勾股定理的简单应用()

合集下载

2华东师大版: 勾股定理的简单应用(一)

2华东师大版: 勾股定理的简单应用(一)

x 64 152 289 17 x 225 81 306 9 34 3 34
例5、如图, △ABC为直角三角形,斜边为c,直角 边为a和b,正方形F的面积为9,正方形G的面积为 16,长方形ABDE的边AE=3,求长方形ABDE的面 积。 E

a 16, b 9
C a
B
2、假期中,王强和同学到某海岛 上去玩探宝游戏,按照探宝图,他们登陆后先 往东走10千米,又往北走5千米,遇到障碍后 又往西走6千米,再折向北走到7千米处往东一 拐,仅走1千米就找到宝藏,问登陆点A 到宝 B 1 藏埋藏点B的距离是多少千米?
7 6 5 A 10 C
3.如图,小方格都是边长为1的正方形, 求四边形ABCD的面积与周长.
2 2
A F b C c a G B D
根据勾股定理可得 c a 2 b 2 16 9 5
即AB=5
S长方形ABCD AB AE 5 3 15
1、你能求出图中三 角形DEF的面积和周长吗?
解:在Rt△DEF中, ∠DEF=900,DE=3,EF=3, ∴S△DEF=DE· DF÷2 =3×3÷2=4.5 由勾股定理得, ∴三角形DEF的面积为4.5, 周长为6+ 3 2
D
E
F
DF DE2 EF 2 32 32 18 3 2
八年级数学(下册)•
华师大版
勾股定理的简单应用(一)
你能说说勾股定理的内容吗?
直角三角形两直角边的平方和等于斜边的平方 若直角三角形的两条直角边分别为a,b, 斜边为c,则 a2+b2=c2 . A 公式变形: c2=a2+b2
c ቤተ መጻሕፍቲ ባይዱ a b

勾股定理的应用

勾股定理的应用

勾股定理的应用勾股定理作为数学中著名的定理之一,广泛应用于各个领域。

它是数学中的基础定理之一,也是几何学中三角形研究的重要工具。

本文将从几个应用角度介绍勾股定理在实际生活中的运用。

一、建筑工程中的应用勾股定理在建筑工程中有着广泛的应用。

举个例子,我们在修建某一斜坡时,需要确定其坡度,勾股定理可以帮助我们准确计算出坡度。

此外,在设计斜面道路、楼梯等结构时,勾股定理也能帮助我们确保结构的稳定与安全。

二、航海导航中的应用在航海导航中,勾股定理被广泛用于测量船只的航向和航速。

通过测量船只相对于岸上两个点的距离,结合勾股定理可以计算出船只的位移和速度,为航海者提供准确的导航信息。

三、地理测量中的应用在地理测量中,勾股定理被用于测量两个相隔较远的地点之间的距离。

通过在地面上进行三角测量,即测量两个点与另一个点的夹角以及距离,再利用勾股定理求解,可以得到精确的距离数据,为地理测量和地图绘制提供重要支持。

四、天文学中的应用在天文学中,勾股定理被用于测量遥远星体之间的距离和角度。

天文学家通过观测星体的位置和角度,结合勾股定理的计算方法,可以确定天体的距离和大小,进而推断宇宙的形态和结构。

五、计算机图形学中的应用计算机图形学中,勾股定理被广泛应用于图形处理和渲染。

图形引擎通过勾股定理来计算线段的长度、图形的形状和倾斜度等信息,为计算机生成的图像提供基础数学支持。

综上所述,勾股定理作为数学中一项重要的基础定理,在实际生活中有着广泛的应用。

它在建筑工程、航海导航、地理测量、天文学和计算机图形学等领域中都起着重要的作用。

通过勾股定理的运用,我们可以提高工作效率,确保工程安全,促进科学发展。

因此,深入理解和应用勾股定理对我们的日常生活和社会发展都具有重要意义。

第1章勾股定理第2课时 勾股定理的简单应用PPT课件(北师大版)

第1章勾股定理第2课时 勾股定理的简单应用PPT课件(北师大版)

