11勾股定理

合集下载

勾股定理知识点+对应类型

勾股定理知识点+对应类型

第二章勾股定理、平方根专题第_节勾股定理-、勾股定理:1、勾股定理定义:如果直角三角形的两直角边长分别为a, b,斜边长为c,那么勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边勾股定理的逆定理:如果三角形的三边长a, b, c有下面关系:a2+ b2= c2,那么这个三角形是直角三角形。

2. 勾股数:满足a2+ b2= c2的三个正整数叫做勾股数(注意:若a, b, c、为勾股数,那么ka, kb, kc同样也是勾股数组。

)* 附:常见勾股数: 3,4,5 ; 6,8,10 ; 9,12,15 ; 5,12,133. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形。

(经典直角三角形:勾三、股四、弦五)其他方法:(1)有一个角为90°的三角形是直角三角形。

(2)有两个角互余的三角形是直角三角形。

用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c);(2) 若c2= a2+ b2,则^ ABC是以Z C为直角的三角形;若a2 + b2v c2,则此三角形为钝角三角形(其中c为最大边);若a2 + b2> c2,则此三角形为锐角三角形(其中c为最大边)4. 注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的(3) 在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。

5. 勾股定理的作用:(1) 已知直角三角形的两边求第三边。

(2) 已知直角三角形的一边,求另两边的关系。

(3) 用于证明线段平方关系的问题。

(4) 利用勾股定理,作出长为际的线段二、平方根:(11——19的平方)1、平方根定义:如果一个数的平方等于a,那么这个数就叫做a的平方根。

(也称为二次方根),也就是说如果x2=a,那么x就叫做a的平方根。

勾股定理的证明与应用

勾股定理的证明与应用

勾股定理的证明与应用勾股定理是数学中的一条重要定理,它表明在直角三角形中,直角边的平方和等于斜边的平方。

本文将对勾股定理的证明方法进行探讨,并结合实际应用场景进行具体分析。

一、勾股定理的证明勾股定理最早可以追溯到中国古代。

相传,公元前11世纪的周朝时期,中国古代数学家祖冲之发现了勾股定理,并给出了一种证明方法。

他的证明方法基于图形的几何性质,被称为“割弦法”。

具体来说,首先假设有一个直角三角形,三边分别为a、b、c。

利用割弦法,我们可以得到如下等式:sin A = a / ccos A = b / c根据三角函数的定义,我们可以将上述两个等式相加:sin^2 A + cos^2 A = (a^2 / c^2) + (b^2 / c^2) = (a^2 + b^2) / c^2由于在直角三角形中,sin A 和 cos A 的平方和等于1,即 sin^2 A + cos^2 A = 1,因此可以得到:1 = (a^2 + b^2) / c^2进一步变换得:c^2 = a^2 + b^2因此,勾股定理得证。

二、勾股定理的应用勾股定理在数学和实际生活中都有广泛的应用。

下面将以几个实际场景为例,介绍勾股定理的应用。

1. 测量直角三角形的边长勾股定理可以用于测量一个直角三角形的边长。

假设我们已知一个直角三角形的两个直角边的长度分别为3和4,我们可以利用勾股定理计算出斜边的长度:c^2 = 3^2 + 4^2= 9 + 16= 25因此,斜边的长度为5。

2. 解决几何问题勾股定理在解决几何问题中有重要作用。

例如,我们可以利用勾股定理来判断一个三角形是否为直角三角形。

如果三条边的长度满足勾股定理的条件,即c^2 = a^2 + b^2,那么该三角形就是直角三角形。

3. 工程应用勾股定理在工程中也有广泛的应用。

例如,在建筑设计中,我们需要确保房间的角度为直角。

通过测量房间的两个边长,可以利用勾股定理来判断是否满足直角条件。

勾股定理(知识点+题型分类练习)

勾股定理(知识点+题型分类练习)

ABCabc弦股勾勾股定理(知识点)【知识要点】1. 勾股定理的概念:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么 a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方。

