二元一次方程销售利润问题知识点及典型题练习教学提纲
人教版初一数学下册 二元一次方程组应用题 商品利润问题 讲义

商品利润问题解题技巧:1、售价-进价=利润2、每件商品的利润×数量=总利润3、%100-%100⨯=⨯=进价进价售价进价利润利润率 例1、商场的一位老板购进甲、乙两件衣服后,在标价的基础上加价40%,然后又分别打八折、九折来出售。
一位女士给老公买了这两件衣服,共付款182元。
已知两件衣服标价之和为210元,求这两件衣服的进价是多少?例2、钟伯伯用60元从蔬菜批发市场买来了西红柿和豆角共40kg ,然后带去菜市场卖。
已知西红柿和豆角这天的批发价与零售价如表所示。
求钟伯伯当天卖完这些西红柿和豆角能赚多少钱?1、爸爸用2400元买进了甲、乙两种股票,现在甲股票升值15%,乙股票下跌10%时卖出,共获利1350元,问爸爸买的甲、乙股票各多少元?2、商场按标价销售某种工艺品时,每件可获利45元。
按标价的八五折销售工艺品8件时,与将标价降低35元销售该工艺品12件所获得的利润相等。
则该种工艺品的进价和标价分别是多少元?3、蔬菜经营户王叔叔花90元从蔬菜批发市场批发了黄瓜和茄子共40千克,到菜市场按零售价卖,黄瓜和茄子当天的批发价和零售价如表所示:他当天批发了黄瓜和茄子各多少千克?卖完这些黄瓜和茄子共赚了多少元?4、体育文化用品商店购进篮球和排球共20个,进价和售价如表,全部销售完后共获利润260元,求商店购进篮球、排球各多少个?例2、商店在一次买卖中同时卖出两件上衣,每件都是以135元卖出,若按成本计算,其中一件盈利25%,另一件亏损20%,则商店的盈亏情况如何?5、商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店的盈亏情况如何?6、一件商品如果按定价打九折出售可以盈利20%,如果打八折出售可以盈利10元,则这种商品的定价是多少?进价是多少?7、商场购进甲、乙两种商品共50件,甲商品每件进价为35元,利润率为20%,乙商品每件进价为20元,利润率为15%,共获利278元。
二元一次方程组的运用3(商品销售利润问题)

解得:
答:存教育储蓄的钱为1500元,存一年定期的钱为500元.
5、 某工厂去年的利润(总产值—总支出) 为200万元,今年总产值比去年增加了20%, 总支出比去年减少了10%,今年的利润为780 万元,去年的总产值、总支出各是多少万元?
思路点拨:设去年的总产值为x万元,总支出为y万元,则有
去年 今年
3.小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式 在银行共存了2000元钱,一种是年利率为2.25%的教育储蓄,另一种 是年利率为2.25%的一年定期存款,一年后可取出2042.75元,问这两 种储蓄各存了多少钱? (利息所得税=利息金额×20%,教育储蓄没有利息所得税) 解:设存一年教育储蓄的钱为x元,存一年定期存款的钱为y元, 则列方程:
答:两件商品的进价分别为600元和400元。
3.小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式 在银行共存了2000元钱,一种是年利率为2.25%的教育储蓄,另一种 是年利率为2.25%的一年定期存款,一年后可取出2042.75元,问这两 种储蓄各存了多少钱? (利息所得税=利息金额×20%,教育储蓄没有利息所得税) 思路点拨: 设教育储蓄存了x元,一年定期存了y元,我们可以根据题 意可列出表格:
二元一次方程组的应用
商品销售利润问题、
银行储蓄问题、增长率问题
例1、一件商品如果按定价打九折出售可以盈利20%;如果 打八折出售可以盈利10元,问此商品的定价是多少?
分析:商品的利润涉及到进价、定价和卖出价,因此,设此商品的 定价为x元,进价为y元,则打九折时的卖出价为0.9x元,获利 (0.9x-y)元,因此得方程0.9x-y=20%y;打八折时的卖出价为0.8x元, 获利(0.8x-y)元,可得方程0.8x-y=10.
部编数学七年级下册专题12销售、利润问题(二元一次方程组的应用)(解析版)含答案

2022-2023学年人教版七年级数学下册精选压轴题培优卷专题12 销售、利润问题(二元一次方程组的应用)考试时间:120分钟 试卷满分:100分评卷人得分一、选择题(每题2分,共20分)1.(本题2分)(2023春·七年级课时练习)欣欣服装店某天用相同的价格()0a a ³卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的盈利情况是( )A .亏损B .盈利C .不盈不亏D .不确定【答案】A【思路点拨】设第一件衣服的进价为x 元,第二件衣服的进价为y 元,根据题意,可得()()120%120%x y +=-=,进而即可求解.【规范解答】设第一件衣服的进价为x 元,第二件衣服的进价为y 元,由题意得:()()120%120%x a y a +=-=,∴()()120%120%x y +=-=,整理得:3=2x y∴ 1.5y x=∴该服装店卖出这两件服装的盈利情况是:20%20%0.20.2 1.50.10x y x x x -=-´=-<,即赔了0.1x 元.故选:A .【考点评析】本题主要考查二元一次方程的应用,根据等量关系,列出方程是关键.2.(本题2分)(2022秋·广东佛山·八年级校考期中)某商店将某种碳酸饮料每瓶的价格下调了10%.将某种果汁饮料每瓶的价格上调了5%,已知调价前买这两种饮料各一瓶共花费8元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费19.8元,若设上述碳酸饮料、果汁饮料在调价前每瓶分别为x 元和y 元,则可列方程组为( )A .830.92 1.0519.8x y x y +=ìí´+´=îB .83 1.120.9519.8x y x y +=ìí´+´=îC.83 1.0520.919.8x yx y+=ìí´+´=îD.830.952 1.119.8x yx y+=ìí´+´=î【答案】A【思路点拨】设上述碳酸饮料、果汁饮料在调价前每瓶分别为x元和y元,根据题意,列出方程组即可.【规范解答】解:设上述碳酸饮料、果汁饮料在调价前每瓶分别为x元和y元,由题意得,830.92 1.0519.8x yx y+=ìí´+´=î.故选A.【考点评析】本题考查二元一次方程组的应用.根据题意,正确的列出二元一次方程组,是解题的关键.3.