⊥DB D.AO=CO=BO=DO8.(3分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,下列条件:(1)∠1+∠DBC=90°;(2)OA=OB;(3)∠1=∠2,其中能判定平行四边形ABCD是菱形的条件有()A.0个B.1个C.2个D.3个9.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE ⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.10.(3分)如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA是菱形;⑤OF=BE,正确的有()A.2个B.3个C.4个D.5个二.填空题(共5小题,共15分)11.(3分)一元二次方程x2=5x的根.12.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH 的长为.13.(3分)若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是.14.(3分)如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为.15.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为.三.解答题(共8小题,共75分)16.(16分)用恰当的方法解下列方程:(1)x2+4x﹣2=0;(2)4x2﹣25=0;(3)(2x+1)2+4(2x+1)+4=0;(4)(x﹣1)(x﹣3)=8.17.(8分)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.18.(8分)关于x的一元二次方程2﹣3+=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(﹣1)2++﹣3=0与方程2﹣3+=0有一个相同的根,求此时m的值.19.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是.20.(8分)某旅行社的一则广告如下:甲公司想分批组织员工到延安红色旅游学习.(1)如果第一批组织40人去学习,则公司应向旅行社交费元;(2)如果公司计划用29250元组织第一批员工去学习,问这次旅游学习应安排多少人参加?21.(8分)如图,在菱形ABCD中,AB=3,∠DAB=60°,点E是AD边的中点,点M 是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为时,四边形AMDN是矩形;②当AM的值为时,四边形AMDN是菱形.22.(8分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?23.(11分)四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.(1)问题发现如图1,若点E在CB的延长线上,直接写出EG与GC的位置关系及的值;(2)操作探究将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)解决问题将图1中的△BEF绕点B顺时针旋转,若BE=1,AB=,当E,F,D三点共线时,请直接写出CE的长.参考答案与试题解析一.选择题(共10小题,共30分)1.(3分)用配方法解一元二次方程2x2﹣3x﹣1=0,配方正确的是()A.(x﹣)2=B.(x﹣)2=C.(x﹣)2=D.(x﹣)2=【分析】化二次项系数为1后,把常数项﹣右移,应该在左右两边同时加上一次项系数﹣的一半的平方.【解答】解:由原方程,得x2﹣x=,x2﹣x+=+,(x﹣)2=,故选:A.2.(3分)下列说法不正确的是()A.一组同旁内角相等的平行四边形是矩形B.一组邻边相等的菱形是正方形C.有三个角是直角的四边形是矩形D.对角线相等的菱形是正方形【分析】利用正方形的判定、平行四边形的性质,菱形的性质,矩形的判定分别判断后即可确定正确的选项.【解答】解:A、一组同旁内角相等的平行四边形是矩形,正确;B、一组邻边相等的菱形是正方形,错误;C、有三个角是直角的四边形是矩形,正确;D、对角线相等的菱形是正方形,正确.故选:B.3.(3分)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y =kx+b的大致图象可能是()A.B.C.D.【分析】根据一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,得到根的判别式大于0,求出kb的符号,对各个图象进行判断即可.【解答】解:∵x2﹣2x+kb+1=0有两个不相等的实数根,∴△=4﹣4(kb+1)>0,解得kb<0,A.k>0,b=0,即kb=0,故A不正确;B.k>0,b<0,即kb<0,故B正确;C.k>0,b>0,即kb>0,故C不正确;D.k<0,b<0,即kb>0,故D不正确.故选:B.4.(3分)如图,在菱形ABCD中,CE⊥AB于点E,E点恰好为AB的中点,则菱形ABCD 的较大内角度数为()A.100°B.120°C.135°D.150°【分析】连接AC,证明△ABC是等边三角形,得出∠B=60°,则∠D=60°,∠BAD =∠BCD=120°,即可得出答案.【解答】解:连接AC,如图:∵四边形ABCD是菱形,∴AB=BC,∠BAD=∠BCD,∠B=∠D,AD∥BC,∴∠BAD+∠B=180°,∵CE⊥AB,点E是AB中点,∴BC=AC=AB,∴△ABC是等边三角形,∴∠B=60°,∴∠D=60°,∠BAD=∠BCD=120°;即菱形ABCD的较大内角度数为120°;故选:B.5.(3分)某市“菜篮子工程”蔬菜基地2022年产量为100吨,预计到2024年产量可达121吨.设该基地蔬菜产量的年平均增长率为x,则可列方程为()A.100(1+x)2=121B.121(1﹣x)2=100C.100(1+2x)=121D.100(1+x2)=121【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从100吨增加到121吨”,即可得出方程.【解答】解:由题意知,设该基地蔬菜产量的年平均增长率为x,根据2022年产量为100吨,则2023年蔬菜产量为100(1+x)吨,2024年蔬菜产量为100(1+x)(1+x)吨,预计2024年产量可达121吨,即:100(1+x)(1+x)=121或100(1+x)2=121.故选:A.6.(3分)如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF =60°,点E从点A向点D运动的过程中,AE+CF的长度()A.逐渐增加B.逐渐减小C.保持不变且与EF的长度相等D.保持不变且与AB的长度相等【分析】证明△ABE≌△DBF(AAS),可得AE=DF,根据线段的和可知:AE+CF=AB,是一定值,可作判断.【解答】解:连接BD,∵四边形ABCD是菱形,∴AB=AD=CD,∵∠A=60°,∴△ABD是等边三角形,∴AB=BD,∠ABD=60°,∵DC∥AB,∴∠CDB=∠ABD=60°,∴∠A=∠CDB,∵∠EBF=60°,∴∠ABE+∠EBD=∠EBD+∠DBF,∴∠ABE=∠DBF,在△ABE和△DBF中,∵,∴△ABE≌△DBF(AAS),∴AE=DF,∴AE+CF=DF+CF=CD=AB,故选:D.7.(3分)四边形ABCD的对角线AC,BD相交于点O,能判定它是矩形的是()A.AO=CO,BO=OD B.AB=BC,AO=COC.AO=CO,BO=DO,AC⊥DB D.AO=CO=BO=DO【分析】根据平行四边形的判定,矩形的判定,菱形的判定逐个判断即可.【解答】解:A、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,不能推出四边形ABCD是矩形,故本选项不符合题意;B、根据AB=BC,AO=CO不能推出四边形ABCD是矩形,故本选项不符合题意;C、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∵AC⊥BD,∴平行四边形ABCD是菱形,不能推出四边形ABCD是矩形,故本选项不符合题意;D、∵OA=OB=OC=OD,∴OA=OC,OB=OD,AC=BD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故本选项符合题意;故选:D.8.(3分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,下列条件:(1)∠1+∠DBC=90°;(2)OA=OB;(3)∠1=∠2,其中能判定平行四边形ABCD是菱形的条件有()A.0个B.1个C.2个D.3个【分析】由平行四边形的性质、菱形的判定、矩形的判定即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD∥BC,∴∠1=∠BCO,若∠1+∠DBC=90°时,则∠BCO+∠DBC=90°,∴∠BOC=90°,∴AC⊥BD,∴四边形ABCD是菱形;(1)能判定平行四边形ABCD是菱形;若OA=OB,则AC=BD,∴四边形ABCD是矩形;(2)不能判定平行四边形ABCD是菱形;若∠1=∠2,则∠2=∠BCO,∴AB=CB,∴四边形ABCD是菱形;(3)能判定平行四边形ABCD是菱形;故选:C.9.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE ⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.=S△AOE+S△DOE,【分析】依据矩形的性质即可得到△AOD的面积为12,再根据S△AOD 即可得到OE+EF的值.【解答】解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AC==10,∴AO=DO=AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,=S△AOE+S△DOE,即12=AO×EO+DO×EF,∴S△AOD∴12=×5×EO+×5×EF,∴5(EO+EF)=24,∴EO+EF=,故选:C.10.(3分)如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA是菱形;⑤OF=BE,正确的有()A.2个B.3个C.4个D.5个【分析】①根据正方形的性质和角平分线的定义得:∠BAG=∠CAG=22.5°,由垂直的定义计算∠AED=90°﹣22.5°=67.5°,∠EAD=∠EAD=22.5°,得ED是AG的垂直平分线,则AE=EG,△BEG是等腰直角三角形,则AD=AB>2AE,可作判断;②证明△DAF≌△ABG(ASA),可作判断;③分别计算∠CDF=∠CFD=67.5°,可作判断;④根据对角线互相平分且垂直的四边形是菱形可作判断;⑤设BG=x,则AF=AE=x,表示OF和BE的长,可作判断.【解答】解:①∵四边形ABCD是正方形,∴∠BAD=90°,∠BAC=45°,∵AG平分∠BAC,∴∠BAG=∠CAG=22.5°,∵AG⊥ED,∴∠AHE=∠EHG=90°,∴∠AED=90°﹣22.5°=67.5°,∴∠ADE=22.5°,∵∠ADB=45°,∴∠EDG=22.5°=∠ADE,∵∠AHD=∠GHD=90°,∴∠DAG=∠DGA,∴AD=DG,AH=GH,∴ED是AG的垂直平分线,∴AE=EG,∴∠EAG=∠AGE=22.5°,∴∠BEG=45°=∠ABG,∴∠BGE=90°,∴AE=EG<BE,∴AD=AB>2AE,故①不正确;②∵四边形ABCD是正方形,∴AD=AB,∠DAF=∠ABG=45°,∵∠ADF=∠BAG=22.5°,∴△DAF≌△ABG(ASA),∴DF=AG,故②正确;③∵∠CDF=45°+22.5°=67.5°,∠CFD=∠AFE=90°﹣22.5°=67.5°,∴∠CDF=∠CFD,∴CF=CD,故③正确;④∵∠EAH=∠FAH,∠AHE=∠AHF,∴∠AEF=∠AFE,∴AE=AF,∴EH=FH,∵AH=GH,AG⊥EF,∴四边形FGEA是菱形;故④正确;⑤设BG=x,则AF=AE=x,由①知△BEG是等腰直角三角形,∴BE=x,∴AB=AE+BE=x+x=(+1)x,∴AO==,∴OF=AO﹣AF=﹣x=,∴==,∴OF=BE;故⑤正确;本题正确的结论有:②③④⑤;故选:C.二.填空题(共5小题,共15分)11.(3分)一元二次方程x2=5x的根x1=0,x2=5.【分析】先移项,然后通过提取公因式x对等式的左边进行因式分解.【解答】解:由原方程,得x2﹣5x=0,则x(x﹣5)=0,解得x1=0,x2=5.故答案是:x1=0,x2=5.12.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH的长为.【分析】直接利用菱形的性质得出AO,DO的长,再利用三角形面积以及勾股定理得出答案.【解答】解:∵四边形ABCD是菱形,AC=24,BD=10,=×AC×BD=120,AO=12,OD=5,AC⊥BD,∴S菱形ABCD∴AD=AB==13,∵DH⊥AB,∴AO×BD=DH×AB,∴12×10=13×DH,∴DH=.故答案为:.13.(3分)若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是k≤5.【分析】分k﹣1=0和k﹣1≠0两种情况,其中k﹣1≠0时根据题意列出关于k的不等式求解可得.【解答】解:当k﹣1=0时,方程为4x+1=0,显然有实数根;当k﹣1≠0,即k≠1时,△=42﹣4×(k﹣1)×1≥0,解得k≤5且k≠1;综上,k≤5.故答案为:k≤5.14.