九年级数学一元二次方程综合(含答案)
九年级上学期数学《一元二次方程》单元综合检测题(含答案)

解得:k≤1.
∵k是二次项系数不能为0,k≠0,即k≤1且k≠0.
∵k为非负整数,
∴k=1.
故选B.
[点睛]考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.
7.如果关于x的一元二次方程x2+2x+6﹣B=0有两个相等的实数根x1=x2=k,则直线y=kx+B必定经过的象限是( )
A.m< B.m C.m= D.m=
6.已知关于x的一元二次方程 有实数根,若k为非负整数,则k等于( )
A.0B.1C.0,1D.2
7.如果关于x的一元二次方程x2+2x+6﹣B=0有两个相等的实数根x1=x2=k,则直线y=kx+B必定经过的象限是( )
A.一、二、三B.一、二、四C.二、三、四D.一、三、四
当A=B时,△=(-6)2-4×(n-1)=0,解得n=10,
所以n为10.
点睛:一元二次方程Ax2+Bx+C=0(A≠0)的根与△=B2-4A C有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.
17.若关于x的方程x2+2x+k﹣1=0的一个根是0,则k=_____.
C. D.
[答案]B
[解析]
设场地的长为x米,则宽为(x﹣12)米,根据面积可列方程,
x(x﹣12)=210,
故选B.
5.如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为( )
A. m< B. m C. m= D. m=
中考数学 一元二次方程组 综合题附答案

中考数学 一元二次方程组 综合题附答案一、一元二次方程1.已知关于x 的方程x 2﹣(2k +1)x +k 2+1=0. (1)若方程有两个不相等的实数根,求k 的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k =2,求该矩形的对角线L 的长.【答案】(1)k >34;(2 【解析】 【分析】(1)根据关于x 的方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根,得出△>0,再解不等式即可;(2)当k=2时,原方程x 2-5x+5=0,设方程的两根是m 、n ,则矩形两邻边的长是m 、n ,利用根与系数的关系得出m+n=5,mn=5,利用完全平方公式进行变形即可求得答案. 【详解】(1)∵方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根,∴Δ=[-(2k +1)]2-4×1×(k 2+1)=4k -3>0, ∴k >34; (2)当k =2时,原方程为x 2-5x +5=0, 设方程的两个根为m ,n , ∴m +n =5,mn =5,==.【点睛】本题考查了根的判别式、根与系数的关系、矩形的性质等,一元二次方程根的情况与判别式△的关系:(1)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.2.已知关于x 的方程24832x nx n --=和()223220x n x n -+-+=,是否存在这样的n 值,使第一个方程的两个实数根的差的平方等于第二个方程的一整数根?若存在,请求出这样的n 值;若不存在,请说明理由?【答案】存在,n=0. 【解析】 【分析】在方程①中,由一元二次方程的根与系数的关系,用含n 的式子表示出两个实数根的差的平方,把方程②分解因式,建立方程求n ,要注意n 的值要使方程②的根是整数. 【详解】若存在n满足题意.设x1,x2是方程①的两个根,则x1+x2=2n,x1x2=324n+-,所以(x1-x2)2=4n2+3n+2,由方程②得,(x+n-1)[x-2(n+1)]=0,①若4n2+3n+2=-n+1,解得n=-12,但1-n=32不是整数,舍.②若4n2+3n+2=2(n+2),解得n=0或n=-14 (舍),综上所述,n=0.3.解方程:(2x+1)2=2x+1.【答案】x=0或x=1 2 -.【解析】试题分析:根据因式分解法解一元二次方程的解法,直接先移项,再利用ab=0的关系求解方程即可.试题解析:∵(2x+1)2﹣(2x+1)=0,∴(2x+1)(2x+1﹣1)=0,即2x(2x+1)=0,则x=0或2x+1=0,解得:x=0或x=﹣12.4.机械加工需用油进行润滑以减小摩擦,某企业加工一台设备润滑用油量为90kg,用油的重复利用率为60%,按此计算,加工一台设备的实际耗油量为36kg,为了倡导低碳,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际油耗量进行攻关.(1)甲车间通过技术革新后,加工一台设备润滑油用油量下降到70kg,用油的重复利用率仍然为60%,问甲车间技术革新后,加工一台设备的实际油耗量是多少千克?(2)乙车间通过技术革新后,不仅降低了润滑油用油量,同时也提高了用油的重复利用率,并且发现在技术革新前的基础上,润滑用油量每减少1kg,用油的重复利用率将增加1.6%,例如润滑用油量为89kg时,用油的重复利用率为61.6%.①润滑用油量为80kg,用油量的重复利用率为多少?②已知乙车间技术革新后实际耗油量下降到12kg,问加工一台设备的润滑用油量是多少千克?用油的重复利用率是多少?【答案】(1)28(2)①76%②75,84%【解析】试题分析:(1)直接利用加工一台设备润滑油用油量下降到70kg,用油的重复利用率仍然为60%,进而得出答案;(2)①利用润滑用油量每减少1kg,用油的重复利用率将增加1.6%,进而求出答案;②首先表示出用油的重复利用率,进而利用乙车间技术革新后实际耗油量下降到12kg,得出等式求出答案.试题解析:(1)根据题意可得:70×(1﹣60%)=28(kg ); (2)①60%+1.6%(90﹣80)=76%; ②设润滑用油量是x 千克,则 x{1﹣[60%+1.6%(90﹣x )]}=12,整理得:x 2﹣65x ﹣750=0,(x ﹣75)(x+10)=0, 解得:x 1=75,x 2=﹣10(舍去), 60%+1.6%(90﹣x )=84%,答:设备的润滑用油量是75千克,用油的重复利用率是84%. 考点:一元二次方程的应用5.按上述方案,一家酒店四、五两月用水量及缴费情况如下表所示,那么,这家酒店四、五两月的水费分别是按哪种方案计算的?并求出的值.【答案】6.解下列方程: (1)2x 2-4x -1=0(配方法); (2)(x +1)2=6x +6.【答案】(1)x 1=1+2x 2=1-21=-1,x 2=5. 【解析】试题分析:(1)根据配方法解一元二次方程的方法,先移项,再加减一次项系数一半的平方,完成配方,再根据直接开平方法解方程即可;(2)根据因式分解法,先移项,再提公因式即可把方程化为ab=0的形式,然后求解即可.试题解析:(1)由题可得,x 2-2x =12,∴x 2-2x +1=32.∴(x -1)2=32.∴x -1=.∴x 1=1x 2=1 (2)由题可得,(x +1)2-6(x +1)=0,∴(x +1)(x +1-6)=0. ∴x +1=0或x +1-6=0. ∴x 1=-1,x 2=5.7.小王经营的网店专门销售某种品牌的一种保温杯,成本为30元/只,每天销售量y (只)与销售单价x (元)之间的关系式为y =﹣10x+700(40≤x≤55),求当销售单价为多少元时,每天获得的利润最大?最大利润是多少元?【答案】当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元 【解析】 【分析】表示出一件的利润为(x ﹣30),根据总利润=单件利润乘以销售数量,整理成顶点式即可解题. 【详解】设每天获得的利润为w 元,根据题意得:w =(x ﹣30)y =(x ﹣30)(﹣10x+700)=﹣10x 2+1000x ﹣21000=﹣10(x ﹣50)2+4000.∵a =﹣10<0,∴当x =50时,w 取最大值,最大值为4000.