(本题2分)(2023春·浙江·七年级专题练习)第24届冬季奥林匹克运动会将于2022年02月04日至2022年02月20日在中华人民共和国北京市和张家口市联合举行,这是中国历史上第一次举办冬季奥运会冬奥会吉祥物“冰墩墩”和“雪容融”陶制品分为小套装和大套装两种已知购买2个小套装和购买1个大套装,共需220元;购买3个小套装和2个大套装,共需390元,则大套装的单价为( )元A.50B.70C.90D.120【答案】D【思路点拨】设大套装的单价为x元,小套装的单价为y元,根据购买2个小套装和购买1个大套装,共需220元;购买3个小套装和2个大套装,共需390元,即可得出关于x,y的二元一次方程组,解之即可得到结论.【规范解答】解:设大套装的单价为x元,小套装的单价为y元,依题意可得:2220 23390x yx y+=ìí+=î,解得:12050xy=ìí=î,∴大套装的单价为120元.故选D.【考点评析】本题考查了一元二次方程组的应用,找准等量关系,正确列出二元一次方程组.4.(本题2分)(2023春·浙江·七年级专题练习)某商场购进商品后,加价40%作为销售价.某日商场搞优惠促销,由顾客抽奖决定折扣.某顾客购买甲、乙两种商品,分别抽到七折和八折,共付款499元,两种商品原售价之和为590元,设两种商品的进价分别为x 元和y 元,根据题意所列方程组为( )A .590,0.7 1.40.8 1.4499x y x y +=ìí´+´=îB .499,0.7 1.40.8 1.4590x y x y +=ìí´+´=îC . 1.4 1.4590,0.7 1.40.8 1.4499x y x y +=ìí´+´=îD . 1.4 1.4499,0.7 1.40.8 1.4590x y x y +=ìí´+´=î【答案】C 【思路点拨】设两种商品的进价分别为x 、y 元,根据等量关系:两种商品原销售价之和为590元,七折和八折,共付款499元,列方程组即可.【规范解答】解:设两种商品的进价分别为x 、y 元,两种商品的售价分别为(1+40%)x =1.4x ,(1+40%)y =1.4y ,∵两种商品原销售价之和为590元,∴1.4x +1.4y =590,两种商品优惠促销价分别为0.7×1.4x ,0.8×1.4y ,∴0.7×1.4x +0.8×1.4y =499,∴列方程组得 1.4 1.45900.7 1.40.8 1.4499+=ìí´+´=îx y x y ,故选C .【考点评析】本题考查列二元一次方程组解销售问题应用题,掌握列方程组的方法,抓住等量关系是解题关键.5.(本题2分)(2022·浙江舟山·九年级专题练习)某商店对一种商品进行促销,促销方式:若购买不超过10件,按每件a 元付款:若一次性购买10件以上,超出部分按每件b 元付款.小明购买了14件付款90元;小聪购买了19件付款115元,则a ,b 的值为( )A .7,5a b ==B .5,7a b ==C .8,5a b ==D .7,4a b ==【答案】A【思路点拨】根据题意可列出关于a 、b 的二元一次方程组,解方程组即可.【规范解答】解:由题意得:10490109115a b a b +=ìí+=î①②,由②−①得:525=b ,解得:5b =,将5b =代入①得:104590+´=a ,解得:7a =,∴方程组的解为75a b =ìí=î,故选:A .【考点评析】此题考查了二元一次方程组的应用,解题的关键是读懂题意,找出题目中的数量关系,列出方程组.6.(本题2分)(2021春·全国·七年级专题练习)根据图中提供的信息,可知一个杯子的价格是( )A .6元B .8元C .10元D .12元【答案】B 【思路点拨】设一盒杯子x 元,一个暖瓶y 元,根据图示可得:一个杯子+一个暖瓶=43元,3个杯子+2个暖瓶=94元,列方程组求解.【规范解答】设一盒杯子x 元,一个暖瓶y 元,由题意得,433294x y x y ++ìíî==,解得:835x y ìíî==,即一个杯子为8元.故选:B .【考点评析】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.7.(本题2分)(2020秋·山东枣庄·八年级统考期末)小岩打算购买气球装扮学校“毕业典礼”活动会场气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位.已知第一束,第二束气球的价格如图所示,则第三束气球的价格为( )A .15元B .16元C .17元D .18元【答案】D 【思路点拨】设一个笑脸气球的单价为x 元/个,一个爱心气球的单价为y 元/个,根据前两束气球的价格,即可得出关于x 、y 的方程组,用前两束气球的价格相加除以2,即可求出第三束气球的价格.【规范解答】解:设一个笑脸气球的单价为x 元/个,一个爱心气球的单价为y 元/个,根据题意得:316320x y x y +ìí+î=①=②,方程(①+②)÷2,得:2x+2y=18,即第三束气球的价格为18元.故选:D .【考点评析】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.8.(本题2分)(2022秋·全国·八年级专题练习)某商店用300元购进A ,B 两种商品,A 商品的利润率是10%,B 商品的利润率是11%,售出后共获利32.5元,则A ,B 两种商品各获利( )A .5元,27.5元B .6元,26.5元C .7元,25.5元D .9元,23.5元【答案】A【思路点拨】设A 、B 两种商品进价分别为x ,y 元,可得其利润分别为10%x ,11%y 元,根据购进共花300元,售出后共获利32.5元列出方程组,求得x ,y 后再求各获利多少元.【规范解答】设A 、B 两种商品进价分别为x ,y 元,根据题意得:30010%11%32.5x y x y +=ìí+=î解得50250x y =ìí=î所以10%x=5 ,11%y=27.5故选A【考点评析】此题主要考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.9.(本题2分)(2019·湖北·校联考一模)某店在开学初用880元购进若干个学生专用科学计算器,按每个50元出售,很快就销售一空,据了解学生还急需3倍数量这种计算器,由于量大,每个进价比上次优惠1元,该店又用2580元购进所需计算器,该店第一次购进计算器的单价为( )A .20元B .42元C .44元D .46元10.(本题2分)(2020秋·陕西西安·八年级统考期末)某商场新购进一种服装,每套售价1000元,若将裤子降价10%,上衣涨价5%,调价后这套服装的单价比原来提高了2%,则调价前上衣的单价是( )A .200元B .480元C .600元D .800元【答案】D【思路点拨】设调价前上衣的单价是x 元,裤子的单价是y 元,根据“调价前每套售价1000元,若将裤子降价10%,上衣涨价5%,调价后这套服装的单价比原来提高了2%”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.