(3分)如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为1.【分析】方法一:连接CH并延长交AD于P,连接PE,根据正方形的性质得到∠A=90°,AD∥BC,AB=AD=BC=2,根据全等三角形的性质得到PD=CF=,根据勾股定理和三角形的中位线定理即可得到结论.方法二:设DF,CE交于O,根据正方形的性质得到∠B=∠DCF=90°,BC=CD=AB,根据线段中点的定义得到BE=CF,根据全等三角形的性质得到CE=DF,∠BCE=∠CDF,求得DF⊥CE,根据勾股定理得到CE=DF==,点G,H分别是EC,FD的中点,根据相似三角形的判定和性质定理即可得到结论.【解答】解:方法一:连接CH并延长交AD于P,连接PE,∵四边形ABCD是正方形,∴∠A=90°,AD∥BC,AB=AD=BC=2,∵E,F分别是边AB,BC的中点,∴AE=CF=×2=,∵AD∥BC,∴∠DPH=∠FCH,∵∠DHP=∠FHC,∵DH=FH,∴△PDH≌△CFH(AAS),PD=CF=,∴AP=AD﹣PD=,∴PE===2,∵点G,H分别是EC,FD的中点,∴GH=EP=1;方法二:设DF,CE交于O,∵四边形ABCD是正方形,∴∠B=∠DCF=90°,BC=CD=AB,∵点E,F分别是边AB,BC的中点,∴BE=CF,∴△CBE≌△DCF(SAS),∴CE=DF,∠BCE=∠CDF,∵∠CDF+∠CFD=90°,∴∠BCE+∠CFD=90°,∴∠COF=90°,∴DF⊥CE,∴CE=DF==,∵点G,H分别是EC,FD的中点,∴CG=FH=,∵∠DCF=90°,CO⊥DF,∴∠DCO+∠FCO=∠DCO+∠CDO=90°,∴∠FCO=∠CDO,∵∠DCF=∠COF=90°,∴△COF∽△DOC,∴=,∴CF2=OF•DF,∴OF===,∴OH=,OD=,∵∠COF=∠COD=90°,∴△COF∽△DOC,∴,∴OC2=OF•OD,∴OC==,∴OG=CG﹣OC=﹣=,∴HG===1,故答案为:1.15.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4.【分析】根据翻折的性质,可得B′E的长,根据勾股定理,可得CE的长,根据等腰三角形的判定,可得答案.【解答】解:(i)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).(iii)当CB′=CD时,则CB=CB′,由翻折的性质,得EB=EB′,∴点E、C在BB ′的垂直平分线上,∴EC垂直平分BB′,由折叠,得EF也是线段BB′的垂直平分线,∴点F与点C重合,这与已知“点F是边BC上不与点B,C重合的一个动点”不符,故此种情况不存在,应舍去.综上所述,DB′的长为16或4.故答案为:16或4.三.解答题(共8小题,共75分)16.(16分)用恰当的方法解下列方程:(1)x2+4x﹣2=0;(2)4x2﹣25=0;(3)(2x+1)2+4(2x+1)+4=0;(4)(x﹣1)(x﹣3)=8.【分析】(1)利用公式法求解可得;(2)利用直接开平方法求解可得;(3)利用换元法求解可得;(4)整理成一般式,再利用公式法求解可得.【解答】解:(1)∵a=1,b=4,c=﹣2,∴△=42﹣4×1×(﹣2)=24>0,则x==﹣2±,即x1=﹣2+,x2=﹣2﹣;(2)∵4x2=25,∴x2=,解得x1=,x2=﹣;(3)令2x+1=a,则a2+4a+4=0,∴(a+2)2=0,解得a=﹣2,∴2x+1=﹣2,解得x1=x2=﹣1.5;(4)方程整理为一般式,得:x2﹣4x﹣5=0,解得:(x﹣5)(x+1)=0,则x﹣5=0或x+1=0,解得x1=5,x2=﹣1.17.(8分)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.【分析】(1)证△MOD≌△NOB(AAS),得出OM=ON,由OB=OD,证出四边形BNDM 是平行四边形,进而得出结论;(2)由菱形的性质得出BM=BN=DM=DN,OB=BD=12,OM=MN=5,由勾股定理得BM=13,即可得出答案.【解答】(1)证明:∵AD∥BC,∴∠DMO=∠BNO,∵MN是对角线BD的垂直平分线,∴OB=OD,MN⊥BD,在△MOD和△NOB中,,∴△MOD≌△NOB(AAS),∴OM=ON,∵OB=OD,∴四边形BNDM是平行四边形,∵MN⊥BD,∴四边形BNDM是菱形;(2)解:∵四边形BNDM是菱形,BD=24,MN=10,∴BM=BN=DM=DN,OB=BD=12,OM=MN=5,在Rt△BOM中,由勾股定理得:BM===13,∴菱形BNDM的周长=4BM=4×13=52.18.(8分)关于x的一元二次方程2﹣3+=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(﹣1)2++﹣3=0与方程2﹣3+=0有一个相同的根,求此时m的值.【分析】(1)利用判别式的意义得到△=(﹣3)2﹣4k≥0,然后解不等式即可;(2)先确定k=2,再解方程2﹣3+2=0,解得x1=1,x2=2,然后分别把x=1和x=2代入元二次方程(﹣1)2++﹣3=0可得到满足条件的m的值.【解答】解:(1)根据题意得△=(﹣3)2﹣4k≥0,解得k≤;(2)满足条件的k的最大整数为2,此时方程2﹣3+=0变形为方程2﹣3+2=0,解得x1=1,x2=2,当相同的解为x=1时,把x=1代入方程(﹣1)2++﹣3=0得m﹣1+1+m﹣3=0,解得m=;当相同的解为x=2时,把x=2代入方程(﹣1)2++﹣3=0得4(m﹣1)+2+m﹣3=0,解得m=1,而m﹣1≠0,不符合题意,舍去,所以m的值为.19.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是25.【分析】(1)根据菱形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;(2)根据全等三角形的判定定理得到Rt△ABE≌Rt△DCF(HL),求得矩形AEFD的面积=菱形ABCD的面积,根据等腰三角形的性质得到结论.【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,AD=BC,∵CF=BE,∴BC=EF,∴AD∥EF,AD=EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴平行四边形AEFD是矩形;(2)解:∵AB=CD,BE=CF,∠AEB=∠DFC=90°,∴Rt△ABE≌Rt△DCF(HL),∴矩形AEFD的面积=菱形ABCD的面积,∵∠ABC=60°,∴△ABC是等边三角形,∵AC=10,∴AE=AC=5,AB=10,BO=5,∵AD=EF=10,∴矩形AEFD的面积=菱形ABCD的面积=×10×10=50,故答案为:50.20.(8分)某旅行社的一则广告如下:甲公司想分批组织员工到延安红色旅游学习.(1)如果第一批组织40人去学习,则公司应向旅行社交费28000元;(2)如果公司计划用29250元组织第一批员工去学习,问这次旅游学习应安排多少人参加?【分析】(1)首先表示出40人是平均每人的费用,进而得出总费用;(2)表示出每人平均费用为:800﹣10(x﹣30),进而得出等式求出答案.【解答】解:(1)∵人数多于30人,那么每增加1人,人均收费降低10元,∴第一批组织40人去学习,则公司应向旅行社交费:40×[800﹣(40﹣30)×10]=28000(元);故答案为:28000;(2)设这次旅游应安排x人参加,∵30×800=24000<29250,∴x>30,根据题意得:x[800﹣10(x﹣30)]=29250,整理得,x2﹣110x+2925=0,解得:x1=45,x2=65∵800﹣10(x﹣30)≥500,∴x≤60.∴x=45.答:这次旅游应安排45人参加.21.(8分)如图,在菱形ABCD中,AB=3,∠DAB=60°,点E是AD边的中点,点M 是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为 1.5时,四边形AMDN是矩形;②当AM的值为3时,四边形AMDN是菱形.【分析】(1)求出△DNE≌△AME,根据全等及时向的性质得出NE=ME,根据平行四边形的判定得出即可;(2)①根据等边三角形的判定得出△ABD是等边三角形,根据等边三角形的性质求出DM⊥AB,根据矩形的判定得出即可;②求出△ABD是等边三角形,求出M和B重合,根据菱形的判定得出即可..【解答】(1)证明:∵点E是AD边的中点,∴AE=DE,∵四边形ABCD是菱形,∴DC∥AB,∴∠DNE=∠AME,在△DNE和△AME中,∴△DNE≌△AME(AAS),∴NE=ME,∵AE=DE,∴四边形AMDN是平行四边形;(2)解:①当AM=1.5时,四边形AMDN是矩形,理由是:连接BD,∵四边形ABCD是菱形,∴AD=AB=3,∵∠DAB=60°,∴△ADB是等边三角形,∴AD=BD=3,∵AM=1.5,AB=3,∴AM=BM,∴DM⊥AB,即∠DMA=90°,∵四边形AMDN是平行四边形,∴四边形AMDN是矩形,即当AM=1.5时,四边形AMDN是矩形,故答案为:1.5;②当AM=3时,四边形AMDN是菱形,理由是,此时AM=AB=3,即M和B重合,∵由①知:△ABD是等边三角形,∴AM=MD,∵四边形AMDN是平行四边形,∴四边形AMDN是菱形,故答案为:3.22.(8分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=2,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?【分析】(1)利用求根公式即可求出方程的两根;(2)仿照(1)找准关于x的一元二次方程,由根的判别式△=﹣7<0,可得出方程无解,即不存在满足要求的矩形B;(3)仿照(1)找准关于x的一元二次方程,由根的判别式△≥0,可找出m、n之间的关系.【解答】解:(1)利用求根公式可知:x1==,x2==2.故答案为:;2.(2)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣3x+2=0.∵b2﹣4ac=(﹣3)2﹣4×2×2=﹣7<0,∴该方程无解,∴不存在满足要求的矩形B.(3)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣(m+n)x+mn=0.∵矩形B存在,∴b2﹣4ac=[﹣(m+n)]2﹣4×2mn≥0,∴(m﹣n)2≥4mn.故当m、n满足(m﹣n)2≥4mn时,矩形B存在.23.(11分)四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.(1)问题发现如图1,若点E在CB的延长线上,直接写出EG与GC的位置关系及的值;(2)操作探究将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)解决问题将图1中的△BEF绕点B顺时针旋转,若BE=1,AB=,当E,F,D三点共线时,请直接写出CE的长.【分析】(1)过G作GH⊥EC于H,推出EF∥GH∥DC,求出H为EC中点,根据梯形的中位线求出EG=GC,GH=(EF+DC)=(EB+BC),推出GH=EH=BC,根据直角三角形的判定推出△EGC是等腰直角三角形即可;(2)延长EG到H,使EG=GH,连接CH,过E作BC的垂线EQ,证△EFG≌△HDG,推出DH=EF=BE,∠FEG=∠DHG,求出∠EBC=∠HDC,证出△EBC≌△HDC,推出CE=CH,∠BCE=∠DCH,求出△ECH是等腰直角三角形,即可得出答案;(3)分两种情况:①CE在BC的上方,如图3,作辅助线,构建等腰直角三角形,求出cos∠DBE=,推出∠DBE=60°,证明△GDC≌△EBC(ASA),则EC=CG,DG=EB=1,从而得结论;②CE在BC的下方,如图4,同理可得结论.【解答】解:(1)EG⊥CG,;理由是:如图1,过G作GH⊥EC于H,∵∠FEB=∠DCB=90°,∴EF∥GH∥DC,∵G为DF中点,∴H为EC中点,∴EG=GC,GH=(EF+DC)=(EB+BC)=CE,即GH=EH=HC,∴∠EGC=90°,即△EGC是等腰直角三角形,;(2)结论还成立,理由是:如图2,延长EG到H,使EG=GH,连接CH,过E作BC的垂线EQ,延长CB交EQ于R,延长CD,交EH于N,在△EFG和△HDG中,,∴△EFG≌△HDG(SAS),∴DH=EF=BE,∠FEG=∠DHG,∴EF∥DH,同理得ER∥CD,∴∠1=∠2,∴∠1=∠2=90°﹣∠3=∠4,∴∠EBC=180°﹣∠4=180°﹣∠1=∠HDC,在△EBC和△HDC中,,∴△EBC≌△HDC(SAS).∴CE=CH,∠BCE=∠DCH,∴∠ECH=∠DCH+∠ECD=∠BCE+∠ECD=∠BCD=90°,∴△ECH是等腰直角三角形,∵G为EH的中点,∴EG⊥GC,,即(1)中的结论仍然成立;(3)分两种情况:①如图3,连接BD,过C作CG⊥EC,交ED的延长线于G,∵AB=,正方形ABCD,∴BD=2,Rt△BED中,cos∠DBE=,∴∠DBE=60°,∠BDF=30°∵tan∠BDE==,∴DE=BE=,∵∠ABD=45°,∴∠ABE=60°﹣45°=15°,∴∠EBC=90°+15°=105°,∵∠EDC=∠BDE+∠CDB=30°+45°=75°,∴∠CDG=180°﹣75°=105°,∴∠CDG=∠CBE,∵∠ECG=∠BCD=90°,∴∠DCG=∠BCE,∵BC=CD,∴△GDC≌△EBC(ASA),∴EC=CG,DG=EB=1,∴△ECG是等腰直角三角形,∴EG=CE,∵EG=ED+DG=+1,∴CE==;②如图4,连接BD,过C作CH⊥EC,交ED于H,同理得△DHC≌△BEC(ASA),∴EC=CH,DH=EB=1,同理可知:DE=,∴EH=DE﹣DH=﹣1,∵△ECH是等腰直角三角形,∴EH=CE,∴CE==;综上,CE的长为.。