答:当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元. 【点睛】本题考查了一元二次函数的实际应用,中等难度,熟悉函数的性质是解题关键.8.如图,在Rt ABC 中,90B =∠,10AC cm =,6BC cm =,现有两点P 、Q 的分别从点A 和点B 同时出发,沿边AB ,BC 向终点C 移动.已知点P ,Q 的速度分别为2/cm s ,1/cm s ,且当其中一点到达终点时,另一点也随之停止移动,设P ,Q 两点移动时间为xs .问是否存在这样的x ,使得四边形APQC 的面积等于216cm ?若存在,请求出此时x 的值;若不存在,请说明理由.【答案】假设不成立,四边形APQC 面积的面积不能等于216cm ,理由见解析 【解析】 【分析】根据题意,列出BQ 、PB 的表达式,再列出方程,判断根的情况. 【详解】解:∵90B ∠=,10AC =,6BC =, ∴8AB =.∴BQ x =,82PB x =-;假设存在x 的值,使得四边形APQC 的面积等于216cm , 则()1168821622x x ⨯⨯--=, 整理得:2480x x -+=, ∵1632160=-=-<,∴假设不成立,四边形APQC 面积的面积不能等于216cm . 【点睛】本题考查了一元二次方程的应用,熟练掌握方程根的判别方法、理解方程的意义是本题的解题关键.9.用适当的方法解下列一元二次方程:(1)2x 2+4x -1=0;(2)(y +2)2-(3y -1)2=0.【答案】(1)x 1=-1x 2=-12)y 1=-14,y 2=32.【解析】试题分析:(1)根据方程的特点,利用公式法解一元二次方程即可;(2)根据因式分解法,利用平方差公式因式分解,然后再根据乘积为0的方程的解法求解即可.试题解析:(1)∵a=2,b=4,c=-1 ∴△=b 2-4ac=16+8=24>0∴x=2b a-±=4122-=-⨯∴x 1=-1,x 2=-1 (2)(y +2)2-(3y -1)2=0[(y+2)+(3y-1)][ (y+2)-(3y-1)]=0 即4y+1=0或-2y+3=0 解得y 1=-14,y 2=32.10.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?【答案】(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元. 【解析】 【分析】(1)设每次降价的百分率为 x ,(1﹣x )2为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可 【详解】解:(1)设每次降价的百分率为 x . 40×(1﹣x )2=32.4x =10%或 190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%;(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元, 由题意,得()4030y (448)5100.5y--⨯+= 解得:1y =1.5,2y =2.5, ∵有利于减少库存,∴y =2.5.答:要使商场每月销售这种商品的利润达到 510 元,且更有利于减少库存,则每件商品应降价 2.5 元. 【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.11.校园空地上有一面墙,长度为20m ,用长为32m 的篱笆和这面墙围成一个矩形花圃,如图所示.(1)能围成面积是126m2的矩形花圃吗?若能,请举例说明;若不能,请说明理由.(2)若篱笆再增加4m,围成的矩形花圃面积能达到170m2吗?请说明理由.【答案】(1)长为18米、宽为7米或长为14米、宽为9米;(2)若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.【解析】【分析】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,再根据矩形面积公式列方程求解即可得到答案.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,再根据矩形面积公式列方程,求得方程无解,即假设不成立.【详解】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,根据题意得:x(32﹣2x)=126,解得:x1=7,x2=9,∴32﹣2x=18或32﹣2x=14,∴假设成立,即长为18米、宽为7米或长为14米、宽为9米.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,根据题意得:y(36﹣2y)=170,整理得:y2﹣18y+85=0.∵△=(﹣18)2﹣4×1×85=﹣16<0,∴该方程无解,∴假设不成立,即若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.12.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?【答案】羊圈的边长AB,BC分别是20米、20米.【解析】试题分析:设AB的长度为x米,则BC的长度为(100﹣4x)米;然后根据矩形的面积公式列出方程.试题解析:设AB的长度为x米,则BC的长度为(100﹣4x)米.根据题意得(100﹣4x)x=400,解得 x 1=20,x 2=5. 则100﹣4x=20或100﹣4x=80. ∵80>25, ∴x 2=5舍去. 即AB=20,BC=20考点:一元二次方程的应用.13.已知关于x 的一元二次方程x 2+(2k +1)x +k 2=0①有两个不相等的实数根. (1)求k 的取值范围;(2)设方程①的两个实数根分别为x 1,x 2,当k =1时,求x 12+x 22的值.【答案】(1)k >–14;(2)7 【解析】 【分析】(1)由方程根的判别式可得到关于k 的不等式,则可求得k 的取值范围; (2)由根与系数的关系,可求x 1+x 2=-3,x 1x 2=1,代入求值即可. 【详解】(1)∵方程有两个不相等的实数根,∴>0∆,即()22214410k k k +-=+>,解得14k >-; (2)当2k =时,方程为2x 5x 40++=, ∵125x x +=-,121=x x ,∴()222121212225817x x x x x x +=+-=-=. 【点睛】本题主要考查根的判别式及根与系数的关系,熟练掌握根的判别式与根的个数之间的关系是解题的关键.14.我市茶叶专卖店销售某品牌茶叶,其进价为每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后来经过市场调查发现,单价每降低 10 元,则平均每周的销售量可增加 40 千克,若该专卖店销售这种品牌茶叶要想平均每周获利 41600 元,请回答: (1)每千克茶叶应降价多少元?(2)在平均每周获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的 几折出售?【答案】(1)每千克茶叶应降价30元或80元;(2)该店应按原售价的8折出售. 【解析】 【分析】(1)设每千克茶叶应降价x 元,利用销售量×每件利润=41600元列出方程求解即可; (2)为了让利于顾客因此应下降价80元,求出此时的销售单价即可确定几折. 【详解】(1)设每千克茶叶应降价x 元.根据题意,得: (400﹣x ﹣240)(200+10x×40)=41600. 化简,得:x 2﹣10x +240=0.解得:x 1=30,x 2=80.答:每千克茶叶应降价30元或80元.(2)由(1)可知每千克茶叶可降价30元或80元.因为要尽可能让利于顾客,所以每千克茶叶某应降价80元.此时,售价为:400﹣80=320(元),320100%80%400⨯=. 答:该店应按原售价的8折出售. 