【规范解答】解:设调价前上衣的单价是x 元,裤子的单价是y 元,依题意,得:()()()100015%110%100012%x y x y +=ìí++-=´+î,解得:800200x y =ìí=î.故选:D .【考点评析】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.评卷人得分二、填空题(每题2分,共20分)11.(本题2分)(2022秋·重庆沙坪坝·七年级统考期末)2022年冬,重庆新冠疫情期间,某火锅店举办“云端火锅,共抗疫情”活动,将火锅底料及菜品打包成“便利火锅包”送至附近小区大门处,由居民自行前往提取.根据菜品种类分为A 、B 、C 三类,三个品类成本价分别是125元,100元,75元.且A 类和B 类火锅的标价一样,该店对这三个品类全部打8折销售.若三个品类的销量相同,则火锅店能获得30%的利润,此时A 品类利润率为20%.若A 、B 、C 三类销量之比是2:1:2,则火锅店销售A 、B 、C 类便利火锅包的总利润率为_______.(利润率100-=´%售价成本成本)12.(本题2分)(2023秋·重庆沙坪坝·八年级重庆八中校考期末)三月初某书店销售A 、B 两种书籍,销售36本A 书籍和25本B 书籍收入3495元,销售24本A 书籍和30本B 书籍收入3330元,月底发现部分书籍有污迹,决定对有污迹的书籍进行打六折促销,张老师根据实际购买了原价或打折的两种书籍,共花费3150元,其中购买的A种打折书籍的本数是购买所有书籍本数的14,张老师购买A种打折书籍________本.13.(本题2分)(2022秋·八年级课时练习)在餐馆里,王伯伯买了5个菜,3个馒头,老板少收3元,只收60元,李太太买了10个菜,5个馒头,老板以售价的八折优惠,只收100元,则馒头每个_____元.【答案】1【思路点拨】设馒头每个x 元,菜每个y 元,由题意:王伯伯买了5个菜,3个馒头,老板少收3元,只收60元,李太太买了10个菜,5个馒头,老板以售价的八折优惠,只收100元,列出二元一次方程组,解方程组即可.【规范解答】解:设馒头每个x 元,菜每个y 元,由题意得:356035101000.8x y x y +=+ìí+=¸î,解得:112x y =ìí=î,即馒头每个1元,故答案为:1.【考点评析】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.14.(本题2分)(2022秋·重庆江北·八年级重庆十八中校考阶段练习)2022年北京冬奥会已经越来越近了,这是我国重要历史节点的重大标志性活动,更是全国人民的一次冰雪运动盛宴,与此同时北京冬奥会吉祥物冰墩墩也受到人们的喜爱,关于冰墩墩的各种周边纪念品:徽章、风铃、抱枕、公仔正在某商场火热销售中.已知徽章和抱枕的价格相同,公仔的单价是风铃的两倍,且徽章和风铃的单价之和不超过120元.元旦节期间,徽章的销售数量是公仔数量的2倍,风铃和抱枕的销售数量相同,其中徽章和风铃共卖出120件,抱枕和公仔的销售总额比风铃和徽章的销售总额多2200元,则徽章和风铃销售总额的最大值是______元.【答案】6100【思路点拨】设徽章和抱枕的价格为a 元,风铃的价格为b 元,公仔的价格为2b 元,公仔的销售数量为m 件,徽章的销售数量为2m 件,则风铃和抱枕的销售数量为(120-2m )件,根据题意列出方程求解即可.【规范解答】解:设徽章和抱枕的价格为a 元,风铃的价格为b 元,公仔的价格为2b 元,公仔的销售数量为m 件,徽章的销售数量为2m 件,则风铃和抱枕的销售数量为(120-2m )件,根据题意列方程得,(120)2(1202)22200a m bm b m ma -+---=,化简得,2260601100am bm a b -=--;徽章和风铃销售总额为2(1202)22120ma b m ma bm b +-=-+,把2260601100am bm a b -=--代入得,60601100a b +-;∵120a b +£,当120a b +=时,徽章和风铃销售总额的最大,最大值是6012011006100´-=(元);故答案为:6100.【考点评析】本题考查了方程和不等式的应用,解题关键是根据题意中的数量关系,设未知数,列出方程,根据等式的性质进行变形,整体代入求解.15.(本题2分)(2021·重庆·九年级专题练习)每年7月上中旬是早稻的成熟季节,粮食批发商都会大量采购A 、B 、C 三种水稻,为了获得最大利润,批发商需要统计数据,更好地囤货.7月份某粮食批发商统计销量后发现,A 、B 、C 三种水稻销量之比为3: 4: 5,随着市场的扩大,预计8月份粮食总销量将在7月份基础上有所增加,其中C 种水稻增加的销量占总增加的销量的27,则C 种水稻销量将达到8月份总销量的719,为使A 、B 两种水稻8月份的销量相等,则8月份B 种水稻还需要增加的销量与8月份总销量之比为________.16.(本题2分)(2022春·全国·八年级假期作业)打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元.打折后,买500件A商品和500件B商品用了9600元,比不打折少花__元.【答案】400【思路点拨】设打折前A商品的单价为x元,B商品的单价为y元,根据“打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元”,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入(500x+500y﹣9600)中即可求出结论.【规范解答】解:设打折前A商品的单价为x元,B商品的单价为y元,依题意,得:60301080 5010840x yx y+=ìí+=î,解得:164xy=ìí=î,∴500x+500y﹣9600=400.故答案为:400.【考点评析】本题考查了打折问题,二元一次方程组的应用,根据题意正确布列方程组是解题的关键.17.(本题2分)(2022春·重庆北碚·八年级西南大学附中校考期末)某文具店九月初进行开学大酬宾活动,将A、B、C三种学习文具以甲、乙两种方式进行搭配销售,两种方式均需要用到成本价为4元的精美包装袋,甲方式每袋含A文具2支,B文具2支,C文具3支;乙方式每袋含A文具3支,B文具2支,C 文具2支;已知每支C比每支A成本价低2元,甲种方式(含包装袋)每袋成本为30元,现甲,乙两种方式分别在成本价基础上提高20%,40%进行销售,两种方式销售完毕后利润率达到30%,则甲,乙两种方式的销售量之比为____.【答案】16:15【思路点拨】根据甲、乙两种方式各种文具的个数配比以及已知条件“每支C比每支A成本价低2元;甲种方式每袋成本为30元,可以得到乙种方式的成本为32元”,再设两种方式销售量分别是未知数,列方程求解即可.