水工建筑物重力坝设计计算书
重力坝设计说明书

重力坝设计说明书《水工建筑物》课程设计姓名:专业:学号:基本资料一、基本情况本重力坝水库坝高53.9m,坝底高程31.0m,坝顶高程84.9m,坝基为微、弱风化的花岗岩层,致密坚硬,强度高,抗冲能力强。
水库死水位51.0m,死库容0.3亿m3,正常水位80.0m,设计状况时上游水位82.5m、下游水位45.5m,校核状况上游戏水位84.72m、下游水位46.45m。
二、气候特征1、根据当地气象局50年统计资料,多年平均最大风速14m/s,重现期50年最大风速23m/s,设计洪水位时2.6km,校核洪水位时3.0km;2、最大冻土层深度为125m;3、河流结冰期平均为150天左右,最大冰层1.05m。
三、工程地质条件1、坝址地形地质(1)、左岸:覆盖层2-3m,全风化带厚3-5,强风化加弱风化带厚3m,微风化层厚4m;(2)、河床:岩面较平整,冲积沙砾层厚约0-1.5m,弱风化层厚1m左右,微风化层厚3-6m;坝址处河床岩面高程约在38m 左右,整理个河床皆为微、弱风化的花岗岩层,致密坚硬,强度高,抗冲能力强;(3)、右岸:覆盖层3-5m,全风化带厚5-7,强风化加弱风化带厚1-3m,弱风化带厚1-3m,微风化层厚1-4m。
2、天然建筑材料:粘土料、砂石料和石料在坝址上下游2-3km 均可开采,储量足。
粘土料各项指标均满足土坝防渗体土料质量技术要求。
砂石料满足砼重力坝要求。
大坝设计一、工程等级本水库死库容0.3亿m3,最大库容未知,估算约为5亿m3左右。
根据现行《水电枢纽工程等级划分及设计安全标准》(DL5180-2003),按水库总库容确定本工程等别为Ⅱ等,工程规模为大(2)型水库。
枢纽主要建筑物挡水、泄水、引水系统进水口建筑物为2级建筑物,施工导流建筑物为3级建筑物。
二、坝型确定坝型选择与地形、地质、建筑材料和施工条件等因素有关。
本枢纽坝址区为较坚硬的砂岩,当地石料丰富,确定本水库大坝为浆砌块石重力坝。
重力坝计算书

MOW3 = -111.9×5.376 = -601.6 KN·m ∑MOW = 6986.7 KN·m ② 静水压力(水平力) P1 = γH12 /2 = 9.81×(1105.67-1090)2 /2 = -1204.4 KN P2 =γH22 /2 =9.81×(1095.18-1090)2 /2 = 131.6 KN (←) ∑P = -1072.8 KN (→) P1 作用点至 O 点的力臂为: (1105.67-1090)/3 = 5.223m P2 作用点至 O 点的力臂为: (1095.18-1090)/3 = 1.727 m 静水压力对 O 点的弯矩(顺时针为“-” ,逆时针为“+” ) : MOP1 = 1204.4×5.223 = -6290.6 KN·m MOP2 = 131.6×1.727 = 227.3 KN·m ∑MOP = -6063.3 KN·m ③ 扬压力 扬压力示意图请见下图: (→)
由确定坝顶超高计算时已知如下数据:单位:m
平均波长 Lm 波高 h1% 7.644 0.83
坝前水深 H 15.5
波浪中心线至计算水位的高度 hZ
0.283
使波浪破碎的临界水深计算如下:
H cr Lm Lm 2h1% ln 4 Lm 2h1%
将数据代入上式中得到:
H cr 7.644 7.644 2 0.83 ln 1.013 4 7.644 2 0.83
单位: KN、 KN· m
正常使用极限状态 持久状态 1868.6准值
均采用荷载设计值
⑵.由规范 8.结构计算基本规定中可知大坝坝体抗滑稳定和坝基岩 体进行强度和抗滑稳定计算属于 1)承载能力极限状态,在计算时, 其作用和材料性能均应以设计值代入。基本组合,以正常蓄水位对 应的上、下游水位代入,偶然组合以校核洪水位时上、下游水位代 入。 而坝体上、下游面混凝土拉应力验算属于 2)正常使用极限状 态,其各设计状态及各分项系数 = 1.0,即采用标准值输入计算。 此时结构功能限值 C = 0。 荷载各项标准值和设计值请见附表 1。 ① 坝体混凝土与基岩接触面抗滑稳定极限状态 a、基本组合时,取持久状态对应的设计状况系数ψ=1.0,结构系数 γd1=1.2,结构重要性系数γ0 =0.9。 基本组合的极限状态设计表达式