常用关系式由三角形面积公式可得:AB·CD=AC·BC2. 勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。

3. 勾股数:①满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。

)②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17等③用含字母的代数式表示n组勾股数:221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)4.判断直角三角形:(1)有一个角为90°的三角形是直角三角形。

(2)有两个角互余的三角形是直角三角形。

(3)如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

(4)如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2 ,那么这个三角形是直角三角形。

(经典直角三角形:勾三、股四、弦五)用勾股定理逆定理判断三角形是否为直角三角形的一般步骤是: (1)确定最大边(不妨设为c );(2)若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形;若a 2+b 2<c 2,则此三角形为钝角三角形(其中c 为最大边); 若a 2+b 2>c 2,则此三角形为锐角三角形(其中c 为最大边)5.直角三角形的性质(1)直角三角形的两个锐角互余。

可表示如下:∠C=90°⇒∠A+∠B=90°B(2)在直角三角形中,30°角所对的直角边等于斜边的一半。

勾股定理常用11个公式

勾股定理常用11个公式

勾股定理常用11个公式勾股定理也叫毕达哥拉斯定理,指的是直角三角形中,任意一条直角边的平方等于另外两条边的平方之和。

勾股定理是数学中非常重要的一条定理,广泛应用于各个领域。

以下是勾股定理常用的11个公式:1. 勾股定理的一般形式在直角三角形 ABC 中,设 AB、AC 为直角边,BC 为斜边,则有:BC² = AB² + AC²2. 勾股定理的两个常见形式a. 已知直角边和斜边设直角边 AB = a,AC = b,BC = c,则有:c² = a² + b²b. 已知两条直角边设直角边 AB = a,BC = b,AC = c,则有:c² = a² + b²3. 勾股定理的逆定理如果在一个三角形中,某一边的平方等于另外两边的平方之和,那么这个三角形肯定是直角三角形,即有:若 c² = a² + b²,则三角形 ABC 是直角三角形。

4. 勾股数指满足勾股定理的整数三元组 (a, b, c),其中 a、b、c 都是正整数,称为勾股数。

例如:(3, 4, 5)、(5, 12, 13)。

5. 勾股数的生成公式生成勾股数的公式称为勾股数生成公式。

其中,m 和 n 是正整数,且 m > n,gcd(m, n) = 1,k 是任意正整数,则有:a = k × (m² - n²),b = k × (2mn),c = k × (m² + n²)6. 勾股数的性质a. 勾股数只存在于原始勾股数列中。

b. 勾股数之间不存在公因数。

c. 每个奇数都可以表示为两个勾股数之和。

d. 每个正整数都可以表示为不超过四个勾股数之和。

7. 勾股数的应用a. 构造直角三角形。

b. 计算斜线长度。

c. 解决一些证明问题。

d. 在几何光学中,勾股数用于计算光路长度。

勾股定理知识点总结

勾股定理知识点总结

17.1勾股定理考点一:勾股定理直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

(即:a 2+b 2=c 2) 技巧归纳:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题考点二:勾股定理的证明一般是通过剪拼,借助面积进行证明。

其中的依据是图形经过割补拼接后,只要没有重叠,没有空隙,面积不变。

图1是由4个全等三角形拼成的,得到一个以a+b 为边长的大正方形和以直角三角形斜边c 为边长的小正方形。

则大正方形的面积可表示为(a+b)2,又可表示为12ab ·4+c 2,所以(a+b)2=12ab ·4+c 2,整理得a 2+b 2=c 2在图2的另一种拼法中,以c 为边长的正方形的面积可表示成四个全等的直角三角形与边长为(b-a)的正方形的面积的和,所以12ab ·4+(b-a)2=c 2,整理得a 2+b 2=c 2.考点三:勾股定理的应用(1)勾股定理的应用条件勾股定理只适用于直角三角形,所以常作辅助线——高,构造直角三角形。