【规范解答】解:∵两种方式均需要用到成本价为4元的精美包装袋,甲方式每袋含A文具2支,B文具2支,C文具3支;乙方式每袋含A文具3支,B文具2支,C文具2支;已知每支C比每支A成本价低2元,∴乙种方式每袋成本价比甲种方式每袋成本高2元,∵甲种方式(含包装袋)每袋成本为30元,∴乙种方式(含包装袋)每袋成本为32元,设甲、乙两种方式的销量分别为x袋、y袋.根据题意得,30×0.2x+32×0.4y=(30x+32y)×0.3,化简整理得,16y=15x,∴x:y=16:15.故答案为:16:15.【考点评析】本题主要考查了二元一次方程的应用,把销售问题转化成方程问题是解答本题的关键.18.(本题2分)(2022秋·重庆·八年级重庆市育才中学校考阶段练习)某奶茶店有多肉芒芒甘露(甲)、芝芝莓莓(乙)、芋泥波波鲜奶(丙)三款招牌饮品.4月份甲和丙销量相同,乙的销量占四月招牌饮品总销量14,2杯甲加1杯乙的利润和好正是2杯丙的利润.五月由于天气转热该奶茶店各款饮品销量暴增,甲、乙、丙三款饮品五月销量之比为1:2:2,甲销售增量占招牌饮品总销售增量的16,但三种饮品的原价格上升,每杯甲、乙、丙的利润较四月分别下降30%,20%,40%..结果五月总利润恰好是四月总利润的4倍,则四月份每杯乙和丙的利润之比是______.19.(本题2分)(2021秋·重庆南川·九年级期中)某个“卡通玩具”自动售货机出售A、B、C三种玩具,A、B、C三种玩具的单价分别是3元/个、5元/个,6元/个,工作日期间,每天上货量是固定的,且能全部售出,其中,A玩具的数量(单位:个)是B玩具数量的2倍,B玩具的数量(单位:个)是C玩具数量的2倍.某个周六,A、B、C三种玩具的上货量分别比一个工作日的上货量增加了50%,70%、50%,且全部售出.但是由于软件出错,发生了一起错单(即消费者按某种玩具一个的价格投币,但是取得了另一种玩具1个),结果这个周六的销售收入比一个工作日的销售收入多了958元,则这个“卡通玩具”自动售货机一个工作日的销售收入是____元.【答案】1680【思路点拨】设C玩具数量工作日时有x个,表示出A、B两种玩具数量工作日数量为4x个、2x个,A、B、C三种玩具周六数量分别为:6x(个),3.4x(个),1.5x(个),继而得出工作日销售收入和周六销售收入及不发生任何故障时多出的钱数,而由于发生故障,周六销售额变化,据此设变化了y元,得16x+y=958,其中x为整数,进而求得工作日销售收入,即可求得y的值.【规范解答】解:设C玩具数量工作日时有x个,根据题意,得A、B两种玩具数量工作日时4x个、2x个,A、B、C三种玩具周六数量分别为:4x(1+50%)=6x(个),2x(1+70%)=3.4x(个),x(1+50%)=1.5x(个),∴工作日销售收入:3×4x+5×2x+6x=28x(元),周六销售收入:3×6x+5×3.4x+6×1.5x=44x(元),当不发生任何故障时,多出44x-28x=16x(元),其中x为整数,由于发生了故障,周六的销售额发生了变化,设变化了y元,则16x+y=958,其中x为整数,y=1、2、3、-1、-2、-3,当y=-2时,x=60,所以工作日销售收入为:28×60=1680(元).故答案为:1680.【考点评析】本题考查了一元一次方程的应用以及二元一次方程的应用,解决本题的关键是根据题意设未知数找到等量关系.20.(本题2分)(2021·重庆·统考二模)今年春节某超市组装了甲、乙两种礼品盆,他们都是由,,a b c 三种零食组成,其中甲礼品盒装有3千克a零食,1千克b零食,1千克c零食,乙礼品盒装有2千克a零食,2千克b零食,2千克c零食,甲、乙两种礼品盒的成本均为盆中,,a b c三种零食的成本之和.已知每千克a的成本为10元,乙种礼品盒的售价为60元,每盒利润率为25%,甲种每盒的利润率为50%,当甲、乙两种礼盒的销售利润率为13时,该商场销售甲、乙两种礼盒的数量之比是____.【答案】6:11【思路点拨】先根据乙种礼品盒的售价和利润率求出乙种礼品盒的成本,进而推出每种零食的成本,再得评卷人得分三、解答题(共60分)21.(本题6分)(2022·河南郑州·郑州外国语中学校考模拟预测)某超市促销,决定对A、B两种商品进行打折销售.打折前,买6件A商品和3件B商品需要54元,买3件A商品和4件B商品需要32元;打折后,买50件A商品和40件B商品仅需368元,已知A商品是8折销售,请问B商品是几折销售?【答案】六折【思路点拨】设A商品的销售单价为x元,B商品的销售单价为y元,根据题意列出二元一次方组,解方程即可求解.【规范解答】解:设A商品的销售单价为x元,B商品的销售单价为y元,依题意得:6354 3432x yx y+=ìí+=î,22.(本题6分)(2023秋·辽宁阜新·八年级校考期末)某中学用1000元资金为全校在大型药店购进普通医用口罩、N95口罩两种口罩共350个,该大型药店的普通医用口罩、N95口罩成本价和销售价如表所示:类别/单价成本价(元/个)销售价(元/个)普通医用口罩0.82N95口罩48(1)该校在大型药店购进普通医用口罩、N95口罩各多少个?(2)销售完这350个普通医用口罩、N95口罩,该大型药店共获得多少利润?【答案】(1)购进普通医用口罩300个,N 95口罩50个(2)560元【思路点拨】(1)设该校在大型药店购进普通医用口罩x 个,95N 口罩y 个,依据题意可得方程组,解方程组即可求;(2)根据总利润=销量´(售价-进价)进行计算即可得.【规范解答】(1)解:设该校在大型药店购进普通医用口罩x 个,N 95口罩y 个,依题意,得:350281000x y x y +=ìí+=î,解得:30050x y =ìí=î.答:该校在大型药店购进普通医用口罩300个,N 95口罩50个.(2)解:()()30020.85084560´-+´-=(元)答:销售完这300个普通医用口罩、95N 口罩,该大型药店共获得利润560元.【考点评析】此题考查二元一次方程组的应用,理解题意设未知数列出方程是解此题的关键.23.(本题8分)(2023春·浙江·七年级专题练习)某天,一蔬菜经营户用180元从蔬菜批发市场购进土豆和黄瓜共60千克到菜市场去卖,土豆和黄瓜这天的进价和售价如下表所示:品名进价(单位:元/千克)售价(单位:元/千克)土豆 3.55黄瓜23(1)该蔬菜经营户当天购进土豆和黄瓜各多少千克?(2)他当天卖完全部土豆时发现黄瓜才卖了一半,为了尽快售完,决定八折销售剩下的黄瓜,很快一售而空,请问他一共赚了多少钱?24.(本题8分)(2023秋·山西大同·八年级校考期末)盲盒顾名思义就是盒子中放置不同的物品,消费者凭运气抽中商品,正是这种随机化的体验,让消费者产生消费欲望,成为当下最热门的营销方法之一.