【点睛】本题考查了一元二次方程的应用,解题的关键是根据题目中的等量关系列出方程.15.某产品每件成本为20元,经过市场调研发现,这种产品在未来20天内的日销售量m (单位:件)是关于时间t (单位:天)的一次函数,调研所获的部分数据如下表:这20天中,该产品每天的价格y (单位:元/件)与时间t 的函数关系式为:1254y t =+(t 为整数),根据以上提供的条件解决下列问题: (1)直接写出m 关于t 的函数关系式;(2)这20天中哪一天的日销售利润最大,最大的销售利润是多少?(3)在实际销售的20天中,每销售一件商品就捐赠a 元(4a <)给希望工程,通过销售记录发现,这20天中,每天扣除捐赠后的日销利润随时间t 的增大而增大,求a 的取值范围.【答案】(1)2100m t =-+;(2)在第15天时日销售利润最大,最大利润为612.5元;(3)2.54a ≤<. 【解析】 【分析】(1)从表格可看出每天比前一天少销售2件,即可确定一次函数关系式;(2)根据日利润=日销售量×每件利润列出函数解析式,然后根据函数性质求最大值,即可确定答案;(3)根据20天中每天扣除捐赠后的日销售利润,根据函数性质求a 的取值范围【详解】(1)设该函数的解析式为:m=kx+b由题意得:98=k b94=3k b +⎧⎨+⎩解得:k=-2,b=100∴m 关于t 的函数关系式为:2100m t =-+. (2)设前20天日销售利润为W 元,由题意可知,()1210025204W t t ⎛⎫=-++- ⎪⎝⎭21151002t t =-++()2115612.52t =--+ ∵102<,∴当15t =时,612.5W =最大. ∴在第15天时日销售利润最大,最大利润为612.5元. (3)由题意得:()1210025204W t t a ⎛⎫=-++--⎪⎝⎭()211525001002t a t a =-+++-,∴对称轴为:152t a =+,∵每天扣除捐赠后的日销利润随时间t 的增大而增大,且120t ≤≤, ∴15220a +≥, ∴ 2.5a ≥, ∴2.54a ≤<. 【点睛】本题主要考查了二次函数的应用,熟练掌握各函数的性质和图象特征,掌握解决最值问题的方法是解答本题的关键.。
九年级上学期数学《一元二次方程》单元综合测试含答案

九年级上册数学《一元二次方程》单元测试卷(满分120分,考试用时120分钟)一、单选题(共10题;共30分)1.方程x2-2x=0的解为( )A . x1=0,x2=2B . x1=0,x2=-2C . x1=x2=1D . x=22.设x1、x2是方程2x2﹣4x﹣3=0的两根,则x1+x2的值是( )A . 2B . ﹣2C .D . ﹣3.用因式分解法解一元二次方程时,原方程可化为( )A .B .C .D .4.某商品原价为180元,连续两次提价x%后售价为300元,下列所列方程正确的是( )A . 180(1+x%)=300B . 180(1+x%)2=300C . 180(1-x%)=300D . 180(1-x%)2=3005.用配方法解方程x2﹣8x+3=0,下列变形正确的是( )A . (x+4)2=13B . (x﹣4)2=19C . (x﹣4)2=13D . (x+4)2=196.一元二次方程(k﹣2)x2+kx+2=0(k≠2)的根的情况是()A . 该方程有两个不相等的实数根B . 该方程有两个相等的实数根C . 该方程有实数根D . 该方程没有实数根7.以方程x2+2x-3=0的两个根的和与积为两根的一元二次方程是()A . y2+5y-6=0B . y2+5y+6=0C . y2-5y+6=0D . y2-5y-6=08.若一个关于x的一元二次方程的两个根分别是数据2,4,5,4,3,5,5的众数和中位数,则这个方程是( )A . x2﹣7x+12=0B . x2+7x+12=0C . x2﹣9x+20=0D . x2+9x+20=09.设A 是方程x2+2x﹣2=0的一个实数根,则2A 2+4A +2016的值为( )A . 2016B . 2018C . 2020D . 202110.如图,△A B C 是一块锐角三角形材料,高线A H长8 C m,底边B C 长10 C m,要把它加工成一个矩形零件,使矩形D EFG的一边EF在B C 上,其余两个顶点D ,G分别在A B ,A C 上,则四边形D EFG 的最大面积为( )A . 40 C m2B . 20C m2C . 25 C m2D . 10 C m2二、填空题(共10题;共30分)11.已知两个数的差为3,它们的平方和等于65,设较小的数为x,则可列出方程________.12.一元二次方程x2﹣4x+4=0的解是________.13.若x=1是关于x的一元二次方程x2+3mx+n=0的解,则6m+2n=______.14.已知x1,x2是方程x2-4x+2=0的两根,求:(x1-x2)2=_____________.15.一元二次方程x2+5x﹣6=0的两根和是________.16.若关于x的一元二次方程的两个根x1,x2满足x1+x2=3,x1x2=2,则这个方程是_____.(写出一个符合要求的方程)17.关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为________.18.(3分)已知关于x的方程有两个实数根,则实数A 的取值范围是.19.设m,n是一元二次方程x2+2x-7=0的两个根,则m2+3m+n=_______.20.已知A 、B 是一元二次方程的两个实数根,则代数式的值等于.三、解答题(共8题;共60分)21.解下列方程(1)2x2-x=0(2)x2-4x=422.已知关于x的方程x2-(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m-1)2+(3+m)(3-m)+7m-5的值(要求先化简再求值).23.在等腰△A B C 中,三边分别为A 、B 、C ,其中A =5,若关于x的方程x2+(B +2)x+6﹣B =0有两个相等的实数根,求△A B C 的周长.24.给定关于的二次函数,学生甲:当时,抛物线与轴只有一个交点,因此当抛物线与轴只有一个交点时,的值为3;学生乙:如果抛物线在轴上方,那么该抛物线的最低点一定在第二象限;请判断学生甲、乙的观点是否正确,并说明你的理由.25.阅读探索:“任意给定一个矩形A ,是否存在另一个矩形B ,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A 的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组:,消去y化简得:2x2﹣7x+6=0,∵△=49﹣48>0,∴x1=_____,x2=_______,∴满足要求的矩形B 存在.(2)如果已知矩形A 的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B .(3)如果矩形A 的边长为m和n,请你研究满足什么条件时,矩形B 存在?26.某小区有一块长21米,宽8米的矩形空地,如图所示.社区计划在其中修建两块完全相同的矩形绿地,并且两块绿地之间及四周都留有宽度为x米的人行通道.如果这两块绿地的面积之和为60平方米,人行通道的宽度应是多少米?27.“低碳生活,绿色出行”,2017年1月,某公司向深圳市场新投放共享单车640辆.(1)若1月份到4月份新投放单车数量的月平均增长率相同,3月份新投放共享单车1000辆.请问该公司4月份在深圳市新投放共享单车多少辆?(2)考虑到自行车市场需求不断增加,某商城准备用不超过70000元的资金再购进A ,B 两种规格的自行车100辆,已知A 型的进价为500元/辆,售价为700元/辆,B 型车进价为1000元/辆,售价为1300元/辆。
人教版九年级数学一元二次方程章节综合测试(有答案)