(2)勾股定理的实际应用勾股定理反映了直角三角形3条边之间的关系,利用勾股定理,可以解决直角三角形的有关计算和证明.例如:已知直角三角形的两条直角边可求斜边;已知直角三角形的斜边和一条直角边,可求另一条直角边。

勾股定理还可以解决生产生活中的一些实际问题。

在解决问题的过程中,往往利用勾股定理列方程(组),将实际问题转化成直角三角形的模型来解决。

(3)利用勾股定理作长为 n (n 为大于1的整数)的线段实数与数轴上的点是一一对应的,有理数在数轴上较易找到与它对应的点,而若要在数轴上直接标出无理数对应的点则较难。

勾股定理

勾股定理

一、勾股定理基础知识点:1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c=⨯+=+ 大正方形面积为222()2S a b a a b b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在A B C ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a cb =-②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c为三边的三角形是锐角三角形;cba HG FEDCBAbacbac cabcab a bcc baED CBA②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:ABC30°D C BA ADB C10、互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。

勾股定理常用个公式

勾股定理常用个公式

勾股定理常用个公式勾股定理是数学中一个非常重要的定理,它是平面几何中的基础定理,常用来求解直角三角形的边长和角度。

根据勾股定理,我们可以推导出多个相关的公式来解决各种问题。

在本篇文章中,我将介绍11个常用的勾股定理公式,每个公式都会附带一个解析和一个示例。

1.三角形斜边的长度(已知两边长度):c=√(a²+b²),其中a和b分别是直角三角形的两条直角边的长度,c是斜边的长度。

示例:已知一个直角三角形的两条直角边的长度分别为3和4,求斜边的长度。

解析:根据公式,c=√(3²+4²)=√(9+16)=√25=5、因此,斜边的长度为52.直角三角形的直角边长度(已知斜边长度和另一直角边长度):a=√(c²-b²),其中b是已知直角边的长度,c是斜边的长度。

示例:已知一个直角三角形的斜边长度为5,另一直角边的长度为4,求第二个直角边的长度。

解析:根据公式,a=√(5²-4²)=√(25-16)=√9=3、因此,第二个直角边的长度为33.直角三角形的直角边长度(已知斜边长度和另一直角边长度):b=√(c²-a²),其中a是已知直角边的长度,c是斜边的长度。

示例:已知一个直角三角形的斜边长度为5,另一直角边的长度为3,求第二个直角边的长度。

解析:根据公式,b=√(5²-3²)=√(25-9)=√16=4、因此,第二个直角边的长度为44.直角三角形的面积(已知两个直角边的长度):A=1/2*a*b,其中a和b为直角三角形的两个直角边的长度。

示例:已知一个直角三角形的两个直角边的长度分别为3和4,求其面积。

解析:根据公式,A=1/2*3*4=6、因此,直角三角形的面积为65.直角三角形的周长(已知两个直角边的长度):P=a+b+c,其中a和b分别为直角三角形的两个直角边的长度,c为斜边的长度。

勾股定理

勾股定理

勾股定理勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。

中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。

勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。

勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解決几何问题的最重要的工具之一,也是数形结合的纽带之一。

在中国,商朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。

在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

在任何一个的直角三角形(Rt△)中,两条直角角边的长度的平方和等于斜边长度的平方(也可以理解成两个长边的平方相減与最短边的平方相等)。

性质1、直角三角形两直角边为a和b,斜边为c,那a2+b2=c22、勾股数,勾股数的推算公式①罗士琳法则(罗士琳是我国清代的数学家1789――1853)任取两个正整数m和n(m>n),那么m2-n2,2mn,m2+n2是一组勾股数.勾股数通式和常见勾股素数,若m和n是互质,而且m和n至少有一个是偶数,计算出来的a,b,c就是素勾股数(若m和n都是奇数,a,b,c就会全是偶数,不符合互质)。