九年级上册第一次月考数学质量检测试题(人教版,含答案)

九年级上册第一次月考数学质量检测试题(人教版,含答案)

A. 1995
B. 2008
C. 2009
D. 2021
二、填空题:本大题共 8 小题,每小题 3 分,共 24 分.
11. 一元二次方程 x2 - 5 = 0 的根是 __________.
12. 方程(x - 1)(x + 5)= 3 转化为一元二次方程的一般形式是 ____________. 13. 一元二次方程 3(x - 5)2 + 2 = 0 的顶点坐标是 ____________. 14. 一元二次方程(k - 1)x2 + 6x + k2 - k = 0 有一个根为 0,则 k 的值是 ____________.
正确吗?为什么? 28. (12 分)如图①,已知抛物线 y = - x2 - 2x + 3 与 x 轴交于 A、B 两点(点 A 在点 B 的左侧),与
y 轴交于点 C,其顶点为 D,对称轴是直线 l,且 l 与 x 轴交于点 H.
l Dy C
A
HO B x
lD y
F
C
E A G HO B x
图①
A. k > - 2 且 k≠1
B. k < 2
C. k > 2
D. k < 2 且 k≠1
4. 一元二次方程 x2 - 4x + 5 = 0 的根的情况为
A. 有两个不等的实数根
B. 有两个相等的实数根
C. 只有一个实数根
D. 没有实数根
5. 用配方法解方程 2x2 - x - 1 = 0 时,变形结果正确的是
y
(1)求这个二次函数的解析式;
(2)观察图象,当 - 2 < x ≤ 1 时,求 y 的取值范围. 25. (8 分)已知关于 x 的方程 x2 -(m + 2)x +(2m - 1)= 0.