13.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5 和11,则b的面积为( C)
A.4 B.6 C.16 D.55
14.如图,隔湖有两点A,B,从与BA方向成直角的BC方向 上的点C,测得CA=50米,CB=40米,求:
(1)A,B两点间的距离; (2)点B到直线AC的距离.
解:作BD⊥AC于点D.(1)由勾股定理得AB=30米 (2)由面积 法: 12 AB×BC= 12 AC×BD,得BD=24(米).答:A,B两点间的距离 是30米,B点到直线AC的距离是24米
A.0.7米 B.0.8米 C.0.9米 D.1.0米
9.如图所示是一段楼梯,高BC=3 cm,斜边AB是5 m,如果 在楼梯上铺地毯,那么至少需要地毯( C )
A.5米 B.6米 C.7米 D.8米
10.如图,一个透明的圆柱形状的玻璃杯,由内部测得其底面 半径为3 cm,高为8 cm,今有一支12 cm的吸管任意斜放于杯中, 若不考虑吸管的粗细,吸管露出杯口长度最少为____cm2.
17.为了丰富少年儿童的业余文化生活,某社区要在如图的 AB所在的直线上建一图书阅览室.该社区有两所学校,所在 的位置在点C和点D处,CA⊥AB于点A,DB⊥AB于点B.已知AB =25 km,CA=15 km,DB=10 km.试问:阅览室E建在距点A 多少千米处,才能使它到C,D两所学校的距离相等.
11.如图,小李准备建一个蔬菜大棚,棚宽4 m,高3 m,长20 m,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请你帮他计算 阳光透过的最大面积.
解:在直角三角形中,由勾股定理可得,直角三角形的斜边长 为5 m,所以长方形塑料薄膜的面积是5×20=100(m2)即阳光 透过的最大面积是100 m2

勾股定理的实际运用

勾股定理的实际运用

勾股定理的实际运用一、勾股定理内容回顾勾股定理是指在直角三角形中,两直角边的平方和等于斜边的平方。

如果直角三角形的两条直角边长度分别为和,斜边长度为,那么。

二、勾股定理实际运用的常见类型1. 工程测量中的应用测量建筑物高度例如,想要知道一座垂直于地面的大楼的高度。

我们可以在大楼旁边的平地上选一点,从点向大楼底部点拉一条绳子,测量出的距离。

然后在点用测角仪测量出大楼顶部点与点连线和地面的夹角。

此时在直角三角形中,,如果我们知道和,可以求出。

然后再根据勾股定理求出大楼的高度。

测量两点间的距离(不可直接测量的情况)假设在一个池塘的两边有、两点,我们要测量、两点间的距离。

我们可以在池塘边找一点,使得。

测量出的长度和的长度,然后根据勾股定理,就可以得到、两点间的距离。

2. 航海问题中的应用一艘船从港口出发,向正东方向航行海里后到达点,然后改变航向,向正南方向航行海里到达点。

此时船从港口到点的距离就是直角三角形的斜边长度。

根据勾股定理,海里。

航海中利用勾股定理可以计算船只的航行轨迹和距离等信息。

3. 生活中的简单应用梯子问题有一个长度为的梯子靠在墙上,梯子底部与墙的距离为,梯子顶端与地面的垂直高度为。

如果梯子底部向外滑动了距离,那么顶端下滑的距离可以通过勾股定理来计算。

初始时,滑动后,通过这两个等式联立求解可以得到的值。

电视屏幕尺寸问题电视屏幕的尺寸是按照对角线长度来衡量的。

如果屏幕的长为单位,宽为单位,那么对角线长度就满足。

我们可以根据这个关系来判断不同尺寸屏幕的实际大小关系等。

三、勾股定理实际运用的解题步骤总结1. 分析问题,确定是否为直角三角形问题。

如果是,找出直角三角形的三条边(已知边和未知边)。

2. 根据勾股定理(为斜边)列方程。

3. 解方程求出未知边的值。

4. 检验答案的合理性,看是否符合实际问题的情境。

四、练习题1. 在一个直角三角形中,一条直角边的长度为米,斜边长度为米,求另一条直角边的长度。

勾股定理的简单应用课件

勾股定理的简单应用课件
A
6cm 10cm
6cm
E xcm 4cm B xcm D (8-x)cm C 8cm
讨论与交流
勾股定理与它的逆定理在应用上有什么区分?
勾股定理的前提必须是直角三角形; 勾股定理主要应用于求线段的长度、图形的周长、面积; 勾股定理的逆定理用于判断三角形的形状.
课堂小结

几何问
求三角形的边

题中的
A
F
18cm
C
E
30cm
C
B
两点的距离最短问题 —转化成平面展开图中两点之间的连线段最
短.
拓展延伸
变式1 如图,一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿 纸箱表面爬到B点,那么它所行的最短路线的长是多少?
B
B
B
8 8
3 A3
A
CA
图①
图②
解:如图①, AB2=AC2+BC2=32+(3+8)2=130. B 如图②, AB2=AC2+BC2=62+82=100. ∵130>100, ∴AB=10. 答:它所行的最短路线的长是10.
•第3章 · 勾股定理
•3.3 勾股定理的简单应 用
学习目标
1. 能应用勾股定理及其逆定理解决简单的实际问 题; 2. 感受“转化”“建模”的数学思想,提高分析问 题、解决问题的能力.
知识回顾
图形
勾股定理
A
b