某葡萄酒酒庄为回馈新老客户,也推出了盲盒式营销.商家计划在每件盲盒中放入A,B两种类型的酒.销售人员先包装了甲、乙两种盲盒.甲盲盒中装了A种酒4瓶,B种酒4瓶;乙盲盒中装了A种酒2瓶,B种酒5瓶;经过测算,甲盲盒的成本价为每件280元,乙盲盒的成本价为每件200元.请计算A种酒和B种酒的成本价为每瓶多少元?【答案】A种酒的成本价为每瓶50元,B种酒的成本价为每瓶20元.【思路点拨】设A种酒的成本价为每瓶x元,B种酒的成本价为每瓶y元,由题意:甲盲盒中装了A种酒4瓶,B种酒4瓶;乙盲盒中装了A种酒2瓶,B种酒5瓶;经过测算,甲盲盒的成本价为每件280元,乙盲盒的成本价为每件200元.列出二元一次方程组,解方程组即可.【规范解答】解:设A种酒的成本价为每瓶x元,B种酒的成本价为每瓶y元,由题意得:44280 25200x yx y+=ìí+=î,解得:5020xy=ìí=î,答:A种酒的成本价为每瓶50元,B种酒的成本价为每瓶20元.【考点评析】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.25.(本题8分)(2023秋·安徽合肥·七年级合肥市第四十五中学校考期末)某鞋店正举办开学特惠活动,如图为活动说明.小李打算在该店同时购买两双鞋,且他有一张所有购买的商品定价皆打8折的折价券.(1)若小李参加特惠活动需花费420元,比使用折价券多花20元,则两双鞋的原件为多少元?(2)若小李计算后发现使用折价券与参加特惠活动两者的花费相差60元,则两双鞋的原价相差多少元?【答案】(1)设两双鞋的原价分别为300元和200元(2)两双鞋的原价相差300元【思路点拨】(1)设两双鞋的原价分别为x元和y元,x y>,根据“参加特惠活动需花费420元,比使用折价券多花20元”列方程组求解即可;(2)设两双鞋的原价分别为a元和b元,且a b>,然后分两种情况列式求解.【规范解答】(1)设两双鞋的原价分别为x 元和y 元,x y >.由题意得0.64200.80.842020x y x y +=ìí+=-î,解得300200x y =ìí=î,答:设两双鞋的原价分别为300元和200元.(2)设两双鞋的原价分别为a 元和b 元,且a b >.①当使用折价券比参加特惠活动花费多60元时,由题意得()()0.80.80.660a b a b +-+=,整理得300b a -=,与a b >矛盾,此情况不成立.②当参加特惠活动比使用折价券花费多60元时,由题意得()()0.60.80.860a b a b +-+=,整理得300a b -=,答:两双鞋的原价相差300元.【考点评析】本题考查了二元一次方程组的应用,仔细审题,找出题目的已知量和未知量,设两个未知数,并找出两个能代表题目数量关系的等量关系,然后列出方程组求解即可.26.(本题8分)(2023秋·福建三明·八年级统考期末)某商场用相同的价格分两次购进A 型和B 型两种型号的电脑,前两次购进情况如下表.A 型(台)B 型(台)总进价(元)第一次2030210000第二次1020130000(1)求该商场购进A 型和B 型电脑的单价各为多少元?(2)已知商场A 型电脑的标价为每台4000元,B 型电脑的标价为每台6000元,两种电脑销售一半后,为了促销,剩余的A 型电脑打九折,B 型电脑打八折全部销售完,问两种电脑商场获利多少元?【答案】(1)A 型电脑单价为3000元,B 型电脑的单价为5000元(2)两种电脑商场获利44000元27.(本题8分)(2023秋·重庆沙坪坝·八年级重庆一中校考期末)据气象局预报,12月初重庆市将有一次强降温雨雪天气.某服装店决定购进A 、B 两种品牌鹅绒服.购进A 种品牌鹅绒服8件,B 种品牌鹅绒服3件,需9200元;若购进A 种品牌鹅绒服5件,B 种品牌鹅绒服6件,需9050元.(1)求购进A 、B 两种品牌鹅绒服每件各需多少元?(2)元旦临近,服装店决定再次购买A 、B 两种品牌鹅绒服共20件,且A 种品牌鹅绒服的数量不超过B 种品牌鹅绒服数量的4倍,A 种品牌鹅绒服以每件350元的利润销售,B 种品牌鹅绒服按照进价提高25%进行销售,怎样进货才能使该服装店在销售完这批品牌鹅绒服时获利最多,最多为多少元?(用函数知识解决)【答案】(1)购进A 种品牌鹅绒服每件需850元,购进B 种鹅绒服每件需800元;(2)即购进A 种品牌鹅绒服4件,购进B 种鹅绒服16件时,获利最多为4600元.【思路点拨】(1) 设购进A 种品牌鹅绒服每件需x 元,购进B 种鹅绒服每件需y 元,根据题意列方程组求解即可;(2) 设购进A 种品牌鹅绒服a 件,购进B 种鹅绒服()20a -件,根据题意列方程,利用函数性质和不等式求出最大值.。
题型专题训练:7_2 二元一次方程组的应用——销售、利润问题

7.2 二元一次方程组的应用——销售、利润问题【题型销售、利润问题】【例】2018年某歌手地表最强巡回演唱会于11月17日在贵阳奥林匹克体育中心举行,小颖购买了一张票价为四位数的场地票(动感地带专属),而小明一张购买了票价为三位数的看台票(动感地带专属).小颖说,“在你的票价前面多写个1,都还比我的便宜200元”;小明说,“只需在我的票价后多写个0,就比你的贵3120元”.请问小颖和小明购买的演唱会门票各是多少元?【变式1】(2022·江西吉安·八年级期末)2018年10月,吉州区井冈蜜柚节迎来了四方游客,游客李先生选购了井冈蜜柚和井冈板栗各一箱需要200元.他还准备给4位朋友每人送同样的井冈蜜柚一箱,6位同事每人送同样的井冈板栗一箱,就还需要1040元.(1)求每箱井冈蜜柚和每箱井冈板栗各需要多少元?(2)李先生到收银台才得知井冈蜜柚节期间,井冈蜜柚可以享受6折优惠,井冈板栗可以享受8折优惠,此时李先生比预计的付款少付了多少元?【变式2】(2022·江苏南通·七年级期末)小瑞去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.(1)若小瑞所带的钱是51元,请分别求出玫瑰和百合单价是多少元?(2)若小瑞所带的钱是m元,且一共只买8支玫瑰,请直接写出小瑞所带的钱还剩下多少元?【变式3】(2022·广西南宁·七年级期中)为响应国家“足球进收园”的号召,满足学校对足求的需求.某商家第一次购进了38个A类足球和20个B类足球进行销售,共花费了5580元,已知商家购进一个B类足球的价格是购进一个A类足球价格的1.2倍.(1)求商家购进一个A类足球和一个B类足球各需多少元?(2)若一个A类足球的售价为110元.两类足球销售完毕,商家要获得1880元的利铜,则B 类足球的总售价为多少元?(3)为了回馈客户,商家决定进行打折销售,若商家第二次又以原进价购进A、B两类足球,购进A类足球的件数不变,而购进B类足球的件数是第一次的2倍,A类足球按原售价销售,而B类足球打折销售,若第二次两类足球全部销售完毕,要使得第二次销售获得利润1688元,则B类足球是打几折销售的?