人教版九年级数学一元二次方程章节综合测试(有答案)(时间:60分钟 满分:100分) 一、选择题(每小题2分,共32分)1.关于x 的方程3x 2-5=2x 的二次项系数和一次项系数分别是( )A .3,-2B .3,2C .3,5D .5,22.一元二次方程x 2-x +10=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能确定3.若方程(m -3)xm 2-7-x +3=0是关于x 的一元二次方程,则m =( )A .9B .3C .-3D .3或-34.方程x 2+x -1=0的一个根是( )A .1- B.51-52C .-1+ D.5-1+525.若m ,n 是一元二次方程x 2-5x +2=0的两个实数根,则mn -m -n 的值是( )A .7B .-7C .3D .-36.已知关于x 的一元二次方程x 2+ax +b =0有一个非零根-b ,则a -b 的值为( )A .1B .-1C .0D .-27.如图,在宽为20 m 、长为32 m 的矩形地面上修筑同样宽的小路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540 m 2,求小路的宽.如果设小路的宽为x m ,根据题意,所列方程正确的是( )A .(32+x)(20+x)=540B .(32-x)(20-x)=540C .(32+x)(20-x)=540D .(32-x)(20+x)=548.将进货单价为40元的商品按50元出售时,就能卖出500个.已知这种商品每涨价1元,其销售量就减少10个,为了赚得8 000元的利润,商品售价应为( )A .60元B .80元C .60元或80元D .30元9.若2-是方程x 2-4x +c =0的一个根,则c 的值是( )3A .1 B .3-3C .1+D .2+3310.用配方法解方程x 2+x =2,要使方程左边为x 的完全平方式,应把方程两边同时( )A .加B .加C .减D .减1412141211.a ,b ,c 为常数,且(a -c)2>a 2+c 2,则关于x 的方程ax 2+bx +c =0根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .有一根为012.用因式分解法解下列方程,变形正确的是( )A .(x +3)(x -1)=1,于是x +3=1或x -1=1B .(x -3)(x -4)=0,于是x -3=0或x -4=0C .(x -2)(x -3)=6,于是x -2=2或x -3=3D .x(x +2)=0,于是x +2=013.初三6班学生毕业时,每个同学都要给其他同学写一份毕业留言作为纪念,全班学生共写了930份留言.如果全班有x 名学生,根据题意,列出方程为( )A.=930B.=930x (x -1)2x (x +1)2C .x(x +1)=930 D .x(x -1)=93014.已知实数m ,n 满足条件m 2-7m +2=0,n 2-7n +2=0,则+的值是( )n m m n A. B. C.或2 D.或245215215245215.某机械厂七月份生产零件50万个,第三季度生产零件196万个,如果每月的增长率x 相同,那么( )A .50(1+x 2)=196B .50+50(1+x 2)=196C .50+50(1+x)+50(1+x)2=196D .50+50(1+x)+50(1+2x)=19616.关于x 的方程mx 2-4x -m +5=0,有以下说法:①当m =0时,方程只有一个实数根;②当m =1时,方程有两个相等的实数根;③当m =-1时,方程没有实数根.其中正确的是( )A .①②B .①③C .②③D .①②③二、填空题(每小题3分,共12分)17.若将方程x 2-6x =7化为(x +m)2=b ,则m = ,b = .18.已知关于x 的一元二次方程x 2+(k +2)x +2k =0,若x =1是这个方程的一个根,则k = .19.若关于x 的一元二次方程x 2-4x +2k =0有两个不相等的实数根,则k 的取值范围是 .20.方程(x +3)2=5(x +3)的解为 .三、解答题(共56分)21.(9分)解方程:(1)3(2x -1)2=27;(2)2x 2+4x -1=0;(3)3(x +2)2=x 2-4.22.(8分)已知关于x 的一元二次方程x 2-(k +2)x +k -1=0.(1)若方程的一个根为-1,求k 的值和方程的另一个根;(2)求证:不论k 取何值,该方程都有两个不相等的实数根.23.(7分)有长为30 m 的篱笆,如图所示,一面靠墙(墙足够长),围成中间隔有一道篱笆的长方形花圃,当花圃的面积是72 m 2时,求AB 的长.24.已知:▱ABCD 的两边AB ,AD 的长是关于x 的方程x 2-mx +-=0的两个实数根.m 214(1)m 为何值时,四边形ABCD 是菱形?求出这时菱形的边长;(2)若AB 的长为2,则▱ABCD 的周长是多少?25.(10分)某地2016年为做好“精准扶贫”,投入资金1 280万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1 600万元.(1)从2016年到2018年,该地投入异地安置资金的年平均增长率为多少?(2)在2018年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1 000户(含第1 000户)每户每天奖励8元,1 000户以后每户每天奖励5元,按租房400天计算,求2018年该地至少有多少户享受到优先搬迁租房奖励.26.(12分))某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产每提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1 080元,该烘焙店生产的是第几档次的产品?答案一、选择题(每小题2分,共32分)1.关于x的方程3x2-5=2x的二次项系数和一次项系数分别是(A)A.3,-2 B.3,2 C.3,5 D.5,22.一元二次方程x2-x+10=0的根的情况是(C)A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定3.若方程(m-3)xm2-7-x+3=0是关于x的一元二次方程,则m=(C)A .9B .3C .-3D .3或-34.方程x 2+x -1=0的一个根是(D)A .1- B.51-52C .-1+ D.5-1+525.若m ,n 是一元二次方程x 2-5x +2=0的两个实数根,则mn -m -n 的值是(D)A .7B .-7C .3D .-36.已知关于x 的一元二次方程x 2+ax +b =0有一个非零根-b ,则a -b 的值为(A)A .1B .-1C .0D .-27.如图,在宽为20 m 、长为32 m 的矩形地面上修筑同样宽的小路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540 m 2,求小路的宽.如果设小路的宽为x m ,根据题意,所列方程正确的是(B)A .(32+x)(20+x)=540B .(32-x)(20-x)=540C .(32+x)(20-x)=540D .(32-x)(20+x)=548.将进货单价为40元的商品按50元出售时,就能卖出500个.已知这种商品每涨价1元,其销售量就减少10个,为了赚得8 000元的利润,商品售价应为(C)A .60元B .80元C .60元或80元D .30元9.若2-是方程x 2-4x +c =0的一个根,则c 的值是(A)3A .1 B .3-3C .1+D .2+3310.用配方法解方程x 2+x =2,要使方程左边为x 的完全平方式,应把方程两边同时(A)A .加B .加C .减D .减1412141211.a ,b ,c 为常数,且(a -c)2>a 2+c 2,则关于x 的方程ax 2+bx +c =0根的情况是(B)A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .有一根为012.用因式分解法解下列方程,变形正确的是(B)A .(x +3)(x -1)=1,于是x +3=1或x -1=1B .(x -3)(x -4)=0,于是x -3=0或x -4=0C .(x -2)(x -3)=6,于是x -2=2或x -3=3D .x(x +2)=0,于是x +2=013.初三6班学生毕业时,每个同学都要给其他同学写一份毕业留言作为纪念,全班学生共写了930份留言.如果全班有x 名学生,根据题意,列出方程为(D)A.=930B.=930x (x -1)2x (x +1)2C .x(x +1)=930 D .x(x -1)=93014.已知实数m ,n 满足条件m 2-7m +2=0,n 2-7n +2=0,则+的值是(D)n m m n A. B. C.或2 D.或245215215245215.某机械厂七月份生产零件50万个,第三季度生产零件196万个,如果每月的增长率x 相同,那么(C)A .50(1+x 2)=196B .50+50(1+x 2)=196C .50+50(1+x)+50(1+x)2=196D .50+50(1+x)+50(1+2x)=19616.关于x 的方程mx 2-4x -m +5=0,有以下说法:①当m =0时,方程只有一个实数根;②当m =1时,方程有两个相等的实数根;③当m =-1时,方程没有实数根.其中正确的是(A)A .①②B .①③C .②③D .①②③二、填空题(每小题3分,共12分)17.若将方程x 2-6x =7化为(x +m)2=b ,则m =-3,b =16.18.已知关于x 的一元二次方程x 2+(k +2)x +2k =0,若x =1是这个方程的一个根,则k =-1.19.若关于x 的一元二次方程x 2-4x +2k =0有两个不相等的实数根,则k 的取值范围是k <2.20.方程(x +3)2=5(x +3)的解为x 1=-3,x 2=2.三、解答题(共56分)21.(9分)解方程:(1)3(2x -1)2=27;解:(2x -1)2=9,2x -1=3或2x -1=-3,∴x 1=2,x 2=-1.(2)2x 2+4x -1=0;解:a =2,b =4,c =-1,b 2-4ac =16-4×2×(-1)=24>0,x ==,-4±264-2±62即x 1=,x 2=.-2+62-2-62(3)3(x +2)2=x 2-4.解:3(x +2)2-(x +2)(x -2)=0,(x +2)[3(x +2)-(x -2)]=0,x +2=0或3(x +2)-(x -2)=0,∴x 1=-2,x 2=-4.22.(8分)已知关于x 的一元二次方程x 2-(k +2)x +k -1=0.(1)若方程的一个根为-1,求k 的值和方程的另一个根;(2)求证:不论k 取何值,该方程都有两个不相等的实数根.解:(1)将x =-1代入原方程,得1+(k +2)+k -1=0,解得k =-1.当k =-1时,原方程为x 2-x -2=0,解得x 1=-1,x 2=2.∴方程的另一个根为2.(2)证明:∵a=1,b =-(k +2),c =k -1,∴b 2-4ac =[-(k +2)]2-4×1×(k -1)=k 2+8>0.∴不论k 取何值,该方程都有两个不相等的实数根.23.(7分)有长为30 m 的篱笆,如图所示,一面靠墙(墙足够长),围成中间隔有一道篱笆的长方形花圃,当花圃的面积是72 m 2时,求AB 的长.解:设AB 的长为x m ,则BC 的长为(30-3x)m.根据题意,得x(30-3x)=72.解得x 1=4,x 2=6.答:AB 的长为4 m 或6 m.24.已知:▱ABCD 的两边AB ,AD 的长是关于x 的方程x 2-mx +-=0的两个实数根.m 214(1)m 为何值时,四边形ABCD 是菱形?求出这时菱形的边长;(2)若AB 的长为2,则▱ABCD 的周长是多少?解:(1)∵四边形ABCD 是菱形,∴AB=AD.又∵AB,AD 的长是关于x 的方程x 2-mx +-=0的两个实数根,m 214∴b 2-4ac =(-m)2-4(-)=(m -1)2=0.m 214∴m=1.∴当m 为1时,四边形ABCD 是菱形.当m =1时,原方程为x 2-x +=0,即(x -)2=0,1412解得x 1=x 2=.12∴菱形ABCD 的边长是.12(2)把x =2代入原方程,得4-2m +-=0.解得m =.m 21452将m =代入原方程,得x 2-x +1=0,5252∴方程的另一根AD =1÷2=.12∴▱ABCD 的周长是2×(2+)=5.1225.(10分)某地2016年为做好“精准扶贫”,投入资金1 280万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1 600万元.(1)从2016年到2018年,该地投入异地安置资金的年平均增长率为多少?(2)在2018年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1 000户(含第1 000户)每户每天奖励8元,1 000户以后每户每天奖励5元,按租房400天计算,求2018年该地至少有多少户享受到优先搬迁租房奖励.解:(1)设该地投入异地安置资金的年平均增长率为x ,根据题意,得1 280(1+x)2=1 280+1 600.解得x 1=0.5=50%,x 2=-2.5(舍去).答:从2016年到2018年,该地投入异地安置资金的年平均增长率为50%.(2)设2018年该地有a 户享受到优先搬迁租房奖励,根据题意,得8×1 000×400+5×400(a -1 000)≥5 000 000.解得a≥1 900.答:2018年该地至少有1 900户享受到优先搬迁租房奖励.26.(12分))某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产每提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1 080元,该烘焙店生产的是第几档次的产品?解:(1)(14-10)÷2+1=3(档次).答:此批次蛋糕属第三档次产品.(2)设烘焙店生产的是第x 档次的产品,根据题意,得(2x +8)(76+4-4x)=1 080.整理,得x 2-16x +55=0.解得x 1=5,x 2=11(不合题意,舍去).答:该烘焙店生产的是第五档次的产品.。
人就版数学九年级上册第 二十一章 一元二次方程---二十二章 二次函数综合复习试卷(含简单答案)

人就版数学九年级上册第二十一章-二十二章一、单选题1.下列方程是一元二次方程的是( )A.x2=x B.a x2+bx+c=0C.xy=1D.x+1x=12.把抛物线y=−x2+1向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为( )A.y=−(x+3)2+1B.y=−(x+1)2+3C.y=−(x−1)2+4D.y=−(x+1)2+43.已知关于x的一元二次方程k x2−(4k−1)x+4k−3=0有两个不相等的实数根,则实数k的取值范围是( )A.k<14B.k<14且k≠0C.k>−14D.k>−14且k≠04.如图,长方形花圃ABCD面积为4m2,它的一边AD利用已有的围墙(围墙足够长),另外三边所围的栅栏的总长度是5m.EF处开一门,宽度为1m.设AB的长度是xm,根据题意,下面所列方程正确的是( )A.x(5−2x)=4B.x(5+1−2x)=4C.x(5−2x−1)=4D.x(2.5−x)=45.如图是抛物线型拱桥,当拱顶高离水面2m时,水面宽4m.水面上升1.5m,水面宽度为( )A.1m B.2m C.3m D.23m6.在同一直角坐标系中,一次函数y=ax+c和二次函数y=a(x+c)2的图像大致为( )A .B .C .D .7.一个等腰三角形两边的长分别等于一元二次方程x 2−16x +55=0的两个实数根,则这个等腰三角形周长为( )A .11B .27C .5或11D .21或278.