C
a
B
文字 直角三角形两直角边分别为a、b 语言 的平方和等于斜边c的平方.
勾股定理的逆定理
D
C
A
B
(1)求这个梯子顶端距地面的高度;

江苏省丹阳市第三中学八年级数学苏科版上册3.3.勾股定理的简单应用(2)教案

江苏省丹阳市第三中学八年级数学苏科版上册3.3.勾股定理的简单应用(2)教案

主备:蔡辉审核:管华敏编号:80305班级姓名备课组长签名【学习目标】1.能运用勾股定理及直角三角形的判定条件解决实际问题。

2.在运用勾股定理解决实际问题的过程中,感受数学的“转化”思想(把解斜三角形问题转化为解直角三角形的问题),进一步发展有条理思考和有条理表达的能力,体会数学的应用价值。

【课前预习】△若△ABC的三边a、b、c满足条件a2+b2+c2+338=10a+24b+26c,试判断△ABC的形状。

【学习过程】例1.如图,在△ABC中,AB=26,BC=20,BC边上的中线AD=24,求AC.例2.在△ABC中, AB=15,AD=12,BD=9,AC=13,求△ABC的周长和面积。

△例3.如图,一个高20m,周长10m的圆柱形水塔,现制造一个螺旋形登梯,为了减小坡度,要求登梯绕塔环绕一周半到达顶端,问登梯至少多长?(建议:拿一张白纸动手操作,你一定会发现其中的奥妙)【当堂训练】1. 已知:如图①,在Rt △ABC 中,两直角边AC 、BC 的长分别为6和8,现将直角边AC 沿AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于 ( )A.2B.3C.4D.52.将上题中的Rt △ABC 折叠,使点B 与A 重合,折痕为DE (如图②),则CD 的长为 ( )A.1.50B.1.75C.1.95D.以上都不对3.一条河的宽度处处相等,小强想从河的南岸横游到北岸去,由于水流影响,小强上岸地点偏离目标地点200m ,他在水中实际游了520m ,那么该河的宽度为 ( )A.440 mB.460 mC.480 mD. 500 m4.已知一个直角三角形的两直角边长分别为5和12,则其周长为______________.5.旗杆上的绳子垂到地面还多出1m ,如果把绳子的下端拉开距旗杆底部5m 后,绷紧的绳子的末端刚好接触地面,则旗杆的高度为___________m.6.一架5m 长的梯子靠在一面墙上,梯子的底部离建筑物3m ,若梯子底部滑开1m ,则梯子顶部下滑的距离是___________.7.如图,已知:在Rt △ABC 中,∠ACB=90º,AC=12,BC=5,AM=AC ,BN=BC 。