重力坝计算书

A/?= /?1%+hz+hc= 0.75 + 0.16 + 0.4
= 1.31/77
2
1型—.0076 x13卸竺竺丫
132I132丿
h,=0.38/77
波长:
L= 4.80/«
壅高:
L L L4.80
竺值:
V
瞥弩—
故按累计频率为
0.38
~23~
= 0.016
咕=1・24人%=1.24x 0.38=0.47m
厶=6.76m
M2=W2L2=324.00 x 6.76 = 2190
三区:
IV3= 24 X 0.5 x32x(24.00 + 4.80)x 1 = 11059 .20KN
厶=3.20/77
A/3=咒厶=11059 .20 x 3.20 = 35389MKN.m
表
分区
体枳(m‘)
自重(kN)
力臂(m)
根据杨家沟水库的地质、地形、气候,气象等具体情况,本设计的主要内容和成 果如下:
1、 非溢流坝剖面尺寸的拟定:
坝高33. 00m,上游坡率1:0. 15,下游坡率1:0, 75,坝顶宽度4.50m。
2、 溢流坝堰面曲线的拟定:
顶部曲线段釆用眩S曲线,直线段的坡率1:0.75,反弧段半径为10m。
3、 稳定分析:
图1.1混凝土砌条石重力坝非溢流坝段剖面图
1.3
1.3.1基本原理与荷载组合
重力坝的荷载主要有:自重、静水压力、扬压力、泥沙压力、浪压力、动水压力、 冰压力、地震荷载等。本次设计取单位长度的坝段进行计算。相关荷载组合见表1.7。
表1.7荷载组合表
组合情
重力坝设计计算书

水利水电工程专业专项设计说明书水工建筑物课程设计题目:重力坝设计(西山水利枢纽)班级:水电1141姓名韩磊指导教师:**长春工程学院水利与环境工程学院水工教研室2013 年3月3日目录1 挡水坝段 (1)1.1 剖面轮廓及尺寸 (1)1.1.1 坝顶高程的确定 (1)1.2 坝体稳定应力分析 (4)1.2.1 挡水坝段荷载计算 (4)1.2.2 稳定验算 (18)1.2.3 坝基面应力计算 (19)1.2.4 坝体内部应力的计算 (25)2 溢流坝段 (34)2.1 孔口尺寸和泄流能力 (34)2.1.1 确定孔口尺寸和孔口数量 (34)2.1.1.2溢流坝最大高度和坡度的拟定。
(35)2.1.2 泄洪能力的验算 (35)2.2 检修门槽空蚀性能验算 (37)2.2.1校核洪水位时堰顶压力验算 (37)2.2.2 平板门门槽空蚀验算 (37)2.3 溢流坝曲面设计 (37)2.3.1 上游前缘段计算 (37)2.3.2顶部曲线段 (38)2.3.3 中间直线段 (38)2.3.4 反弧段 (38)2.3.5 桥面布置 (39)2.4 堰面水深的校和计算 (40)2.4.1堰面水深计算 (40)2.4.2 直线段水深计算 (41)2.4.3 反弧段水深计算 (41)2.4.4 渗气后水深计算 (42)2.5 消力池的计算 (42)2.5.1判断消能方式 (42)2.5.2 判断是否要修消力池 (42)2.5.3 消力池尺寸的计算 (43)2.5.4 基本组合(2) (44)2.6 溢流坝算段的稳定、应力计 (48)2.6.1 荷载计算 (48)2.6.2 稳定验算 (52)2.6.3 坝基面应力计算 (53)2.6.4 坝体内部应力的计算 (54)3、设计参考资料 (55)谢辞 (55)1 挡水坝段1.1 剖面轮廓及尺寸1.1.1 坝顶高程的确定由于设计洪水位低于正常洪水位,故取正常洪水位和校核洪水位作为控制情况。
混凝土重力坝毕业设计计算书

1.5
由于防渗的需要,坝基须设置防渗帷幕和排水孔幕.据基础廊道的布置要求,初步拟定防渗帷幕与排水孔廊道中心线在坝基面处距离坝踵5.5m.