九年级上期数学第一次月考试卷(含答案)

九年级上期数学第一次月考试卷(含答案)

第一次月考试卷(人教版九年级数学上册前两章)一.细心选一选(每小题3分,共30分.)1、x 为何值时,32+x 在实数范围内有意义( ) A 32≥x B 32-≥x C 23-≥x D 23≥x 2、下列计算正确的是() A .16= ±4 B .131227=- C .24÷ 6= 4 D .32×6=2 3、n 20是整数,则正整数n 的最小值是( )A 。

4B 。

5C 。

6 D.74、下列方程是关于x 的一元二次方程的是( );A 、02=++c bx axB 、2112=+xx C 、1222-=+x x x D 、)1(2)1(32+=+x x5 、方程5)3)(1(=-+x x 的解是 ( );A 、3,121-==x xB 、2,421-==x xC 、3,121=-=x xD 、2,421=-=x x6、一元二次方程的2650x x +-=配成完全平方式后所得的方程为 ( )A .2(3)14x -=B .2(3)14x +=C .21(6)2x += D .以上答案都不对 7、一元二次方程06242=-+-m x x 有两个相等的实数根,则m 等于 ( )A. 2 B 。

3 C. 4 D. 58、若2,1x x 是方程012=-+x x 的两根,则)2()2(222121-+⋅-+x x x x 的值为( ) A.2 B.-2 C.—1 D.19、若b b -=-3)3(2,则( )A .b 〉3B .b 〈3C .b ≥3D .b ≤310、为执行“两免一补"政策,某地区2011年投入教育经费2500万元,预计2013年投入3600万元,设这两年投入教育经费的年平均增长率为x ,则下列方程正确的是( )A 、2500 x 2=3600;B 、2500(1+x ) 2=3600;C 、2500(1+x %) 2=3600;D 、2500(1+x ) +2500(1+x ) 2=3600二、耐心填一填(将正确答案填在相应的横线上。

新】人教版九年级数学上册第一次月考试卷含答案

新】人教版九年级数学上册第一次月考试卷含答案

新】人教版九年级数学上册第一次月考试卷含答案九年级(上)第一次月考数学试卷(解析版)一、选择题:1.下列方程中,是关于x的一元二次方程的有()A。

x(2x-1)=2x^2 B。

-2x=1 C。

ax^2+bx+c=0 D。

x^2=02.方程x^2=x的解是()A。

x=1 B。

x=0 C。

x1=-1,x2=0 D。

x1=1,x2=03.用配方法解方程x^2-2x-5=0时,原方程应变形为()A。

(x+1)^2=6 B。

(x-1)^2=6 C。

(x+2)^2=9 D。

(x-2)^2=94.设a,b是方程x^2+x-2015=0的两个实数根,则a^2+2a+b的值为()A。

2012 B。

2013 C。

2014 D。

20155.为了庆祝教师节,市教育工会组织篮球比赛,赛制为单循环比赛(即每两个队比赛一场)共进行了45场比赛,则这次参加比赛的球队个数为()A。

8 B。

9 C。

10 D。

116.等腰三角形两边长为方程x^2-7x+10=0的两根,则它的周长为()A。

12 B。

12或9 C。

9 D。

77.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A。

200(1+x)^2=1000 B。

200+200×2x=1000 C。

200+200×3x=1000 D。

200[1+(1+x)+(1+x)^2]=10008.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm^2,设金色纸边的宽为xcm,那么x满足的方程是()A。

x^2+130x-1400=0 B。

x^2+65x-350=0 C。

x^2-130x-1400=0 D。

x^2-65x-350=09.已知a,b是方程x^2-6x+4=0的两实数根,且a≠b,则a+b的值是()A。

7 B。

-7 C。

11 D。

人教版九年级上册数学月考试卷(带详解答案)

人教版九年级上册数学月考试卷(带详解答案)

人教版九年级上册数学月考试卷(带详解答案)九年级上册第一次月考试卷数学注意事项:1.本试卷分试题卷和答题卡两部分。

2.请用0.5毫米黑色签字水笔直接把答案写在答题卡上,答在试题卷上的答案无效。

3.考生务必将姓名、准考证号填写在答题卡第一面的指定位置上。

一、选择题1.已知关于x的一元二次方程x^2+2x-a=0有两个相等的实数根,则a的值是()A。

4B。

-4C。

1D。

-12.如果x^2+x-1=0,那么代数式x^3+2x^2-7的值是()A。

6B。

8C。

-6D。

-83.如图,抛物线y=ax^2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,4),则a-b+c的值为()A。

-1B。

1C。

24.已知二次函数的图象如图所示,则这个二次函数的表达式为()A。

y=x^2-2x+3B。

y=x^2-2x-3C。

y=x^2+2x-3D。

y=x^2+2x+35.用配方法解方程x^2+4x-1=0,下列配方结果正确的是().A。

(x+2)^2=5B。

(x+2)^2=1C。

(x-2)^2=1D。

(x-2)^2=56.如图,在一次函数y=-x+5的图象上取点P,作PA⊥x 轴于A,PB⊥y轴于B,且长方形OAPB的面积为6,则这样的点P个数共有()A。

4B。

3C。

2D。

17.在同一坐标系内,一次函数y=ax+b与二次函数y=ax^2+8x+b的图象可能是()8.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是二、填空题9.要组织一场足球比赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,问比赛组织者应邀请多少只球队参赛?设比赛组织者应邀请x支球队参赛,根据题意列出的方程是______________________。

10.如图,二次函数y=ax^2+bx+c的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴相交于负半轴。

人教版九年级上册数学第一次月考试卷(含答案)

人教版九年级上册数学第一次月考试卷(含答案)