勾股定理与生活

勾股定理与生活

勾股定理与生活
勾股定理是数学中一个基本的定理,主要描述了在直角三角形中,两条直角边的平方和等于斜边的平方。

这个定理在生活中有非常广泛的应用:
1. 建筑和工程:在建筑和工程领域,勾股定理被用来确保结构的准确性和稳定性。

例如,工人会用它来检查墙壁、地板是否垂直或水平,或者在测量电线杆、塔等的高度时。

2. 装修设计:在室内设计中,比如确定家具的位置,计算最佳视角等,都会用到勾股定理。

3. 体育运动:在篮球、足球、田径等运动中,运动员利用勾股定理来判断投篮角度、传球距离等。

4. 导航和地理:在地图制作和导航系统中,勾股定理用于计算两点之间的最短距离。

5. 电子设备:手机、电脑等电子设备的屏幕尺寸,往往通过勾股定理来计算对角线长度。

6. 日常生活:比如测量窗户、门的尺寸,计算梯子的安全角度等,都会用到勾股定理。

7. 交通:驾驶员在倒车入库时,可以通过勾股定理判断车尾与障碍物的距离。

这些都是勾股定理在我们日常生活中的实际应用,体现了数学的实用性和普遍性。

八年级数学下册【勾股定理】4种简单应用

八年级数学下册【勾股定理】4种简单应用

八年级数学下册【勾股定理】4种简单应用一、勾股定理在网格中的应用例1、已知正方形的边长为1,(1)如图a,可以计算出正方形的对角线长为根号2.①分别求出图(b),(c),(d)中对角线的长_.②九个小正方形排成一排,对角线的长度(用含n的式子表示)为_.分析:借助于网格,构造直角三角形,直接利用勾股定理.二、勾般定理在最短距离中的应用例2、如图,已知C是SB的中点,圆锥的母线长为10cm,侧面展开图是一个半圆,A处有一只蜗牛想吃到C处的食物,它只能沿圆锥曲面爬行.请你求出蜗牛爬行的最短路程.分析在求解几何图形两点间最短距离的问题时,将几何体表面展开,求展开图中两点之间的距离,展开过程中必须要弄清楚所要求的是哪两点之间的距离,以及它们在展开图中的相应位置.点评在求立体几何图形的问题时,一般是通过平面展开图,将其转化成平面图形问题,然后求解.三、勾股定理在生活中的应用例3、如图,学校有一块长方形花园,有较少数同学为了避开拐角走“捷径”,在校园内走出了一条“路”.请同学们算一算,其实这些同学仅仅少走多少步路,却踩伤了花草.(假设1步为0.5m)点评:走“捷径”问题为出发点是常遇到情况,在考查勾股定理的同时,融入了环保教育:少走几步路,就可以留下一片期待的绿色.四、勾股定理在实际生活中的应用例4 小华想知道自家门前小河的宽度,于是按以下办法测出了如下数据:小华在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°,小华沿河岸向前走30m 选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小华计算小河的宽度.点评:此题考查直角三角形的应用,解答本题的关键在于画出示意图,将问题转化为解直角三角形的问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.3 勾股定理的简单应用
例1 九章算术中的“折竹”问题:今有竹高 一丈,末折抵地,去根三尺,问折者高几何?
意思是:有一根竹子原高1丈(1丈=10尺), 中部有一处折断,竹梢触地面处离竹根3尺,试 问折断处离地面多高?
3.3 勾股定理的简单应用
解:如图,我们用线段OA和线段 A
AB来表示竹子,其中线段AB表示
竹子折断部分,用线段OB来表示 X 竹梢触地处离竹根的距离.设OA
=x,则AB=10-x.
O
∵∠AOB=90°,
∴OA2+OB2=AB2,
∴x2+32=(10-x)2.
.ቤተ መጻሕፍቲ ባይዱ
(10-X) B
3
3.3 勾股定理的简单应用
练习
“引葭赴岸”是《九章算术》中 另一道题“今有池方一丈,葭生其中央,出 水一尺,引葭赴岸,适与岸齐.问水深、 葭长各几何?”
A
C
则BC =( x +1)尺,
根据勾股定理得:
x2+52=(x+1)2,
即:(x+1)2-x2 =52,
解得:x=12,
所以芦苇长为12+1=13(尺),
B
答:水深为12尺,芦苇长为13尺.
• 例2 如图,在△ABC中, • AB=26,BC=20,BC边上的 A
• 中线AD=24,求AC.
BD
2.如图,在△ABC中,AD⊥BC,AB=15, AD=12,AC=13,求△ABC的周长和面积.
A
B
在上题中把如图去掉结果怎样?
DC
3.3 勾股定理的简单应用
如图,以△ABC的三边为直径向外作半圆,且 S1+S3=S2,试判断△ABC的形状?
3.3 勾股定理的简单应用
从勾股定理的应用中我们进一步体会到直角 三角形与等腰三角形有着密切的联系;把研究等 腰三角形转化为研究直角三角形,这是研究问题 的一种策略.
∴AC=AB=26.
3.3 勾股定理的简单应用
勾股定理与它的逆定理在应用上有什么区别?
勾股定理主要应用于求线段的长度、图形的周 长、面积;
勾股定理的逆定理用于判断三角形的形状.
3.3 勾股定理的简单应用
1.如图,在△ABC中, AB=AC=17,BC=16,求 △ABC的面积.
A
B DC
3.3 勾股定理的简单应用
题意是:有一个边长为10尺的正方形池塘,在水 池正中央有一根新生的芦苇,它高出水面1尺,如果把
这根芦苇沿与水池边垂直的方向拉向岸边,它的顶端恰 好到达岸边.请问这个水池的深度和这根芦苇的长度各 是多少?
3.3 勾股定理的简单应用
解:如图,
BC为芦苇长,AB为水深,AC为池中心点距
岸边的距离. 设AB =x尺,
C
3.3 勾股定理的简单应用
A
例2 如图,在△ABC中, AB=26,BC=20,BC边上的 中线AD=24,求AC.
解:∵AD是BC边上的中线, ∴∵ABDD2=+CBDD=2=1257B6C+=1012 0×=2607=6,10. AB 2=262=676,
BD
C
∴AD2+BD2=AB2,
∴ ∠ADB=90°,AD垂直平分BC.
初中数学 八年级(上册)
3.3 勾股定理的简单应用
把勾股定理送到外星
球,与外星人进行数学交流 ! ——华罗庚
3.3 勾股定理的简单应用
交流
从远处看,斜拉桥的索塔、桥面与拉索组 成许多直角三角形.
3.3 勾股定理的简单应用
思考
A
G B CDE F
已知桥面以上索塔AB的高,怎样计算
AC、AD、AE、AF、AG的长.
相关文档
最新文档