第二章
2.1
作用在坝基面的荷载有:自重、静水压力、扬压力、淤沙压力、浪压力、土压力,常取 坝长进行计算.
2.
自重
自重 在正常蓄水位、设计洪水位、校核洪水位完全一样计算步骤如下;
∑P=17061.85 KN
K′=3.190789>2.3
> 2.3
故非溢流坝段抗滑稳定满足设计规X要求.
第四章
4.1
4.1.1
根据SL319-2005《混凝土重力坝设计规X》,按下列公式进行应力计算:
图4.1应力计算图示
<1>上游面垂直正应力:
<2>下游面垂直正应力:
式中:
4.
由《混凝土重力坝设计规X》SL319—2005可知:
4.2.
<1>上游面垂直正应力:
T=109.45
<2>下游面垂直正应力:
第五章
5.1
为了使水库具有较大的超泄能力,采用开敞式孔口,WES实用堰.
5.2
洪水标准的确定:本次设计的重力坝是Ⅲ级建筑物,根据GB50201—94表6.2.1,采用50年一遇的洪水标准设计,500年一遇的洪水标准校核.
5.3
流量的确定:根据基础资料可知,设计情况下,溢流坝的下泄流量为115.75m3/s;在校核情况下溢流坝的下泄流量为176m3/s.
14775.9
15784.29
扬压力
-25586.66
-57222.22
-59984.09
波浪力
重力坝工程量计算书

重力坝坝体工程量计算非溢流坝段1#:右岸断面1混凝土面积为17.5㎡,土方开挖为24.38㎡;断面2混凝土面积为128.71㎡,土方开挖为120.69㎡;断面3混凝土面积为128.71㎡,土方开挖为27.12㎡。
断面1与断面2距离为12.26m,断面2与断面3距离为8m则坝段1#混凝土方量为(17.5+128.71)/2*12.26+128.71*8=1925.947 m³土方开挖量为(24.38+120.69)/2*12.26+(120.69+27.12)/2*8=1480.519 m³非溢流坝段2#:右岸断面3混凝土面积为128.71㎡,土方开挖为27.12㎡;断面4混凝土面积为365.09㎡,土方开挖为163.88㎡;断面5混凝土面积为365.09㎡,土方开挖为120.69㎡。
断面3与断面4距离为14m,断面4与断面5距离为8m则坝段2#混凝土方量为(128.71+365.09)/2*14+365.09*8=6377.32 m³土方开挖量为(27.12+163.88)/2*14+(163.88+120.69)/2*8=2475.28 m³非溢流坝段3#:右岸断面5混凝土面积为365.09㎡,土方开挖为120.69㎡;断面6混凝土面积为982.6㎡,土方开挖为605.06㎡;断面7混凝土面积为982.6㎡,土方开挖为248.77㎡。
断面5与断面6距离为14m,断面6与断面7距离为8m则坝段3#混凝土方量为(982.6+365.09)/2*14+982.6*8=17294.63 m³土方开挖量为(120.69+605.06)/2*14+(605.06+248.77)/2*8=8495.57 m³非溢流坝段4#:右岸断面7混凝土面积为982.6㎡,土方开挖为248.77㎡,断面8混凝土面积为2380.91㎡,土方开挖为616.29㎡;断面9混凝土面积为2380.91㎡,砂砾石开挖为907.56㎡;。
水工建筑物重力坝设计计算书