2018-2019学年度第一学期人教版九年级数学上第一次月考试卷一、填空题(共10 小题,每小题 3 分,共30 分)1.将二次函数y=x2−4x+3化为y=a(x+m)2+k的形式:y=________.2.某工厂一月份产值是150万元,受国际金融危机的影响,第一季度的产值是310万元,设每月的产值的平均下降率为x,则可列方程:________.3.写出一个y关于x的二次函数y=________.使得当x=1时,y=0;当x=3时,y<0.4.方程(x+2)(x−3)=0的解是________.5.抛物线的图象如图,当x________时,y>0.6.用一根长26m的细绳围成面积为42m2的长方形,则长方形的长和宽分别为________m和________m.7.已知关于x的方程x2+(2k+1)x+k2=0的两个实数根的平方和是7,则k=________.8.有一个抛物线形拱桥,其最大高度为16米,跨度为40米,现把它的示意图放在如图所示的平面直角坐标系中,则此抛物线的解析式为________.9.如果m、n是一元二次方程x2+3x−9=0的两个实数根,则m2+4m+n=________.10.如图,济南建邦大桥有一段抛物线型的拱梁,抛物线的表达式为y=ax2+bx,小强骑自行车从拱梁一端O匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶8秒时和24秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需________秒.二、选择题(共10 小题,每小题 3 分,共30 分)11.函数y=x2−2x+3的图象的顶点坐标是()A.(1, −4)B.(−1, 2)C.(1, 2)D.(0, 3)12.一元二次函数(x−1)(x−2)=0的解为()A.x1=−1,x2=−2B.x1=1,x2=2C.x1=0,x2=1D.x1=0,x2=213.一元二次方程3x2−4=−2x的二次项系数、一次项系数、常数项分别为()A.3,−4,−2B.3,−2,−4C.3,2,−4D.3,−4,014.如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①2a+b=0;②a+b+c>0;③当−1<x<3时,y>0;④−a+c<0.其中正确的个数为()A.1B.2C.3D.415.已知a<0,二次函数y=−ax2的图象上有三个点A(−2, y1),B(1, y2),C(3, y3),则有()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y316.关于方程式88(x−2)2=95的两根,下列判断何者正确?()A.两根都大于2B.一根小于−2,另一根大于2C.两根都小于0D.一根小于1,另一根大于317.当−2≤x≤1时,二次函数y=−(x−m)2+m2+1有最大值4,则实数m的值为()B.√3或−√3A.−74C.2或−√3D.2或−√3或−7418.如果关于x的一元二次方程kx2−6x+9=0有两个不相等的实数根,那么k的取值范围是()A.k<1B.k≠0C.k<1且k≠0D.k>119.已知函数y=ax2+bx+z的图象如图所示,那么函数解析式为()A.y=−x2+2x+3B.y=x2−2x−3C.y=−x2−2x+3D.y=−x2−2x−320.若x1,x2是一元二次方程x2+4x+3=0的两个根,则x1⋅x2的值是()A.4B.3C.−4D.−3三、解答题(共6 小题,每小题10 分,共60 分)21.解方程:(1)x2−6x=−5(2)(2x−3)2=7(3)2x2−5x+1=0(4)(3x−4)2=(4x−3)2.22.已知关于x的方程(m−1)x2−x−2=0.(1)若x=−1是方程的一个根,求m的值和方程的另一根;(2)当m为何实数时,方程有实数根;(3)若x1,x2是方程的两个根,且x12x2+x1x22=−1,试求实数m的值.823.如图,正方形ABCD的边长为1,E、F、G、H分别在AD,AB,BC,CD上,且AF=BG=CH=DE=x,当x为何值时,四边形EFGH的面积最小?24.我们知道:x2−6x=(x2−6x+9)−9=(x−3)2−9;−x2+10=−(x2−10x+25)+25=−(x−5)2+25,这一种方法称为配方法,利用配方法请解以下各题:(1)按上面材料提示的方法填空:a2−4a=________=________.−a2+12a=________=________.(2)探究:当a取不同的实数时在得到的代数式a2−4a的值中是否存在最小值?说明理由.(3)应用:如图.已知线段AB=6,M是AB上的一个动点,设AM=x,以AM为一边作正方形AMND,再以MB、MN为一组邻边作长方形MBCN.问:当点M在AB上运动时,长方形MBCN的面积是否存在最大值?若存在,请求出这个最大值;否则请说明理由.25.某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低x元.(1)填表:(不需化简)(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?26.如图,抛物线y=ax2−2ax+c(a≠0)与y轴交于点C(0, 4),与x轴交于点A、B,点A坐标为(4, 0).(1)求该抛物线的解析式;(2)抛物线的顶点为N,在x轴上找一点K,使CK+KN最小,并求出点K的坐标;(3)点Q是线段AB上的动点,过点Q作QE // AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;(4)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2, 0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.答案1.(x −2)2−12.150+150(1+x)+150(1+x)2=3103.−x 2+2x −14.x 1=−2,x 2=35.<1或x >36.767.−3或18.y =−125x 2+85x9.6 10.3211-20: CBCCD DCCAB21.解:(1)∵x 2−6x +5=0, ∵(x −1)(x −5)=0, ∵x −1=0或x −5=0,∵x 1=1,x 2=5;(2)∵2x −3=±√7,∵x 1=3+√72,x 2=3−√72;(3)∵△=25−4×2=17,∵x =5±√172×2,∵x 1=5+√174,x 2=5−√174;(4)∵3x −4=±(4x −3) 即3x −4=4x −3或3x −4=−(4x −3),∵x 1=−1,x 2=1.22.解:(1)将x =−1代入原方程得m −1+1−2=0 解得:m =2,设方程的另一根是x ,则x −1=1∵另一根为x =2.(2)当m =1时,方程是一元一次方程,−x −2=0,此时的实数解为x =−2; 当m 不等于1时,原方程为一元二次方程,要使方程有实数根,则有△=b 2−4ac ≥0, ∵1+4×2(m −1)≥0. 解得:m ≥78.即当m ≥78时,方程有实数根.(3)∵x 1+x 2=1m−1,x 1x 2=−2m−1.x 12x 2+x 1x 22=x 1x 2(x 1+x 2)=(−2m−1)(1m−1)=−18.解得:m 1=5,m 2=−3, ∵m ≥78,∵m =5.23.解:∵四边形ABCD 是正方形,∵AB =BC =CD =DA =1,∠A =∠B =∠C =∠D =90∘, ∵AF =BG =CH =DE =x , ∵AE =BF =CG =DH =1−x , ∵△AFE ≅△BGF ≅△CHG ≅△DEH , ∵EF =FG =GH =HE ,且∠EFG =180∘−∠AFE −∠BFG =180∘−∠AFE −∠AEF =90∘, ∵四边形EFGH 是正方形.S 正方形EFGH =EF 2=AE 2+AF 2=(1−x)2+x 2=2x 2−2x +1, ∵当x =−−22×2时,S 有最小值, 即x =12时,正方形EFGH 的面积最小.24.a 2−4a +4−4(a −2)2−4−(a 2−12a +36)+36−(a −6)2+36(2)∵a 2−4a =a 2−4a +4−4=(a −2)2−4≥−4,−a 2+12a =−(a 2−12a +36)+36=−(a −6)2+36≤36,∵当a =2时,代数式a 2−4a 存在最小值为−4;(3)根据题意得:S =x(6−x)=−x 2+6x =−(x −3)2+9≤9, 则x =3时,S 最大值为9. 25.第二个月的单价应是70元.26.解:(1)∵抛物线经过点C(0, 4),A(4, 0), ∵{c =416a −8a +4=0,解得{a =−12c =4, ∵抛物线解析式为y =−12x 2+x +4;(2)由(1)可求得抛物线顶点为N(1, 92), 如图1,作点C 关于x 轴的对称点C′(0, −4),连接C′N 交x 轴于点K ,则K 点即为所求,设直线C′N 的解析式为y =kx +b ,把C′、N 点坐标代入可得{k +b =92b =−4,解得{k =172b =−4,∵直线C′N 的解析式为y =172x −4,令y =0,解得x =817,∵点K的坐标为(817, 0);(3)设点Q(m, 0),过点E作EG⊥x轴于点G,如图2,由−12x2+x+4=0,得x1=−2,x2=4,∵点B的坐标为(−2, 0),AB=6,BQ=m+2,又∵QE // AC,∵△BQE≅△BAC,∵EG CO =BQBA,即EG4=m+26,解得EG=2m+43;∵S△CQE=S△CBQ−S△EBQ=12(CO−EG)⋅BQ=12(m+2)(4−2m+43)=−13m2+23m+83=−13(m−1)2+3.