所有素勾股数(不是所有勾股数)都可用上述列式当中找出,这亦可推论到数学上存在无穷多的素勾股数。

②如果k是大于1的奇数,那么k,(k2+1)/2,(k2-1)/2是一组勾股数.(3,4,5), (5,12,13),(7,24,25)……③如果k是大于2的偶数,那么k,k2/4+1, k2/4-1是一组勾股数.(6,8,10)(8,15,17)(10,24,26),……④如果a,b,c是勾股数,那么na nb, nc (n是正整数)也是勾股数.⑤另一种通式: 2n+1,2n2+2n,2n2+2n+1(n是正整数),(3,4,5), (5,12,13),(7,24,25)(9,40,41)…例1.四边形ABCD中∠DAB=60 ,∠B=∠D=Rt∠,BC=1,CD=2求对角线AC的长解:延长BC和AD相交于E,则∠E=30∴CE=2CD=4,在Rt△ABE中设AB为x,则AE=2x根据勾股定理x2+52=(2x)2,……例2.已知△ABC中,AB=AC,∠B=2∠A求证:AB2-BC2=AB×BC证明:作∠B的平分线交AC于D,则∠A=∠ABD,∠BDC=2∠A=∠C∴AD=BD=BC作BM⊥AC于M,则CM=DMAB2-BC2=(BM2+AM2)-(BM2+CM2)=AM2-CM2=(AM+CM)(AM-CM)=AC×AD=AB×BC例3.如图已知△ABC中,AD⊥BC,AB+CD=AC+BD 求证:AB=AC证明:设AB,AC,BD,CD分别为b,c,m,n 则c+n=b+m, c-b=m-n∵AD⊥BC,根据勾股定理,得AD2=c2-m2=b2-n2∴c2-b2=m2-n2, (c+b)(c-b)=(m+n)(m-n)(c+b)(c-b) =(m+n)((c-b)(c+b)(c-b) -(m+n)(c-b)=0(c-b){(c+b)-(m+n)}=0∵c+b>m+n,∴c-b=0 即c=b∴AB=AC练习1,已知△ABC中,AB=17,AC=10,BC边上的高AD=8.则△ABC的周长为多少?2.一个三级台阶,它的每一级长、宽、高分别是100cm,15cm和10cm,A,B是这个台阶上两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿台阶爬行到B点的最短路程是 .3.一块直角三角形绿地,两直角边长分别为3m,4m,现在要将绿地扩充成等腰三角形,且扩充时只能延长长为3m的直角边,则扩充后等腰三角形绿地的面积为多少 m2?4.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点0,且OE=0D,则AP的长为多少?5,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上ー点,求证(1)△ACE≌△BCD;(2) AD2+DB2=DE26,如图,长方形纸片ABCD中,AB=8,将纸片折叠使顶点B落在边AD上的E点处,折痕的一端G点在边BC上(1)如图(1),当折痕的另一端F在AB边上且AE=4时,求AF的长.(2)如图(2).当折痕的一端F在AD边上BG=10, 求证:EF=EG.求AF的长.7.