已知关于x 的方程a(x−m)x =x−m 有两个相等的实数根,若M =a 2−2am ,N =4am−1m 2,则M 与N 的关系正确的是 ( )A .M +N =2B .M +N =−2C .2M +N =0D .M +N =09.y =a x 2+bx +c 与自变量x 的部分对应值如下,已知有且仅有一组值错误(其中a ,b ,c ,m 均为常数).x …−1012…y…m 2−2m 2m 2…甲同学发现当a <0时,x =3是方程a x 2+bx +c +2=0的一个根;乙同学发现当a >0时,则2a +b >0.下列说法正确的是( )A .甲对乙错B .甲错乙对C .甲乙都错D .甲乙都对10.已知二次函数y =−12x 2+bx 的对称轴为x =1,当m ≤x ≤n 时,y 的取值范围是2m ≤y ≤2n .则m +n 的值为( )A .−6或−2B .14或−74C .14D .−2二、填空题11.方程 x 2=5x 的根是 .12.已知x =−1是关于x 的方程x 2+mx−n =0的一个根,则m +n 的值是= .13.已知点A(−1,y 1),B(1,y 2),C(4,y 3)在二次函数y =x 2−6x +c 的图象上,则y 1,y 2,y 3的大小关系是 (用“>”连接).14.如图,水池中心点О处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点О在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距О点2.5m;喷头高4m时,水柱落点距О点3m.那么喷头高 m时,水柱落点距O点4m.15.已知A(x1,y1),B(x2,y2)是抛物线y=a x2−3x+1上的两点,其对称轴是直线x=x0,若|x1−x0|>|x2−x0|时,总有y1>y2,同一坐标系中有M(−1,−2),N(3,2)且抛物线y=a x2−3x+1与线段MN有两个不相同的交点,则a的取值范围是 .16.已知抛物线y=a x2+bx+c(a,b,c是常数),其图像经过点A(2,0),坐标原点为O.①若b=−2a,则抛物线必经过原点;②若c≠4a,则抛物线与x轴一定有两个不同的公共点;③若抛物线与x轴交于点B(不与A重合),交y轴于点C且OB=OC,则a=−12;④点M(x1,y1),N(x2,y2)在抛物线上,若当x1>x2>−1时,总有y1>y2,则8a+c≤0.其中正确的结论是 (填写序号).三、解答题17.解方程:x2−4x−5=0.18.在二次函数y=x2−2tx+3(t>0)中,(1)若它的图象过点(2,1),则t的值为多少?(2)当0≤x≤3时,y的最小值为−2,求出t的值:(3)如果A(m−2,a),B(4,b),C(m,a)都在这个二次函数的图象上,且a<b<3,求m的取值范围.19.阅读下列材料,解答问题:材料:若x1,x2为一元二次方程a x2+bx+c=0(a≠0)的两个实数根,则x1+x2=−ba ,x1⋅x2=ca.(1)已知实数m,n满足3m2−5m−2=0,3n2−5n−2=0,且m≠n,求m2n+m n2的值.解:根据题意,可将m,n看作方程3x2−5x−2=0的两个实数根.∴m+n= ,mn= .∴m2n+m n2=mn(m+n)= .(2)已知实数a,b满足a2=2a+3,9b2=6b+3,且a≠3b,求ab的值.(3)已知实数m,n满足m+mn+n=a24−6,m−mn+n=−a24+2a,求实数a的最大整数值.20.如图,在平面直角坐标系中,从原点O的正上方8个单位A处向右上方发射一个小球,小球在空中飞行后,会落在截面为矩形CDEF的平台EF上(包括端点),把小球看作点,其飞行的高度y与飞行的水平距离x满足关系式L1:y=−x2+bx+c.其中C(6,0),D(10,0),CF=2.(1)求c的值;(2)求b的取值范围;(3)若落在平台EF上的小球,立即向右上方弹起,运动轨迹形成另一条与L1形状相同的拋物线L2,在21.x轴有两个点M、N,且M(15,0),N(16,0),从点N向上作NP⊥x轴,且PN=2.若沿抛物线L2下落的小球能落在边MP(包括端点)上,求抛物线L2最高点纵坐标差的最大值是多少?定义:函数图象上到两坐标轴的距离都不大于n(n≥0)的点叫做这个函数图象的“n阶方点”.例如,点(1 3,13)是函数y=x图象的“12阶方点”;点(−1,1)是函数y=−x图象的“1阶方点”.(1)在①(−1,2);②(0,0);③(12,−1)三点中,是正比例函数y=−2x图象的“1阶方点”的有___(填序号);(2)若y关于x的一次函数y=ax−4a+1图象的“2阶方点”有且只有一个,求a的值;(3)若函数图象恰好经过“n阶方点”中的点(n,n),则点(n,n)称为此函数图象的“不动n阶方点”,若y关于x的二次函数y=14x2+(p−t+1)x+q+t−2的图象上存在唯一的一个“不动n阶方点”,且当2≤p≤3时,q的最小值为t,求t的值.22.如图,抛物线L:y=a(x+2)2+9与x轴交于A,B(−5,0)两点,与y轴交于点C.(1)写出抛物线的对称轴,并求a的值;(2)平行于x轴的直线l交抛物线L于点M,N(点M在点N的左边),交线段BC于点R.当R为线段MN的中点时,求点N的坐标;(3)将线段AB先向左平移1个单位长度,再向上平移5个单位长度,得到线段A′B′.若抛物线L平移后与线段A′B′有两个交点,且这两个交点恰好将线段A′B′三等分,求抛物线L平移的最短路程;(4)P是抛物线L上任意一点(不与点C重合),点P的横坐标为m.过点P作PQ⊥y轴于点Q,E 为y轴上的一点,纵坐标为−2m.以EQ,PQ为邻边构造矩形PQEF,当抛物线L在矩形PQEF内的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围.答案解析部分1.【答案】A 2.【答案】D 3.【答案】D 4.【答案】B 5.【答案】B 6.【答案】B 7.【答案】B 8.【答案】A 9.【答案】D 10.【答案】D11.【答案】x 1=0,x 2=512.【答案】113.【答案】y 1>y 2>y 314.【答案】815.【答案】109≤a <216.【答案】①②④17.【答案】x 1=−1,x 2=518.【答案】(1)t =32(2)t =5(3)3<m <4或m >619.【答案】(1)53;−23;−109(2)解:∵9b 2=6b +3,∴(3b)2=2×(3b)+3∵a 2=2a +3,a ≠3b∴a ,3b 是一元二次方程x 2=2x +3的不相等的两个实数根整理方程得:x 2−2x−3=0,∴a ×3b =−3∴ab =−1(3)解:∵m +mn +n =a 24−6①,m−mn +n =−a 24+2a②,∴①+②可得:2(m+n)=2a−6,即:m+n=a−3①−②可得:2mn=a22−2a−6,即:mn=a24−a−3∴m,n可以看作是一元二次方程x2−(a−3)x+a24−a−3=0的两个实数根∴Δ=[−(a−3)]2−4×1×(a24−a−3)≥0化简得:−2a+21≥0,解得:a≤21 2,∴实数a的最大整数值为10 20.【答案】(1)c=8;(2)5≤b≤47 5;(3)抛物线L2最高点纵坐标差的最大值是19.71.21.【答案】(1)②③(2)a的值为32或a=−12(3).t=3−3或4+5 22.【答案】(1)x=−2,a=−1;(2)6−2(3)10(4)−6−1<m<0或m>6−1。
人教版九年级数学上册综合题练习卷:第21章 一元二次方程(包含答案)