又∵−2≤m≤4,∵当m=1时,S△CQE有最大值3,此时Q(1, 0);(4)存在.在△ODF中,(I)若DO=DF,∵A(4, 0),D(2, 0),∵AD=OD=DF=2.又在Rt△AOC中,OA=OC=4,∵∠OAC=45∘.∵∠DFA=∠OAC=45∘.∵∠ADF=90∘.此时,点F的坐标为(2, 2).由−12x2+x+4=2,得x1=1+√5,x2=1−√5.此时,点P的坐标为:P1(1+√5, 2)或P2(1−√5, 2);(II)若FO=FD,过点F作FM⊥x轴于点M.由等腰三角形的性质得:OM=12OD=1,∵AM=3.∵在等腰直角△AMF中,MF=AM=3.∵F(1, 3).由−12x2+x+4=3,得x1=1+√3,x2=1−√3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-2017学年九年级(上)第一次月考数学试卷一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上.1.关于x的方程ax2﹣3x+2=0是一元二次方程,则()A.a>0 B.a≥0 C.a≠0 D.a=12.用配方法解下列方程,配方正确的是()A.2y2﹣4y﹣4=0可化为(y﹣1)2=4 B.x2﹣2x﹣9=0可化为(x﹣1)2=8C.x2+8x﹣9=0可化为(x+4)2=16 D.x2﹣4x=0可化为(x﹣2)2=43.关于x的一元二次方程(m﹣2)x2+5x+m2﹣2m=0的常数项为0,则m的值为()A.1 B.2 C.1或2 D.04.把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为()A.y=2(x+3)2+4 B.y=2(x+3)2﹣4 C.y=2(x﹣3)2﹣4 D.y=2(x﹣3)2+45.某种商品经过连续两次涨价后的价格比原来上涨了44%,则这种商品的价格的平均增长率是()A.44% B.22% C.20% D.18%6.已知抛物线y=ax2+bx,当a>0,b<0时,它的图象经过()A.一,二,三象限B.一,二,四象限C.一,三,四象限D.一,二,三,四象限7.已知二次函数y=2x2﹣2(a+b)x+a2+b2,a,b为常数,当y达到最小值时,x的值为()A.a+b B. C.﹣2ab D.8.在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A.B.C.D.9.若二次函数y=ax2+bx+c的顶点在第一象限,且经过点(0,1),(﹣1,0),则S=a+b+c的变化范围是()A.0<s<2 B.S>1 C.1<S<2 D.﹣1<S<110.如果抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是3,那么c的值等于()A.8 B.14 C.8或14 D.﹣8或﹣1411.对称轴平行于y轴的抛物线的顶点为点(2,3)且抛物线经过点(3,1),那么抛物线解析式是()A.y=﹣2x2+8x+3 B.y=﹣2x‑2﹣8x+3 C.y=﹣2x2+8x﹣5 D.y=﹣2x‑2﹣8x+212.关于二次函数y=ax2+bx+c图象有下列命题:(1)当c=0时,函数的图象经过原点;(2)当c>0时,函数的图象开口向下时,方程ax2+bx+c=0必有两个不等实根;(3)当b=0时,函数图象关于原点对称.其中正确的个数有()A.0个B.1个C.2个D.3个二、填空题:本大题共6小题,每小题3分,共18分,请把答案填写在答题卡上的横线上.13.若ax2+bx+c=0是关于x的一元二次方程,则不等式3a+6>0的解集是__________.14.请你写一个一元二次方程,使该方程有一根为0,则这个方程可以是__________.15.方程x2+6x+3=0的两个实数根为x1,x2,则+=__________.16.已知抛物线y=ax2+bx+c的对称轴为x=2,且经过点(1,4)和点(5,0),则该抛物线的解析式为__________.17.有一个二次函数的图象,三位学生分别说出了它的一些特点.甲:对称轴是直线x=4;乙:与x轴两交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3;请写出满足上述全部特点的二次函数解析式:__________.18.如图所示,已知二次函数y=ax2+bx+c的图象经过(﹣1,0)和(0,﹣1)两点,则化简代数式+=__________.三、解答题:本大题共6小题,满分66分.解答过程写在答题卡上,解答应写出文字说明、演算步骤或推理过程.19.(12分)(2014秋•宝坻区校级期末)解方程(1)2(x﹣3)2=8(直接开平方法)(2)4x2﹣6x﹣3=0(运用公式法)(3)(2x﹣3)2=5(2x﹣3)(运用分解因式法)(4)(x+8)(x+1)=﹣12(运用适当的方法)20.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?21.2009年4月7日,国务院公布了《医药卫生体制改革近期重点实施方案(2009~2011)》,某市政府决定2009年投入6000万元用于改善医疗卫生服务,比2008年增加了1250万元.投入资金的服务对象包括“需方”(患者等)和“供方”(医疗卫生机构等),预计2009年投入“需方”的资金将比2008年提高30%,投入“供方”的资金将比2008年提高20%.(1)该市政府2008年投入改善医疗卫生服务的资金是多少万元?(2)该市政府2009年投入“需方”和“供方”的资金是多少万元?(3)该市政府预计2011年将有7260万元投入改善医疗卫生服务,若从2009~2011年每年的资金投入按相同的增长率递增,求2009~2011年的年增长率.22.已知二次函数y=x2+bx+c的图象与x轴的两个交点的横坐标分别为x1、x2,一元二次方程x2+b2x+20=0的两实根为x3、x4,且x2﹣x3=x1﹣x4=3,求二次函数的解析式,并写出顶点坐标.23.一座拱桥的轮廓是抛物线型(如图1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图2所示),其表达式是y=ax2+c的形式.请根据所给的数据求出a,c的值.(2)求支柱MN的长度.(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.24.如图,抛物线y=﹣x2+x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0)(1)求直线AB的函数关系式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB 于点M,交抛物线于点N.设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由.-2017学年九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上.1.关于x的方程ax2﹣3x+2=0是一元二次方程,则()A.a>0 B.a≥0 C.a≠0 D.a=1【考点】一元二次方程的定义.【分析】根据一元二次方程的定义解答:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:由x的方程ax2﹣3x+2=0是一元二次方程,得a≠0.故选;C.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.用配方法解下列方程,配方正确的是()A.2y2﹣4y﹣4=0可化为(y﹣1)2=4 B.x2﹣2x﹣9=0可化为(x﹣1)2=8C.x2+8x﹣9=0可化为(x+4)2=16 D.x2﹣4x=0可化为(x﹣2)2=4【考点】解一元二次方程-配方法.【专题】计算题.【分析】利用完全平方公式的结构特点判断即可得到结果.【解答】解:A、2y2﹣4y﹣4=0可化为(y﹣1)2=5,故选项错误;B、x2﹣2x﹣9=0可化为(x﹣1)2=10,故选项错误;C、x2+8x﹣9=0可化为(x+4)2=25,故选项错误;D、x2﹣4x=0可化为(x﹣2)2=4,故选项正确.故选D.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.3.关于x的一元二次方程(m﹣2)x2+5x+m2﹣2m=0的常数项为0,则m的值为()【考点】一元二次方程的一般形式.【分析】根据一元二次方程的定义可知m﹣2≠0,再根据常数项为0,即可得到m2﹣2m=0,列出方程组求解即可.【解答】解:∵关于x的一元二次方程(m﹣2)x2+5x+m2﹣2m=0的常数项为0,∴,解m﹣2≠0得m≠2;解m2﹣2m=0得m=0或2.∴m=0.故选D.【点评】此题考查了一元二次方程的定义.判断一个方程是否是一元二次方程必须具备以下3个条件:(1)是整式方程,(2)只含有一个未知数,(3)方程中未知数的最高次数是2.这三个条件缺一不可,尤其要注意二次项系数a≠0这个最容易被忽略的条件.4.把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为()A.y=2(x+3)2+4 B.y=2(x+3)2﹣4 C.y=2(x﹣3)2﹣4 D.y=2(x﹣3)2+4【考点】二次函数图象与几何变换.【专题】计算题.【分析】抛物线y=2x2的顶点坐标为(0,0),则把它向左平移3个单位,再向上平移4个单位,所得抛物线的顶点坐标为(﹣3,4),然后根据顶点式写出解析式.【解答】解:把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数解析式为y=2(x+3)2+4.