△ABC中,AB=25,BC=20,CA=15,CM和CH分别是中线和高.那么S△ABC=__,CH=__,MH=___8. 梯形两底长分别是3和7,两对角线长分别是6和8,则S梯形=___9.已知:△ABC中,AD是高,BE⊥AB,BE=CD,CF⊥AC,CF=BD求证:AE=AF10已知:M是△ABC内的一点,MD⊥BC,ME⊥AC,MF⊥AB,且BD=BF,CD=CE求证:AE=AF11.在△ABC中,∠C是钝角,a2-b2=bc 求证∠A=2∠B12.求证每一组勾股数中至少有一个数是偶数; 至少有一个数是3的倍数;至少有一个数是4的倍数;至少有一个数是5的倍数.13.已知直角三角形三边长均为整数,且周长和面积的数值相等,求各边长D14等腰直角三角形ABC斜边上一点P,求证:AP2+BP2=2CP215.已知△ABC中,∠A=Rt∠,M是BC的中点,E,F分别在AB,AC,ME⊥MF求证:EF2=BE2+CF216.Rt△ABC中,∠ABC=90 ,∠C=600,BC=2,D是AC的中点,从D作DE⊥AC与CB的延长线交于点E,以AB、BE为邻边作矩形ABEF,连结DF,则DF的长是____.17△ABC中,AB=AC=2,BC边上有100个不同的点p1,p2,p3, (100)记m i=AP i2+BP i×P i C (I=1,2……,100),则m1+m2+…+m100=____18. 平平湖水清可鉴,湖上半尺生红莲。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理
一、勾股定理
在直角三角形中,三边长为a、b、c,其中c为斜边,则a2+b2=c2.
如:已知Rt△ABC中,三边长为a、b、c,其中a=3,b=4,则c=__________.
答案:.
二、直角三角形的性质
(1)两锐角互余;
(2)Rt△ABC中,c为斜边,则a2+b2=c2.
(3)如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半,三边长为a,,2a.(4)等腰直角三角形三边长分别为a,a,.
例1、如图,在△ABC中,CD⊥AB于D,若AB=5,,∠BCD=30°,求AC的长.
解:
设BD=x,∵CD⊥AB,∠BCD=30°.
∴BC=2BD=2x.
在Rt△BCD中,根据勾股定理得BD2+CD2=BC2.
即.
解得x=2.
∴BD=2,∵AB=5,∴AD=3.
在Rt△ACD中,由勾股定理有
例2、如图,在△ABC中,∠C=90°,AD、BE是中线,,AD=5,求AB的长.
解:
设CE=x,CD=y,则AC=2x,BC=2y.
在Rt△ACD和Rt△BCE中,由勾股定理得
例3、如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,求MN.
解:
连接AM,
∵AB=AC,M为BC的中点.
∴AM⊥BC.BM=MC=BC=3.
在Rt△AMB中,由勾股定理得.
设CN=x,则AN=5-x
在Rt△ANM中,MN2=AM2-AN2=42-(5-x)2.
在Rt△CNM中,MN2=MC2-CN2=32-x2.
∴32-x2=42-(5-x)2,解得.