一、非溢流坝设计(一)、初步拟定坝型的轮廓尺寸(1)坝顶高程的确定①校核洪水位情况下:波浪高度2h l=0.0166V5/4D1/3=0.0166×185/4×41/3=0.98m波浪长度2L l=10.4×(2h l)0.8=10.4×0.980.8=10.23m波浪中心线到静水面的高度h0=π(2h l)2/ 2L l=3.14×0.982/10.23=0.30m安全超高按Ⅲ级建筑物取值h c=0.3m=2h l+ h0+ h c=0.98+0.30+0.3=1.58m 坝顶高出水库静水位的高度△h校②设计洪水位情况下:波浪高度2h l=0.0166(1.5V)5/4D1/3=0.0166×(1.5×18)5/4×41/3=1.62m波浪长度2L l=10.4×(2h l)0.8=10.4×1.620.8=15.3m波浪中心线到静水面的高度h0=π(2h l)2/ 2L l=3.14×1.622/15.3=0.54m安全超高按Ⅲ级建筑物取值h c=0.4m=2h l+ h0+ h c=1.62+0.54+0.4=2.56m 坝顶高出水库静水位的高度△h设③两种情况下的坝顶高程分别如下:校核洪水位时:225.3+1.58=226.9m设计洪水位时:224.0+2.56=226.56m坝顶高程选两种情况最大值226.9 m,可按227.00m设计,则坝高227.00-174.5=52.5m。
(2)坝顶宽度的确定本工程按人行行道要求并设置有发电进水口,布置闸门设备,应适当加宽以满足闸门设备的布置,运行和工作交通要求,故取8米。
(3)坝坡的确定考虑到利用部分水重增加稳定,根据工程经验,上游坡采用1:0.2,下游坡按坝底宽度约为坝高的0.7~0.9倍,挡水坝段和厂房坝段均采用1:0.7。
(4)上下游折坡点高程的确定理论分析和工程实验证明,混凝土重力坝上游面可做成折坡,折坡点一般位于1/3~2/3坝高处,以便利用上游坝面水重增加坝体的稳定。
重力坝坝顶超高计算书标准格式

重力坝坝顶超高计算书标准格式混凝土重力坝坝顶超高计算书标准格式工程设计分院坝工室2006.3.核定:审查:校核:编写:——水电站工程(或水库工程、水利枢纽工程)混凝土重力坝坝顶高程计算书1 计算说明1.1 适用范围(设计阶段)本计算书仅适用于工程设计阶段的(坝型)坝顶超高/高程计算。
1.2 工程概况工程位于省市(县)的江(河)上。
该工程是以为主,兼顾、、等综合利用的水利水电枢纽工程。
本工程规划设计阶段(或预可行性研究阶段,可行性研究阶段/初步设计阶段,招标设计阶段)设计报告已于年月经审查通过。
水库总库容×108m3,有效库容×108m3,死库容×108m3;灌溉面积亩;水电站装机容量MW,多年平均发电量×108 kW·h,保证出力MW。
选定坝址为,选定坝型为。
根据《水电枢纽工程等级划分及设计安全标准》DL5180—2003,工程等别为等型工程,拦河坝为级永久水工建筑物。
(因拦河大坝坝高已超过其规定的高度,拦河坝应提高级,按级建筑物设计。
)1.3 计算目的和要求通过混凝土重力坝坝顶上游防浪墙顶与正常蓄水位、设计洪水位或校核洪水位高差的计算,以确定防浪墙顶高程和大坝高度,为坝体断面设计及坝体工程量计算提供可靠的依据。
1.4 计算原则和方法1.4.1 计算原则(1)坝顶上游防浪墙顶与正常蓄水位、设计洪水位或校核洪水位的高差,包括最大浪高、波浪中心线至水库静水位的高度和安全超高。
(2)确定的坝顶高程不得低于水库正常蓄水位及设计洪水位。
(3)坝顶高程的确定尚需考虑枢纽中其他建筑物(如船闸坝顶桥下通航净空) 对坝顶高程的要求。