(解析版)【题型 销售、利润问题】【例】2018年某歌手地表最强巡回演唱会于11月17日在贵阳奥林匹克体育中心举行,小颖购买了一张票价为四位数的场地票(动感地带专属),而小明一张购买了票价为三位数的看台票(动感地带专属).小颖说,“在你的票价前面多写个1,都还比我的便宜200元”;小明说,“只需在我的票价后多写个0,就比你的贵3120元”.请问小颖和小明购买的演唱会门票各是多少元? 【答案】1680元,480元.【分析】设小颖的票价为x 元,小明的票价为y 元,根据“小颖说,“在你的票价前面多写个1,都还比我的便宜200元”;小明说,“只需在我的票价后多写个0,就比你的贵3120元”.”找到等量关系,列出方程组,解方程组即可.【详解】设小颖的票价为x 元,小明的票价为y 元,根据题意得:{x −(1000+y )=20010y −x =3120解得:{x =1680y =480答:小颖和小明购买的演唱会门票分别为:1680元,480元.【点睛】本题考查二元一次方程组的应用,正确的找到等量关系是解答关键.【变式1】(2022·江西吉安·八年级期末)2018年10月,吉州区井冈蜜柚节迎来了四方游客,游客李先生选购了井冈蜜柚和井冈板栗各一箱需要200元.他还准备给4位朋友每人送同样的井冈蜜柚一箱,6位同事每人送同样的井冈板栗一箱,就还需要1040元.(1)求每箱井冈蜜柚和每箱井冈板栗各需要多少元?(2)李先生到收银台才得知井冈蜜柚节期间,井冈蜜柚可以享受6折优惠,井冈板栗可以享受8折优惠,此时李先生比预计的付款少付了多少元?【答案】(1)每箱井冈蜜柚需要80元,每箱井冈板栗需要120元;(2)李先生比预计的付款少付了328元【分析】(1)、根据“井冈蜜柚和井冈板栗各一箱需要200元,4箱井冈蜜柚和6箱井冈板栗需要1040元”列二元一次方程组,解之即可得.(2)根据节省的钱数=原价×数量﹣打折后的价格×数量,即可求出结论.【详解】解:(1)设每箱井冈蜜柚需要x 元,每箱井冈板栗需要y 元,依题意,得:{x +y =2004x +6y =1040, 解得:{x =80y =120. 答:每箱井冈蜜柚需要80元,每箱井冈板栗需要120元.(2)200+1040﹣80×0.6×(4+1)﹣120×0.8×(6+1)=328(元).答:李先生比预计的付款少付了328元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.【变式2】(2022·江苏南通·七年级期末)小瑞去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.(1)若小瑞所带的钱是51元,请分别求出玫瑰和百合单价是多少元?(2)若小瑞所带的钱是m 元,且一共只买8支玫瑰,请直接写出小瑞所带的钱还剩下多少元? 【答案】(1)玫瑰和百合单价分别是每支2.5元和每支9.5元(2)小瑞所带的钱还剩下31元【分析】(1)设每支玫瑰x 元,每支百合y 元,利用总价=单价×数量,结合小瑞带的钱数不变,即可得出关于x ,y 的二元一次方程,化简后可得出;(2)设玫瑰的单价是每支x 元,百合单价是每支y 元,因为小瑞带的钱为m 元,所以列方程{5x +3y =m −10①5x +5y =m +4②,用含m 的代数式解出x 和y ,又因为且一共只买8支玫瑰,所以剩下的钱为:m -8x 即可求解;(1)解:设玫瑰的单价是每支x 元,百合单价是每支y 元.由题意可得{5x +3y =51−10,3x +5y =51+4.解之得{x =2.5,y =9.5.答:玫瑰和百合单价分别是每支2.5元和每支9.5元.(2)解:设玫瑰的单价是每支x 元,百合单价是每支y 元,因为小瑞带的钱为m 元【变式3】(2022·广西南宁·七年级期中)为响应国家“足球进收园”的号召,满足学校对足求的需求.某商家第一次购进了38个A类足球和20个B类足球进行销售,共花费了5580元,已知商家购进一个B类足球的价格是购进一个A类足球价格的1.2倍.(1)求商家购进一个A类足球和一个B类足球各需多少元?(2)若一个A类足球的售价为110元.两类足球销售完毕,商家要获得1880元的利铜,则B 类足球的总售价为多少元?(3)为了回馈客户,商家决定进行打折销售,若商家第二次又以原进价购进A、B两类足球,购进A类足球的件数不变,而购进B类足球的件数是第一次的2倍,A类足球按原售价销售,而B类足球打折销售,若第二次两类足球全部销售完毕,要使得第二次销售获得利润1688元,则B类足球是打几折销售的?【答案】(1)一个A类足球需90元,一个B类足球需108元(2)3280(3)八折【分析】(1)设商家购进一个A类足球需x元,购进一个B类足球需y元,由题意:某商家第一次进了38个A类足球和20个B类足球进行出售,共花费了5580元,已知商家购进一个B类足球的价格是购进一个A类足球价格的1.2倍.列出二元一次方程组,解方程组即可;(2)设B类足球的售价为m元,由题意:一个A类足球的售价为110元,两类足球销售完毕,商家要获得1880元的利润,列出一元一次方程,解方程即可;(3)B类足球是打n折销售的,由题意:购进A类足球的件数不变,而购进B类足球的件数是第一次的2倍,A 类足球按原售价销售,使得第二次销售获得利润1688元,列出一元一次方程,解方程即可.(1)解:设商家购进一个A 类足球需x 元,购进一个B 类足球需y 元,由题意得:{38x +20y =5580y =1.2x, 解得:{x =90y =108, 答:商家购进一个A 类足球需90元,购进一个B 类足球需108元;(2)解∶ 设B 类足球的售价为m 元,由题意得:(110-90)×38+(m -108)×20=1880,解得:m =164,则20×164=3280,答:B 类足球的总售价为3280元;(3)解∶设B 类足球是打n 折销售的,由题意得:(110-90)×38+(164×0.1n -108)×20×2=1688,解得:n =8,答:B 类足球是打八折销售的.【点睛】本题考查了二元一次方程组的应用以及一元一次方程的应用,找准等量关系,正确列出二元一次方程组和一元一次方程是解题的关键.。
10. 用二元一次方程组解决问题(2)利润问题