故选A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.5.某种商品经过连续两次涨价后的价格比原来上涨了44%,则这种商品的价格的平均增长率是()【考点】一元二次方程的应用.【专题】增长率问题.【分析】设这种商品的价格的平均增长率为x,根据题意列出关于x的方程,求出方程的解即可得到结果.【解答】解:设这种商品的价格的平均增长率为x,根据题意得:(1+x)2=1+44%,开方得:1+x=±1.2,解得:x1=0.2,x2=﹣2.2(舍去),则这种商品的价格的平均增长率为20%.故选C【点评】此题考查了一元二次方程的应用,找出题中的等量关系是解本题的关键.6.已知抛物线y=ax2+bx,当a>0,b<0时,它的图象经过()A.一,二,三象限B.一,二,四象限C.一,三,四象限D.一,二,三,四象限【考点】二次函数图象与系数的关系.【分析】由a>0可以得到开口方向向上,由b<0,a>0可以推出对称轴x=﹣>0,由c=0可以得到此函数过原点,由此即可确定可知它的图象经过的象限.【解答】解:∵a>0,∴开口方向向上,∵b<0,a>0,∴对称轴x=﹣>0,∵c=0,∴此函数过原点.∴它的图象经过一,二,四象限.故选B.【点评】此题主要考查二次函数的以下性质.7.已知二次函数y=2x2﹣2(a+b)x+a2+b2,a,b为常数,当y达到最小值时,x的值为()A.a+b B. C.﹣2ab D.【考点】二次函数的最值.【专题】计算题.【分析】本题考查二次函数最小(大)值的求法.【解答】解:根据二次函数y=2x2﹣2(a+b)x+a2+b2=2(x﹣)2+,因此当x=时,y达到最小值.故选B.【点评】本题主要考查了二次函数的最值,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.8.在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】根据二次函数的开口方向,与y轴的交点;一次函数经过的象限,与y轴的交点可得相关图象.【解答】解:∵一次函数和二次函数都经过y轴上的(0,c),∴两个函数图象交于y轴上的同一点,故B选项错误;当a>0时,二次函数开口向上,一次函数经过一、三象限,故C选项错误;当a<0时,二次函数开口向下,一次函数经过二、四象限,故A选项错误;故选:D.【点评】本题考查二次函数及一次函数的图象的性质;用到的知识点为:二次函数和一次函数的常数项是图象与y轴交点的纵坐标;一次函数的一次项系数大于0,图象经过一、三象限;小于0,经过二、四象限;二次函数的二次项系数大于0,图象开口向上;二次项系数小于0,图象开口向下.9.若二次函数y=ax2+bx+c的顶点在第一象限,且经过点(0,1),(﹣1,0),则S=a+b+c的变化范围是()A.0<s<2 B.S>1 C.1<S<2 D.﹣1<S<1【考点】二次函数图象与系数的关系.【专题】压轴题.【分析】由二次函数的解析式可知,当x=1时,所对应的函数值y=s=a+b+c.把点(0,1),(﹣1,0)代入y=ax2+bx+c,得出c=1,a﹣b+c=0,然后根据顶点在第一象限,可以画出草图并判断出a与b的符号,进而求出S=a+b+c的变化范围.【解答】解:∵二次函数y=ax2+bx+c的顶点在第一象限,且经过点(0,1),(﹣1,0),∴易得:c=1,a﹣b+c=0,a<0,b>0,由a=b﹣1<0得到b<1,结合上面b>0,所以0<b<1①,由b=a+1>0得到a>﹣1,结合上面a<0,所以﹣1<a<0②,∴由①②得:﹣1<a+b<1,且c=1,得到0<a+b+c<2,∴0<s<2.故选A.【点评】此题考查了点与函数的关系,解题的关键是画草图,利用数形结合思想解题.10.如果抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是3,那么c的值等于()A.8 B.14 C.8或14 D.﹣8或﹣14【考点】待定系数法求二次函数解析式.【分析】根据题意,知顶点的纵坐标是3或﹣3,列出方程求出解则可.【解答】解:根据题意=±3,解得c=8或14.故选C.【点评】本题考查了求顶点的纵坐标公式,比较简单.11.对称轴平行于y轴的抛物线的顶点为点(2,3)且抛物线经过点(3,1),那么抛物线解析式是()A.y=﹣2x2+8x+3 B.y=﹣2x‑2﹣8x+3 C.y=﹣2x2+8x﹣5 D.y=﹣2x‑2﹣8x+2【考点】待定系数法求二次函数解析式.【分析】已知抛物线的顶点坐标,把经过的点的坐标代入顶点坐标式求出系数则可.【解答】解:根据题意,设y=a(x﹣2)2+3,抛物线经过点(3,1),所以a+3=1,a=﹣2.因此抛物线的解析式为:y=﹣2(x﹣2)2+3=﹣2x2+8x﹣5.故本题选C.【点评】本题考查利用待定系数法设抛物线的顶点坐标式求抛物线的表达式.12.关于二次函数y=ax2+bx+c图象有下列命题:(1)当c=0时,函数的图象经过原点;(2)当c>0时,函数的图象开口向下时,方程ax2+bx+c=0必有两个不等实根;(3)当b=0时,函数图象关于原点对称.其中正确的个数有()A.0个B.1个C.2个D.3个【考点】二次函数的性质.【分析】当b=0时,函数解析式缺少一次项,对称轴x=0,是y轴;当c=0时,缺少常数项,图象经过(0,0)点;当c>0时,图形交y轴正半轴,开口向下,即a<0,此时ac<0,方程ax2+bx+c=0的△>0.【解答】解:根据二次函数的性质可知:(1)当c=0时,函数的图象经过原点,正确;(2)当c>0时,函数的图象开口向下时,图象与x轴有2个交点,所以方程ax2+bx+c=0必有两个不等实根,正确;(3)当b=0时,函数图象关于原点对称,错误.有两个正确.故选C.【点评】主要考查了二次函数y=ax2+bx+c中系数a,b,c与图象的关系.二、填空题:本大题共6小题,每小题3分,共18分,请把答案填写在答题卡上的横线上.13.若ax2+bx+c=0是关于x的一元二次方程,则不等式3a+6>0的解集是a>﹣2且a≠0.【考点】一元二次方程的定义;解一元一次不等式.【专题】计算题.【分析】本题根据一元二次方程的定义和解不等式来解答;一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.【解答】解:∵3a+6>0,∴3a>﹣6,解得:a>﹣2;根据一元二次方程的定义,a≠0;所以a>﹣2且a≠0.【点评】本题是一个方程与不等式相结合的题目,解关于x的不等式是本题的一个难点;解不等式时,移项时要注意符号的变化.14.请你写一个一元二次方程,使该方程有一根为0,则这个方程可以是x2﹣x=0.【考点】一元二次方程的解.【专题】开放型.【分析】以0和1为根写一个一元二次方程即可.【解答】解:x=0是方程x2﹣x=0的一个根.故答案为x2﹣x=0.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15.方程x2+6x+3=0的两个实数根为x1,x2,则+=10.【考点】根与系数的关系.【专题】计算题.【分析】先根据根与系数的关系得到x1+x2=﹣6,x1•x2=3,再利用完全公式变形得到+=,然后利用整体代入的方法计算.【解答】解:根据题意得x1+x2=﹣6,x1•x2=3,所以+====10.故答案为10.【点评】本题考查了根与系数的关系:设x1,x2为一元二次方程ax2+bx+c=0(a≠0)的两根,则有如下关系:x1+x2=﹣,x1•x2=.16.已知抛物线y=ax2+bx+c的对称轴为x=2,且经过点(1,4)和点(5,0),则该抛物线的解析式为y=﹣x2+2x+.【考点】待定系数法求二次函数解析式.【分析】根据题意,已知对称轴x=2,图象经过点(5,0),根据抛物线的对称性,可知图象经过另一点(﹣1,0),设抛物线的交点式y=a(x+1)(x﹣5),把点(1,4)代入即可.【解答】解:∵抛物线的对称轴为x=2,且经过点(5,0),根据抛物线的对称性,图象经过另一点(﹣1,0),设抛物线的交点式y=a(x+1)(x﹣5),把点(1,4)代入,得:4=a(1+1)×(1﹣5),解得a=﹣,所以y=﹣(x+1)(x﹣5),即y=﹣x2+2x+.故答案为:y=﹣x2+2x+.【点评】当已知函数图象与x轴有两交点时,利用交点式求解析式比较简单;当已知函数的顶点坐标,或已知函数对称轴时,利用顶点式求解析式比较简单;当已知函数图象经过一般的三点时,利用一般式求解.17.有一个二次函数的图象,三位学生分别说出了它的一些特点.甲:对称轴是直线x=4;乙:与x轴两交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3;请写出满足上述全部特点的二次函数解析式:y=(x﹣3)(x﹣5).【考点】待定系数法求二次函数解析式.【专题】压轴题.【分析】由对称轴是直线x=4,与x轴两交点的横坐标都是整数,可设与x轴两交点坐标为(3,0),(5,0),又因为以函数与x轴,y轴交点为顶点的三角形面积为3,可得与y轴的交点的坐标为(0,3).利用交点式y=a(x﹣x1)(x﹣x2),求出解析式.【解答】解:此题答案不唯一∵对称轴是直线x=4,与x轴两交点的横坐标都是整数可设与x轴两交点坐标为(3,0),(5,0)又因为以函数与x轴,y轴交点为顶点的三角形面积为3可得与y轴的交点的坐标为(0,3)设解析式y=a(x﹣3)(x﹣5)把点(0,3)代入得a=.∴解析式y=(x﹣3)(x﹣5).【点评】此题是开放题,解题的关键理解题意.还要注意利用待定系数法求函数解析式,当题目中出现二次函数与x轴的交点坐标时,采用交点式比较简单.18.