1.4.2 计算方法因选定坝型为(混凝土重力坝),防浪墙顶在水库静水位以上的高差按《混凝土重力坝设计规范》DL 5108-1999式(11.1.1)计算,即:∆h=h1%+h z+h c式中,∆h—防浪墙顶至水库静水位的高差,m;h1%—浪高,m;h z−波浪中心线至水库静水位的高度,m;h c−安全超高,m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、非溢流坝设计(一)、初步拟定坝型的轮廓尺寸(1)坝顶高程的确定①校核洪水位情况下:波浪高度 2hl=4D1/3=×185/4×41/3=波浪长度2Ll =×(2hl)=×波浪中心线到静水面的高度 h=π(2hl)2/2Ll=×=安全超高按Ⅲ级建筑物取值 hc=坝顶高出水库静水位的高度△h校=2hl+ h+ hc=++=②设计洪水位情况下:波浪高度 2hl=5/4D1/3=××18)5/4×41/3=1.62m波浪长度 2Ll =×(2hl)=×15.3m波浪中心线到静水面的高度 h=π(2hl)2/2Ll=×=安全超高按Ⅲ级建筑物取值 hc=坝顶高出水库静水位的高度△h设=2hl+ h+ hc=++=2.56m③两种情况下的坝顶高程分别如下:校核洪水位时: +=设计洪水位时: +=226.56m坝顶高程选两种情况最大值 m,可按设计,则坝高。
(2)坝顶宽度的确定本工程按人行行道要求并设置有发电进水口,布置闸门设备,应适当加宽以满足闸门设备的布置,运行和工作交通要求,故取8米。
(3)坝坡的确定考虑到利用部分水重增加稳定,根据工程经验,上游坡采用1:,下游坡按坝底宽度约为坝高的~倍,挡水坝段和厂房坝段均采用1:。
(4)上下游折坡点高程的确定理论分析和工程实验证明,混凝土重力坝上游面可做成折坡,折坡点一般位于1/3~2/3坝高处,以便利用上游坝面水重增加坝体的稳定。
根据坝高确定为,则1/3H=1/3×=,折坡点高程=+=192m;2/3H=2/3×=35m,折坡点高程=+35=,所以折坡点高程适合位于192m~之间,则取折坡点高程为。
挡水坝段和厂房坝段的下游折坡点在统一高程处。
(5)坝底宽度的确定由几何关系可得坝底宽度为T=()×+8+×=(6)廊道的确定坝内设有基础灌浆排水廊道,距上游坝面6.1m,廊道底距基岩面4m,尺寸×(宽×高)。
(7)非溢流坝段纵剖面示意图(二)、基本组合荷载计算及稳定分析由上述非溢流剖面设计计算得知校核洪水位情况下的波浪三要数:=0.3m波浪中心线到静水面的高度h=0.98m波浪高度2hl波浪长2L=10.23ml=×4000/182=121.11m ,在20~250m之间因为gD/v2所以波高应安转换为累计频率1%时的波高:2h(1%)=×=1.22m 。
l=2=<H(坝前水深H=50.8m),又因为半个波长Ll按深水波计算。
所以浪压力Pl式中:其中灌浆处及排水处扬压力折减系数取α=水重度Υ=m3混泥土等级强度C10混泥土重度24KN/m3坝前淤沙浮容重m3= m3水下淤沙内摩擦角Φ=18°。
(1)正常洪水位情况正常洪水位情况下荷载计算示意图正常洪水位情况下的荷载计算过程见附表1附表非溢流重力坝基本荷载计算表上游水位:下游水位:坝高:计算情形:正常洪水位情况注:垂直力以↓为正,↑为负;水平力以→为正,←为负;力矩以顺时针为正,逆时针为负②抗滑稳定分析=[×()+700×] / =>[] ,满足抗滑稳定要求。
(2)校核洪水位情况校核洪水位情况下荷载计算示意图① 校核洪水位情况下的荷载计算过程见附表2∑∑'+-'='PAC U W f s K )(附表2非溢流重力坝基本荷载计算表上游水位:下游水位:坝高:计算情形:校核洪水位情况注:垂直力以↓为正,↑为负;水平力以→为正,←为负;力矩以顺时针为正,逆时针为负。
② 抗滑稳定分析=[×()+700×] / =>[],满足抗滑稳定要求。