强化训练之用二元一次方程组解决实际问题(2)1、某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:(总利润=单件利润×销售量)商品A B进价(元/件)12001000售价(元/件)13501200(1)该商场第1次购进A、B两种商品各多少件?(2)商场第2次以原价购进A、B两种商品,购进A商品的件数不变,而购进B商品的件数是第1次的2倍,A商品按原价销售,而B商品打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润等于54000元,则B种商品是打几折销售的?【分析】(1)设第1次购进A商品x件,B商品y件,根据该商场第1次用39万元购进A、B两种商品且销售完后获得利润6万元,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设B商品打m折出售,根据总利润=单件利润×销售数量,即可得出关于m的一元一次方程,解之即可得出结论.【解答】解:(1)设第1次购进A商品x件,B商品y件.根据题意得:,解得:.答:商场第1次购进A商品200件,B商品150件.(2)设B商品打m折出售.根据题意得:200×(1350﹣1200)+150×2×(1200×﹣1000)=54000,解得:m=9.答:B种商品打9折销售的.【点评】本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程.2、(2019•西湖区校级模拟)某市火车站北广场将于2016年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600 棵.(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排13人同时种植这两种花木,每人每天能种植A花木60棵或B花木40 棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?【分析】(1)根据在广场内种植A,B两种花木共 6600棵,若A花木数量是B花木数量的2倍少600棵可以列出相应的二元一次方程组,从而可以解答本题;(2)根据安排13人同时种植这两种花木,每人每天能种植A花木60棵或B花木40 棵,可以列出相应的二元一次方程组,从而可以解答本题.【解答】解:(1)设A,B两种花木的数量分别是x棵、y棵,,解得,,即A,B两种花木的数量分别是4200棵、2400棵;(2)设安排种植A花木的m人,种植B花木的n人,,解得,,即安排种植A花木的7人,种植B花木的6人,可以确保同时完成各自的任务.【点评】本题考查二元一次方程组的应用,解题的关键是明确题意,列出相应的二元一次方程组.3、甲、乙两种商品原来的单价和为100元.因市场变化,甲商品降价10%,乙商品提价40%,调价后,两种商品的单价和比原来的单价和提高了20%.问甲、乙两种商品原来的单价各是多少元?【分析】如果设甲商品原来的单价是x元,乙商品原来的单价是y元,那么根据“甲、乙两种商品原来的单价和为100元”可得出方程为x+y=100根据“甲商品降价10%,乙商品提价40%,调价后,两种商品的单价之和比原来的单价之和提高了20%”,可得出方程为x(1﹣10%)+y(1+40%)=100(1+20%).【解答】解:设甲种商品原来的单价是x元,乙种商品原来的单价是y元,依题意得,解得:.答:甲种商品原来的单价是40元,乙种商品原来的单价是60元.【点评】本题考查了二元一次方程组的应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.4、(2018春•泗洪县期末)某校准备组织七年级400名学生参加北京夏令营,已知用3辆小客车和1辆大客车每次可运送学生105人;用1辆小客车和2辆大客车每次可运送学生110人;(1)每辆小客车和每辆大客车各能坐多少名学生?(2)若学校计划租用小客车x辆,大客车y辆,一次送完,且恰好每辆车都坐满;①请你设计出所有的租车方案;②若小客车每辆需租金4000元,大客车每辆需租金7600元,请选出最省钱的租车方案,并求出最少租金.【分析】(1)每辆小客车能坐a名学生,每辆大客车能坐b名学生,根据用3辆小客车和1辆大客车每次可运送学生105人;用1辆小客车和2辆大客车每次可运送学生110人;列出方程组,再解即可;(2)①设租用小客车x辆,大客车y辆,由题意得:20×小客车的数量+45×大客车的数量=400人,根据等量关系列出方程,求出非负整数解即可;②分别计算出每种租车方案的钱数,进行比较即可.【解答】解:(1)设每辆小客车能坐a名学生,每辆大客车能坐b名学生根据题意,得解得答:每辆小客车能坐20名学生,每辆大客车能坐45名学生.(2)①根据题意,得20x+45y=400,∴y=,∵x、y均为非负数,∴,,∴租车方案有3种.方案1:小客车20辆,大客车0辆;方案2:小客车11辆,大客车4辆;方案3:小客车2辆,大客车8辆.②方案1租金:4000×20=80000(元)方案2租金:4000×11+7600×4=74400(元)方案3租金:4000×2+7600×8=68800(元)∵80000>74400>68800∴方案3租金最少,最少租金为68800元.【点评】此题主要考查了二元一次方程(组)的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.。
二元一次方程利润问题学习资料

精品文档二元一次方程利润应用题解答题1、基本知识点例1:单价为100的玩具赛车在儿童节一天销售500 个,请问童节赛车的总销售价是多少?【解题关键点】总售价=单价X销售量2、基本知识点例2: 现在有100台冰箱, 每台售价是1500元, 这样每一台冰箱可获得利润25%,问可获得的总利润是多少?【解题关键点】总利润=单件利润X销售量3、基本知识点例3:张老师向商店订购某种商品,共买60 件,定价100 元/ 件,张老师对经理说:“如果减价,每件减价1元,就多买3件。
”经理一算,如减价 4 元,由于张老师多买,仍可获得与原来一样多总利润,问这种商品的成本多少元?【解题关键点】总利润=总售价-总成本4、进价为100元,售价为300元的MP3,出售后的利润率是多少? 【解题关键点】利润率=利润/成本=(售价-成本)/成本=售价/成本-15、某商店购进360个玻璃制品, 运输时损坏了40个,剩下的按进价117%出售,问此商品可盈利百分之几?【解题关键点】求利润率6、某商品进价50 元,盈利25%,则出售该商品的利润和售价各为多少?精品文档6、一商店把某商品按标价的九折出售,仍可获得20%的利润. 若该商品的进价是每件30 元, 问该商品的标价是多少元?【解题关键点】售价=成本X (1+利润率), 成本=售价/ (1 +利润率)设该商品的标价是x7、混合商品的售价:有A、B两种商品,如果A的利润增长20%,B的利润减少10%,那么A、B两种商品的利润就相同了。