第21章一元二次方程1.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?2.某商店经销甲、乙两种商品,已知一件甲种商品和一件乙种商品的进价之和为30元,每件甲种商品的利润是4元,每件乙种商品的售价比其进价的2倍少11元,小明在该商店购买8件甲种商品和6件乙种商品一共用了262元.(1)求甲、乙两种商品的进价分别是多少元?(2)在(1)的前提下,经销商统计发现,平均每天可售出甲种商品400件和乙种商品300件,如果将甲种商品的售价每提高0.1元,则每天将少售出7件甲种商品;如果将乙种商品的售价每提高0.1元,则每天将少售出8件乙种商品.经销商决定把两种商品的价格都提高a元,在不考虑其他因素的条件下,当a为多少时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元?3.关于x的一元二次方程(6﹣k)(9﹣k)x2﹣(117﹣15k)x+54=0(1)求方程的解;(2)若方程的解为整数,求k值.4.某市为推进养老服务工作的深入开展,在扩大社区养老覆盖率、规范机构养老、科学规划养老服务布局等方面作了大量工作.该市的养老机构拥有的养老床位数从2016年底的2万个增长到2018年底的2.88万个.(1)求该市这两年养老床位数的年平均增长率:(2)该市2018年底正在筹建一社区养老中心,按照规划拟建造三类养老专用房间(一个养老床位的单人间、两个养老床位的双人间、三个养老床位的三人间)共100间,若按规划需要建造的单人间的房间数为m(12≤m≤15),双人间的房间数是单人间的2倍,求该养老中心建成后最多可提供养老床位多少个?最少提供养老床位多少个?5.为进一步弘扬“爱国、进步、民主、科学”的五四精神,倡导“我运动、我健康、我快乐”的生活方式,某县团委准备组织一次共青团员青年足球赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排9天,每天安排5场比赛,则该县团委应邀请多少个足球队参赛?6.已知关于x的一元二次方程x2﹣5x+2m=0有实数根.(1)求m的取值范围;(2)当m=时,方程的两根分别是矩形的长和宽,求该矩形外接圆的直径.7.(1)解方程:2x2﹣x﹣1=0;(2)解不等式组:8.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.9.关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.10.已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.11.已知关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若x1+x2=3,求k的值及方程的根.12.已知关于x的方程x2﹣2x+2k﹣1=0有实数根.(1)求k的取值范围;(2)设方程的两根分别是x1、x2,且+=x1•x2,试求k的值.13.HW公司2018年使用自主研发生产的“QL”系列甲、乙、丙三类芯片共2800万块,生产了2800万部手机,其中乙类芯片的产量是甲类芯片的2倍,丙类芯片的产量比甲、乙两类芯片产量的和还多400万块.这些“QL”芯片解决了该公司2018年生产的全部手机所需芯片的10%.(1)求2018年甲类芯片的产量;(2)HW公司计划2020年生产的手机全部使用自主研发的“QL”系列芯片.从2019年起逐年扩大“QL”芯片的产量,2019年、2020年这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的产量平均每年增长的百分数比m%小1,丙类芯片的产量每年按相同的数量递增.2018年到2020年,丙类芯片三年的总产量达到1.44亿块.这样,2020年的HW公司的手机产量比2018年全年的手机产量多10%,求丙类芯片2020年的产量及m的值.14.(1)关于x,y的方程组满足x+y=5,求m的值.(2)关于x的一元二次方程x2﹣(m﹣1)x﹣m=0的两个根x1,x2满足x12+x22=5,求的值.15.已知关于x的方程x2﹣2x+m=0有两个不相等的实数根,求实数m的取值范围.16.已知关于x的一元二次方程x2﹣(m+3)x+m+2=0,(1)求证:无论实数m取得何值,方程总有两个实数根;(2)若方程有一个根的平方等于1,求m的值.17.(1)解方程:x2﹣2x﹣1=0.(2)解不等式组:18.已知关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0.(1)求证:不论m为何值,方程必有实数根.(2)当m为整数时,方程是否有有理根?若有,求出m的值:若没有,请说明理由.19.建造一个面积为130m2的长方形养鸡场,鸡场的一边靠墙,墙长为a米,另三边用竹篱笆围成,如果篱笆总长为33米.(1)求养鸡场的长与宽各为多少米?(2)若10≤a<18,题中的解的情况如何?20.2019长春国际马拉松于5月26日上午在长春体育中心鸣枪开跑.某公司为赛事赞助了5000瓶矿泉水,计划以后每年逐年增加,到2021年达到7200瓶,若该公司每年赞助矿泉水数量增加的百分率相同.(1)求平均每年增加的百分率;(2)假设2022年该公司赞助矿泉水增加的百分率与前两年相同,请你预测2022年该公司赞助的矿泉水的数量.参考答案1.【分析】(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;(2)根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=﹣2x+80.当x=23.5时,y=﹣2x+80=33.答:当天该水果的销售量为33千克.(2)根据题意得:(x﹣20)(﹣2x+80)=150,解得:x1=35,x2=25.∵20≤x≤32,∴x=25.答:如果某天销售这种水果获利150元,那么该天水果的售价为25元.【点评】本题考查了一元二次方程的应用以及一次函数的应用,解题的关键是:(1)根据表格内的数据,利用待定系数法求出一次函数关系式;(2)找准等量关系,正确列出一元二次方程.2.【分析】(1)可设甲种商品的进价是x元,乙种商品的进价是y元,根据等量关系:①一件甲种商品和一件乙种商品的进价之和为30元;②购买8件甲种商品和6件乙种商品一共用了262元;列出方程组求解即可;(2)根据该经销商每天销售甲、乙两种商品获取的利润共2500元,列出方程求解即可.【解答】解:(1)设甲种商品的进价是x元,乙种商品的进价是y元,依题意有,解得.故甲种商品的进价是16元,乙种商品的进价是14元;(2)依题意有:(400﹣10a×7)(4+a)+(300﹣10a×8)(14×2﹣11﹣14+a)=2500,整理,得150a2﹣180a=0,解得a1=,a2=0(舍去).故当a为时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元.【点评】考查了二元一次方程组的应用,一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.3.【分析】(1)根据一元二次方程的定义,利用因式分解法可解;(2)根据(1),利用整数根可解.【解答】解:(1)∵该方程是关于x的一元二次方程,∴k≠6,k≠9∵(6﹣k)(9﹣k)x2﹣(117﹣15k)x+54=0∴[(6﹣k)x﹣9][(9﹣k)x﹣6]=0解得x=或∴方程的解为x=或.(2)∵方程的解为x=或.若方程的解为整数,①当6﹣k=±1,±3,±9时,x是整数,此时k=7、5、3、9、15、﹣3;②当9﹣k=±1,±2,±3,±6时,x是整数,此时k=10、8、11、7、12、6、15、3.综上可知,k=3、7、15时原方程的解为整数.【点评】本题考查了一元二次方程的定义及整数根的求解问题,难度中等.4.【分析】(1)设该市这两年(从2016年度到2018年底)拥有的养老床位数的平均年增长率为x,根据“2018年的床位数=2016年的床位数×(1+增长率)的平方”可列出关于x的一元二次方程,解方程即可得出结论;(2)设规划建造单人间的房间数为m(12≤m≤15),则建造双人间的房间数为2m,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出y关于m的函数关系式,根据一次函数的性质结合t的取值范围,即可得出结论.