四、应力分析(运行期) (一)正常洪水位情况下 1、水平截面上的正应力2、剪应力上游面水压力强度:下游面水压力强度 :剪应力:3、水平应力)(25.2837.056.32796.53kPa m P d d xd =⨯+=+=τσ 4、主应力(二)校核洪水位情况下 1、水平截面上的正应力)(48.5621.4345.628261.4304.22586622kPa B M BW yu=⨯+=+=∑∑σ)(89.5211.4345.628261.4304.22586622kPa B M BW yd=⨯-=-=∑∑σ)(25.92.0)48.56222.516()(kPa n P yu u u -=⨯-=-=στ)(56.3277.0)96.5389.521()(kPa m P d yd d =⨯-=-=στ(07.5182.0)259(22.516kPa n u u xu=⨯--=-)(33.5642.022.51648.562)2.01()1(22221kPa n P n u yu u =⨯-⨯+=-+=σσ)(18.7517.096.5389.521)7.01()1(22221kPa m P m d yd d =⨯-⨯+=-+=σσ)(22.5162kPa P u u ==σ)(96.532kPa P d d ==σ)(96.535.581.92kPa H r P w d =⨯==)(22.516)21845(tan 8.195.95.4281.9)245(tan 221kPa H r H r P sb w u =︒-︒⨯+⨯=-︒+=α淤∑∑'+-'='PAC U W f s K )(2、剪应力上游面水压力强度:下游面水压力强度 : 剪应力3、水平应力4、主应力)(03.7671.4378.9147761.4320.20324622kPa B M BW yu=⨯+=+=∑∑σ)(09.1761.4378.9147761.4320.20324622kPa B M BW yd=⨯-=-=∑∑σ)(64.597)21845(tan 8.195.98.5081.9)245(tan 221kPa H r H r P sb w u =︒-︒⨯+⨯=-︒+=α淤)(88.332.0)03.76764.597()(kPa n P yu u u -=⨯-=-=στ)(36.127.0)43.15809.176()(kPa m P d yd d =⨯-=-=στ)(42.6042.0)88.33(64.597kPa n P u u xu=⨯--=-=τσ)(80.7732.064.59703.767)2.01()1(22221kPa n P n u yu u =⨯-⨯+=-+=σσ)(74.1847.043.15809.176)7.01()1(22221kPa m P m d yd d =⨯-⨯+=-+=σσ)(64.5972kPa P u u ==σ)(43.1582kPa P d d ==σ)(43.15815.1681.92kPa H r P w d =⨯==)(08.1677.036.1243.158kPa m P d d xd =⨯+=+=τσ五、内部应力计算 (一)正常洪水位情况下坐标原点设在下游坝面,由偏心受压公式可以得出系数a 和b ,如下具体坝内应力计算过程见附表3 (二)校核洪水位情况下坐标原点设在下游坝面,由偏心受压公式可以得出系数a 和b ,如下具体坝内应力计算过程见附表489.5211.4345.628261.4304.22586622=⨯-=-=∑∑BM BW a 52.01.4345.6282121233=⨯==∑B M b 09.1761.4378.9147761.4324.23368622=⨯-=-=∑∑BM BW a 71.131.4378.91477121233=⨯==∑B M b附表3非溢流坝坝内应力分析计算表正常洪水位情况下附表4非溢流坝坝内应力分析计算表校核洪水位情况下六、坝内应力分析图根据坝内应力分析计算成果,可做出坝内应力分布图,如下所示:(1)正常洪水位情况下(2)校核洪水位情况下二、溢流坝设计一、 孔口型式及尺寸拟定已知:校核洪水位时泄流量为3340 m ³/s设计洪水位时泄流量2600 m ³/s 设:单宽流量为q=80 m ³/s·m闸门孔口数为5孔,每孔净宽为8m 。