方法2:由面积法得:AM·MC=MN·AC.
例4、如图,在△ABC中,∠A=90°,P是AC的中点,PD⊥BC于D,BC=9,DC=3,求AB的长.
解:
连结PB,BD=BC-DC=6.
在Rt△BDP和Rt△PDC中
PD2=BP2-BD2,PD2=PC2-DC2.
∴BP2-BD2=PC2-DC2.
∴BP2-PC2=BD2-DC2=36-9=27.
在Rt△ABP中,AB2=BP2-AP2.
∵AP=PC.
∴AB2=BP2-PC2=27.

例5、如图,已知∠A=60°,∠B=∠D=90°,AB=2,CD=1,求BC和AD的长.
解:
如图,延长AD、BC交于点E.
∵∠B=90°,∠A=60°,∴∠E=30°.
∴AE=2AB=4.
在Rt△ABE中,由勾股定理得.
同步测试
一、选择题
1、如图,矩形纸片ABCD中,AB=8cm,把矩形纸片沿直线AC折叠,点B落在点E
处,AE交DC于点F,若,则AD的长为()
A.4cm B.5cm
C.6cm D.7cm
二、填空题
2、在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对应的边分别是a、b、c.
(1)若a=3cm,b=5cm,则c=__________.
(2)若a=8cm,c=17cm,则b=__________.
(3)若a︰b=3︰4,c=10cm,则a=__________,b=__________.
3、分别以直角三角形的三边为边向形外作正方形,如图中所示的正方形A的面积
是__________,B的面积是__________.
4、在Rt△ABC中,斜边AB=2cm,则AB2+BC2+CA2=__________cm2.
5、一个直角三角形的两边长分别为3cm和4cm,则它的第三边长为__________.
6、已知:直角三角形的两条直角边长分别为6cm、8cm,那么斜边上的高为
__________.
7、矩形纸片ABCD中,AD=4cm,AB=10cm,按如图方式折叠,使点B与点D重合,
折痕为EF,则DE=__________cm.
8、如图,已知圆柱体底面圆的半径为,高为2,AB、CD分别是两底面的直径,
AD、BC是母线.若一只小虫从A点出发,从侧面爬行到C点,则小虫爬行的最短路线的长度是__________(结果保留根式).
三、解答题
9、如图所示,铁路上有A、B两点(看做直线上两点)相距40千米,C、D为两村
庄(看做两个点),AD⊥AB,BC⊥AB,垂足分别为A、B,AD=24千米,BC=16千米,现在要在铁路旁修建一个煤栈E,使得C、D两村到煤栈的距离相等,问煤栈应建在距A点多少千米处?
10、如图所示,地面上有一个长方体,一只蜘蛛在这个长方体的顶点A处,一滴
水珠在这个长方体的顶点C′处,已知长方体的长为6m,宽为5m,高为3m,蜘蛛
要沿着长方体的表面从A处爬到C′处,沿着怎样的路线爬行的距离最短?你能求
出这个最短距离吗?
答案:1、C 2、(1);(2)15cm;(3)6cm,8cm3、25;2564、85、5cm或
6、4.8cm点拨:设斜边上的高为h,.
7、点拨:设DE=BE=x cm,则AE=(10-x)cm,∴(10-x)2+42=x2.8、
9、AE2+242=(40-AE)2+162,解得AE=16(千米)10、将长方体上面展开并与前面在同一平面上,则蜘蛛沿对角线AC′爬行距离最短,最短距离是
课外拓展
例、国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进
行电网改造,莲花村六组有四个村庄,A、B、C、D正好位于一个正方形的四个顶点,
现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图中的实线部
分.请你帮助计算一下,哪种架设方案最省电线.(以下数据可供参考:

解:
不妨设正方形的边长为1(也可以设为a),则图(1)、(2)中的总线路长分别为
AD+AB+BC=3,AB+BC+CD=3.
图(3)中,总线路长为AC+BD==2.828.
图(4)中,延长EF交BC于点H,则FH⊥BC,BH=HC.
由∠FBH=30°,BH=及勾股定理,得
EA=ED=FB=FC=,FH=.
∴EF=1-2FH=1-.
此时,总线路长为4EA+EF=.
显然,3>2.828>2.732,
∴图(4)的连结线路最短,即图(4)的架设方案最省电线.
点评:
这里是逐一计算四条线路的长度,并加以比较,选出最短的方案.在方案(4)中注意作铺助线,构成直角三角形,再运用勾股定理.
中考解析
例1、如图是用硬纸板做成的四个全等的直角三角形,两直角边长分别是,斜边长为c和一个边长为c的正方形,请你将它们拼成一个能证明勾股定理的图形.
(1)画出拼成的这个图形的示意图.
(2)证明勾股定理.
解析:
方法一、(1)如图①
(2)证明:大正方形的面积表示为,
大正方形的面积也可表示为,
,,
.即直角三角形两直角边的平方和等于斜边的平方.
方法二、(1)如图②
(2)证明:大正方形的面积表示为:,
又可以表示为:,
,,
.即直角三角形两直角边的平方和等于斜边的平方.
例2、有一块直角三角形的绿地,量得两直角边长分别为现在要将绿地扩充成等腰三角形,且扩充部分是以为直角边的直角三角形,求扩充后等腰三角形绿地的周长.
解析:
在中,
由勾股定理有:,扩充部分为扩充成等腰应分以下三种情况.
①如图1,当时,可求
得的周长为32m.
②如图2,当时,可求
由勾股定理得:,得的周长为
③如图3,当为底时,设则由勾股定理得:,得的周长为。

相关文档
最新文档