如图所示,已知二次函数y=ax2+bx+c的图象经过(﹣1,0)和(0,﹣1)两点,则化简代数式+=.【考点】二次函数图象上点的坐标特征.【分析】由二次函数y=ax2+bx+c的图象过(﹣1,0)和(0,﹣1)两点,求c的值及a、b的关系式,根据对称轴的位置判断a的取值范围,再把二次根式化简求值.【解答】解:把(﹣1,0)和(0,﹣1)两点代入y=ax2+bx+c中,得a﹣b+c=0,c=﹣1,∴b=a+c=a﹣1,由图象可知,抛物线对称轴x=﹣>0,且a>0,∴a﹣1<0,0<a<1,+=+=|a+|+|a﹣|,=a+﹣a+,=.故答案为:.【点评】本题考查了二次函数图象上的点与二次函数解析式的关系,对称轴的性质,根据对称轴的位置确定a的取值范围的解题的关键.三、解答题:本大题共6小题,满分66分.解答过程写在答题卡上,解答应写出文字说明、演算步骤或推理过程.19.(12分)(2014秋•宝坻区校级期末)解方程(1)2(x﹣3)2=8(直接开平方法)(2)4x2﹣6x﹣3=0(运用公式法)(3)(2x﹣3)2=5(2x﹣3)(运用分解因式法)(4)(x+8)(x+1)=﹣12(运用适当的方法)【考点】解一元二次方程-公式法;解一元二次方程-直接开平方法;解一元二次方程-因式分解法.【分析】(1)先将方程化为(x﹣3)2=4的形式,然后开平方即可.(2)先正确确定a,b,c的值,然后代入公式计算.(3)先移项,再应用提取公因式法分解因式求解.(4)先对左边的部分进行乘法计算,然后再用因式分解法解方程.【解答】解:(1)(x﹣3)2=4x﹣3=2或x﹣3=﹣2,解得,x1=1或x2=5;(2)a=4,b=﹣6,c=﹣3,b2﹣4ac=(﹣6)2﹣4×4×(﹣3)=84,x==,,;(3)移项得,(2x﹣3)2﹣5(2x﹣3)=0,因式分解得,(2x﹣3)(2x﹣3﹣5)=0,,x2=4;(4)化简得,x2+9x+20=0,(x+4)(x+5)=0,解得,x1=﹣4,x2=﹣5.【点评】本题考查了解一元二次方程的方法,当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.当化简后不能用分解因式的方法即可考虑求根公式法,此法适用于任何一元二次方程.20.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?【考点】一元二次方程的应用.【专题】应用题.【分析】设AB的长度为x米,则BC的长度为(100﹣4x)米;然后根据矩形的面积公式列出方程.【解答】解:设AB的长度为x米,则BC的长度为(100﹣4x)米.根据题意得(100﹣4x)x=400,解得x1=20,x2=5.则100﹣4x=20或100﹣4x=80.∵80>25,∴x2=5舍去.即AB=20,BC=20.答:羊圈的边长AB,BC分别是20米、20米.【点评】本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.21.2009年4月7日,国务院公布了《医药卫生体制改革近期重点实施方案(2009~2011)》,某市政府决定2009年投入6000万元用于改善医疗卫生服务,比2008年增加了1250万元.投入资金的服务对象包括“需方”(患者等)和“供方”(医疗卫生机构等),预计2009年投入“需方”的资金将比2008年提高30%,投入“供方”的资金将比2008年提高20%.(1)该市政府2008年投入改善医疗卫生服务的资金是多少万元?(2)该市政府2009年投入“需方”和“供方”的资金是多少万元?(3)该市政府预计2011年将有7260万元投入改善医疗卫生服务,若从2009~2011年每年的资金投入按相同的增长率递增,求2009~2011年的年增长率.【考点】二元一次方程组的应用;一元二次方程的应用.【专题】应用题;压轴题.【分析】(1)用2009年市政府投入资金钱数减去比2008年投入增加的资金钱数,可以得出结果.(2)题中有两个等量关系:2008年市政府投入需方的资金钱数+投入供方的资金钱数=4750,2009年投入需方的资金钱数+投入供方的资金钱数=6000,据此可以列出方程组.(3)根据等量关系2009年资金投入钱数×(1+年增长率)2011﹣2009=7260,直接设未知数,求出解.【解答】解:(1)该市政府2008年投入改善医疗服务的资金是:6000﹣1250=4750答:该市政府2008年投入改善医疗卫生服务的资金是4750万元.(2)设市政府2008年投入“需方”x万元,投入“供方”y万元,由题意得,解得∴2009年投入“需方”资金为(1+30%)x=1.3×3000=3900(万元),2009年投入“供方”资金为(1+20%)y=1.2×1750=2100(万元).答:该市政府2009年投入“需方”3900万元,投入“供方”2100万元.(3)设年增长率为m,由题意得6000(1+m)2=7260,解得m1=0.1,m2=﹣2.1(不合实际,舍去)答:从2009~2011年的年增长率是10%.【点评】关键是弄清题意,找出等量关系:2008年市政府投入需方的资金钱数+投入供方的资金钱数=4750,2009年投入需方的资金钱数+投入供方的资金钱数=6000,2009年资金投入钱数×(1+年增长率)2011﹣2009=7260.22.(10分)(2003•上海校级自主招生)已知二次函数y=x2+bx+c的图象与x轴的两个交点的横坐标分别为x1、x2,一元二次方程x2+b2x+20=0的两实根为x3、x4,且x2﹣x3=x1﹣x4=3,求二次函数的解析式,并写出顶点坐标.【考点】抛物线与x轴的交点.【分析】先将x2﹣x3=x1﹣x4=3化简为两根之和的形式,再代入数值进行计算.【解答】解:∵x2﹣x3=x1﹣x4=3∴x2﹣x3=3,x1﹣x4=3∴x2﹣x3+x1﹣x4=6即(x1+x2)﹣(x3+x4)=6∴(x1+x2)﹣(x3+x4)=﹣b+b2=6,即b2﹣b﹣6=0,解得:b=﹣2或3∵x2﹣x3=x1﹣x4∴|x1﹣x2|=|x3﹣x4|即=∴9﹣4c=81﹣4×20,解得:c=2又∵一元二次方程x2+b2x+20=0有两实根∴△=b4﹣80≥0,当b=﹣2,c=2时,有y=x2﹣2x+2,△=4﹣4×1×2=﹣4<0,与x轴无交点,∴b=﹣2不合题意舍去则解析式为y=x2+3x+2,根据顶点坐标公式可得顶点坐标:.【点评】要求熟悉二次函数与一元二次方程的关系和坐标轴上两点距离公式|x1﹣x2|,并熟练运用.23.一座拱桥的轮廓是抛物线型(如图1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图2所示),其表达式是y=ax2+c的形式.请根据所给的数据求出a,c的值.(2)求支柱MN的长度.(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.【考点】二次函数的应用.【专题】应用题.【分析】(1)根据题目可知A.B,C的坐标,设出抛物线的解析式代入可求解.(2)设N点的坐标为(5,y N)可求出支柱MN的长度.(3)设DN是隔离带的宽,NG是三辆车的宽度和.做GH垂直AB交抛物线于H则可求解.【解答】解:(1)根据题目条件,A、B、C的坐标分别是(﹣10,0)、(10,0)、(0,6).将B、C的坐标代入y=ax2+c,得解得.所以抛物线的表达式是;(2)可设N(5,y N),于是.从而支柱MN的长度是10﹣4.5=5.5米;(3)设DE是隔离带的宽,EG是三辆车的宽度和,则G点坐标是(7,0),(7=2÷2+2×3).过G点作GH垂直AB交抛物线于H,则yH=﹣×72+6=3+>3.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.【点评】本题考查点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.24.如图,抛物线y=﹣x2+x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0)(1)求直线AB的函数关系式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB 于点M,交抛物线于点N.设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由.【考点】二次函数综合题.【专题】压轴题.【分析】(1)由题意易求得A与B的坐标,然后有待定系数法,即可求得直线AB的函数关系式;(2)由s=MN=NP﹣MP,即可得s=﹣t2+t+1﹣(t+1),化简即可求得答案;(3)若四边形BCMN为平行四边形,则有MN=BC,即可得方程:﹣t2+t=,解方程即可求得t 的值,再分别分析t取何值时四边形BCMN为菱形即可.【解答】解:(1)∵当x=0时,y=1,∴A(0,1),当x=3时,y=﹣×32+×3+1=2.5,∴B(3,2.5),设直线AB的解析式为y=kx+b,则:,解得:,∴直线AB的解析式为y=x+1;(2)根据题意得:s=MN=NP﹣MP=﹣t2+t+1﹣(t+1)=﹣t2+t(0≤t≤3);(3)若四边形BCMN为平行四边形,则有MN=BC,此时,有﹣t2+t=,解得t1=1,t2=2,∴当t=1或2时,四边形BCMN为平行四边形.①当t=1时,MP=,NP=4,故MN=NP﹣MP=,又在Rt△MPC中,MC=,故MN=MC,此时四边形BCMN为菱形,②当t=2时,MP=2,NP=,故MN=NP﹣MP=,又在Rt△MPC中,MC=,故MN≠MC,此时四边形BCMN不是菱形.【点评】此题考查了待定系数法求函数的解析式,线段的长与函数关系式之间的关系,平行四边形以及菱形的性质与判定等知识.此题综合性很强,难度较大,解题的关键是数形结合思想的应用.。

相关文档
最新文档