问原来A商品的利润是B商品利润的百分之几?&总利润=单件利润X销售量+单件利润X销售量某商店为了处理积压商品,实行亏本销售,已知购进甲乙两种商品原价之和共为880,甲种商品按原价的八折出售,乙种商品按原价的七五折出售,结果两种商品共亏 1 96元,求甲乙两种商品的原价分别是多少?9、甲、乙两种商品,如果购买甲3件、乙7 件共需27元,如果购买甲商品40件、乙商品50 件,则可以按批发价计算,共需付189 元,已知甲商品每件批发价比零售价低0.4元,乙商品每件批发价比零售价低0.5 元。
二元一次方程销售利润问题知识点及典型题练习

销售问题基本关系:盈利:售价>进价 利润=售价-进价>0亏损:售价<进价 利润=售价-进价<0利润=售价-成本 亏损额=成本-售价、利润=成本×利润率 亏损额=成本×亏损率售价=标价×10折数 售价=进价×(1+利润率) 1、 如果全组共有20名同学,若每人各买1支A 型毛笔和2支B 型毛笔,共支付140元;若每人各买2支A 型毛笔和1支B 型毛笔,共支付160元.这家文具店的A 、B•两种类型毛笔的零售价各是多少?2、小芳和小亮买学习用品,小芳用18元买1支笔和3本笔记本;小亮用31元买了一样的2支钢笔和笔记本5本,问题如下:(1)求每之钢笔和每本笔记本的价格。
(2)校运动会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件,要求笔记本数不少于钢笔笔数 。
3、打折前,买60件A 商品和30件B 商品用了1080元,买50件A 商品和10件B 商品用了840元;打折后,买500件A 商品和500件B 商品用了9600元,比不打折少花多少钱?%100⨯=成本利润利润率%100⨯=成本亏损额亏损率4、商场按标价销售某商品,每件可获利45元,按标价的8.5折销售8件与将标价降价35元销售12件的利润相同。
求该商品的进价和标价各多少元?4、某商场购进商品后,均加价10%作为销售价。
现商场搞优惠促销活动,决定由顾客抽奖确定折扣。
某顾客购买甲、乙两种商品分别抽到7折和9折,共付款399无。
已知这两种商品原销价之各为490元。
问这两种商品的进价分别为多少元?5、甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50﹪的利润定价,乙服装按40﹪的利润定价。
在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?5、某市场购进甲、乙两种商品共50件,甲种商品进价每件35元,利润率是20%,乙种商品进价每件20元,利润率是15%,共获利278元,问甲、乙两种商品各购进了多少件?6、已知甲、乙两种商品的原单价和为100元,因市场变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两种商品的单价和比原单价和提高了2%,求甲、乙两种商品的原单价各是多少元?。
二元一次方程-利润

解:设1班有x人,2班有y人,根据题意,得 x+y=104, 11x+11y=1144 13x+11y=1240 即 13x+11y=1240
解这个方程组 ②- ①,得 2x=96,
① ②
x=48. 把x=48代入①,得
所以
y=56.
x=48, y=56.
答:1班48人,2班56人,联合起来购票能省408元.
所以 x=80, y=40.
答:一只网球拍80元,一只乒乓球拍40元.
例2:某蔬菜公司收购到某种蔬菜140吨,准备加工后上市销售.该
公司的加工能力是:每天可以精加工6吨或粗加工16吨.现计划用 15天完成加工任务,该公司应安排几天粗加工,几天精加工,才能 按期完成任务?如果每吨蔬菜粗加工后的利润为1000元,精加工 后为2000元,那么该公司出售这些加工后的蔬菜共可获利多少元?
分析:设应安排x天精加工,y天粗加工. (1)精加工天数与粗加工天数的和等于15天.
x 6x
+ +
y
=15
(2)精加工蔬菜的吨数与粗加工蔬菜的吨数和等于140吨.
16y =140
粗加工蔬菜可获利Hale Waihona Puke (元)精加工蔬菜可获利 (元)
2000×6x
1000×16y
解:设应安排x天精加工,y天粗加工.根据题意,得 x+y=15, x+y=15, ① 即 6x+16y=140. 3x+8y=70. ②
x+y=104, 11x+11y=1144 13x+11y=1240 即 13x+11y=1240
解这个方程组 ②- ①,得 2x=96,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
销售问题
基本关系:
盈利:售价>进价 利润=售价-进价>0
亏损:售价<进价 利润=售价-进价<0
利润=售价-成本 亏损额=成本-售价、
利润=成本×利润率 亏损额=成本×亏损率
售价=标价×10
折数 售价=进价×(1+利润率) 1、 如果全组共有20名同学,若每人各买1支A 型毛笔和2支B 型毛笔,共支付140元;
若每人各买2支A 型毛笔和1支B 型毛笔,共支付160元.这家文具店的A 、B•两种类型毛笔的零售价各是多少?
2、小芳和小亮买学习用品,小芳用18元买1支笔和3本笔记本;小亮用31元买了一样的2支钢笔和笔记本5本,问题如下:
(1)求每之钢笔和每本笔记本的价格。
(2)校运动会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件,要求笔记本数不少于钢笔笔数 。
3、打折前,买60件A 商品和30件B 商品用了1080元,买50件A 商品和10件B 商品用了840元;打折后,买500件A 商品和500件B 商品用了9600元,比不打折少花多少钱?
%100⨯=成本利润利润率%100⨯=成本
亏损额亏损率
4、商场按标价销售某商品,每件可获利45元,按标价的8.5折销售8件与将标价降价35
元销售12件的利润相同。
求该商品的进价和标价各多少元?
4、某商场购进商品后,均加价10%作为销售价。
现商场搞优惠促销活动,决定由顾客抽奖确定折扣。
某顾客购买甲、乙两种商品分别抽到7折和9折,共付款399无。
已知这两种商品原销价之各为490元。
问这两种商品的进价分别为多少元?
5、甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50﹪的利润定价,乙服装按40﹪的利润定价。
在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?
5、某市场购进甲、乙两种商品共50件,甲种商品进价每件35元,利润率是20%,乙
种商品进价每件20元,利润率是15%,共获利278元,问甲、乙两种商品各购进了多少件?
6、已知甲、乙两种商品的原单价和为100元,因市场变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两种商品的单价和比原单价和提高了2%,求甲、乙两种商品的原单价各是多少元?。