①前缘净宽校核洪水位时: L=Q 溢/q=3340/80=(m ) 设计洪水位时: L=Q 溢/q=2600/80=(m ) 综上所述,取L=40m ② 堰顶高程由资料可知,堰顶高程为。
二、 溢流坝的堰面曲线设计 ①顶部曲线段开敞式溢流堰面曲线,采用幂曲线时按下式计算:定型设计水头,按堰顶最大作用水头的75%-95%计算,m ;n 、K— 与上游坝面坡度有关的指数和系数;x 、y —— 溢流面曲线的坐标,其原点设在颜面曲线的最高点。
按85%计算,则: 上游坝面铅直:k=2 , n=x-y 关系如下表: ③ 原点上游曲线段 R1==×=(m), =×=(m); R2==×=(m), =×=(m); R3==×=(m), =×=(m)。
④ 堰面曲线与直线段的切点坐标 上游坡度垂直: A= B= a= b= 直线段与溢流曲线的切点坐标:θ1==55°ykH x n dn )1(-=--d H mH H d 46.10)2133.225(85.05.80max =-⨯==43.17.011tan 1===m θ)(46.1743.146.10096.1)(tan 1765.11m AH x a d T =⨯⨯==θ切点高程 = 堰顶高程 - = =(m)⑤ 底部反弧段取 =时,坝顶水面流速为V 1H 0=校核洪水位-坎顶高程=因为q=80 m ³/s·m,则q/V 1=80/=所以 h=。
又因为R=(4—10)h ,所以取R=6h=6×=(m) 取挑射角θ2=20° 则:圆心高程=坎顶高程+Rcosθ2=+°= (m) 圆心纵坐标y 0=堰顶高程-圆心高程==(m ) 反弧段和直线段的切点坐标: 圆心坐标:E 点坐标(坎顶坐标):离心力作用点坐标:)(49.1343.146.10592.0)(tan 176.21m BH y b d T =⨯⨯==θT y )/(10.2865.3310295.014.1214.1301s m gH V =⨯⨯⨯⨯=⨯⨯=ϕϕ)(06.1555cos 1.1725.5cos 10m R y y D =︒⨯+=+=θ)(56.1843.149.1306.1546.17tan 1m y y x x T D TD =-+=-+=θ)(57.3255sin 1.1756.18sin 1m R x x D o =︒⨯+=+=θ)(25.555cos 1.1706.15cos 1m R y y D o =︒⨯-=-=θ)(42.3820sin 1.1757.32sin 2m R x x oE =︒⨯+=+=θ)(32.2120cos 1.1725.5cos 2m R y y o E =︒⨯+=+=θ)(43.27)2552055sin(1.1757.32)2sin(211m R x x o =︒+︒-︒⨯-=+--=θθθ)(56.21)2552055cos(1.1725.5)2cos(211m R y y o =︒+︒-︒⨯+=+-+=θθθ⑥溢流坝段纵剖面示意图根据溢流坝的堰面曲线设计数据画出溢流坝段的纵剖面示意图,如下:溢流坝段纵剖面示意图三、基本组合荷载计算及稳定分析波浪三要数:波浪中心线到静水面的高度h=波浪高度 2hl=4D1/3=×185/4×41/3=波浪长度 2Ll =×(2hl)=×因为gD/v2=×4000/182=121.11m ,在20~250m之间所以波高应安转换为累计频率1%时的波高:2hl(1%)=×=1.22m 。