【解答】解:(1)设该市这两年拥有的养老床位数的平均年增长率为,由题意可列出方程:2(1+x)2=2.88,解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市这两年拥有的养老床位数的平均年增长率为20%.(2)设规划建造单人间的房间数为m(12≤m≤15),则建造双人间的房间数为2m,三人间的房间数为100﹣3m,设该养老中心建成后能提供养老床位y个,由题意得:y=m+4m+3(100﹣3m)=﹣4m+300∵y随m的增大而减小∴当m=12时,y的最大值为252.当m=15时,y的最小值为240.答:该养老中心建成后最多提供养老床位252个,最少提供养老床位240个.【点评】本题考查了一次函数的应用、一元二次方程的应用,解题的关键是:(1)根据数量关系列出关于x的一元二次方程;(2)根据数量关系找出y关于t的函数关系式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组或函数关系式)是关键.5.【分析】关系式为:球队总数×每支球队需赛的场数=9×5,把相关数值代入即可.【解答】解:该县团委应邀请x个足球队参赛.每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=9×5.整理,得x2﹣x﹣90=0.解得x1=﹣9(不合题意,舍去),x2=10.答:该县团委应邀请10个足球队参赛.【点评】本题考查了一元二次方程的应用,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.6.【分析】(1)由根的判别式列出不等式,解不等式可得m的取值范围;(2)由根与系数的关系可得x1+x2=5、x1x2=5,该矩形外接圆的直径是矩形的对角线AC,根据勾股定理可得结论.【解答】(本题6分)解:(1)∵方程有实数根,∴△=(﹣5)2﹣4×1×2m≥0,(1分)m≤,(2分)∴当m≤时,原方程有实数根;(3分)(2)当m=时,原方程可化为:x2﹣5x+5=0,设方程的两个根分别为x1、x2,则x1+x2=5,x1•x2=5,(4分)∵该矩形外接圆的直径是矩形的对角线AC,如图所示,∴AC====,(5分)∴该矩形外接圆的直径是.(6分)【点评】本题主要考查一元二次方程根的判别式、根与系数的关系,熟练掌握根与系数的关系和进行变形是解题的关键.7.【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:(1)2x2﹣x﹣1=0,(2x+1)(x﹣1)=0,2x+1=0,x﹣1=0,x1=﹣,x2=1;(2)∵解不等式①得:x>﹣4,解不等式②得:x≤3,∴不等式组的解集为﹣4<x≤3.【点评】本题考查了解一元二次方程和解一元一次不等式组,能把一元二次方程转化成一元一次方程是解(1)的关键,能根据不等式的解集求出不等式组的解集是解(2)的关键.8.【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【解答】解:(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%.(2)361×(1﹣5%)=342.95(万元).答:预测4月份该公司的生产成本为342.95万元.【点评】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.9.【分析】(1)计算判别式的值得到△=a2+4,则可判断△>0,然后根据判别式的意义判断方程根的情况;(2)利用方程有两个相等的实数根得到△=b2﹣4a=0,设b=2,a=1,方程变形为x2+2x+1=0,然后解方程即可.【解答】解:(1)a≠0,△=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,∵a2>0,∴△>0,∴方程有两个不相等的实数根;(2)∵方程有两个相等的实数根,∴△=b2﹣4a=0,若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.10.【分析】(1)利用判别式的意义得到△=(2m+1)2﹣4(m2﹣2)≥0,然后解不等式得到m的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=﹣(2m+1),x1x2=m2﹣2,再利用(x1﹣x2)2+m2=21得到(2m+1)2﹣4(m2﹣2)+m2=21,接着解关于m的方程,然后利用(1)中m的范围确定m的值.【解答】解:(1)根据题意得△=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21,∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,∵m≥﹣,∴m的值为2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.11.【分析】(1)由于关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根,可知△>0,据此进行计算即可;(2)利用根与系数的关系得出x1+x2=2k+1,进而得出关于k的方程求出即可.【解答】解:(1)∵关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根,∴△>0,∴(2k+1)2﹣4(k2+1)>0,整理得,4k﹣3>0,解得:k>,故实数k的取值范围为k>;(2)∵方程的两个根分别为x1,x2,∴x1+x2=2k+1=3,解得:k=1,∴原方程为x2﹣3x+2=0,∴x1=1,x2=2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.以及根与系数的关系.12.【分析】(1)根据一元二次方程x2﹣2x+2k﹣1=0有两个不相等的实数根得到△=(﹣2)2﹣4(2k﹣1)≥0,求出k的取值范围即可;(2)根据根与系数的关系得出方程解答即可.【解答】(1)解:∵原方程有实数根,∴b2﹣4ac≥0∴(﹣2)2﹣4(2k﹣1)≥0∴k≤1(2)∵x1,x2是方程的两根,根据一元二次方程根与系数的关系,得:x1+x2 =2,x1 •x2 =2k﹣1又∵+=x1•x2,∴∴(x1+x2)2﹣2x1 x2 =(x1 •x2)2∴22﹣2(2k﹣1)=(2k﹣1)2解之,得:.经检验,都符合原分式方程的根∵k≤1∴.【点评】本题主要考查了根的判别式以及根与系数关系的知识,解答本题的关键是根据根的判别式的意义求出k 的取值范围,此题难度不大.13.【分析】(1)设2018年甲类芯片的产量为x万块,由题意列出方程,解方程即可;(2)2018年万块丙类芯片的产量为3x+400=1600万块,设丙类芯片的产量每年增加的熟练为y万块,则1600+1600+y+1600+2y=14400,解得:y=3200,得出丙类芯片2020年的产量为1600+2×3200=8000万块,2018年HW公司手机产量为2800÷10%=28000万部,由题意得出400(1+m%)2+2×400(1+m%﹣1)2+8000=28000×(1+10%),设m%=t,整理得:3t2+2t﹣56=0,解得:t=4,或t=﹣(舍去),即可得出答案.【解答】解:(1)设2018年甲类芯片的产量为x万块,由题意得:x+2x+(x+2x)+400=2800,解得:x=400;答:2018年甲类芯片的产量为400万块;(2)2018年万块丙类芯片的产量为3x+400=1600万块,设丙类芯片的产量每年增加的数量为y万块,则1600+1600+y+1600+2y=14400,解得:y=3200,∴丙类芯片2020年的产量为1600+2×3200=8000万块,2018年HW公司手机产量为2800÷10%=28000万部,则:400(1+m%)2+2×400(1+m%﹣1)2+8000=28000×(1+10%),设m%=t,400(1+t)2+2×400(1+t﹣1)2+8000=28000×(1+10%),整理得:3t2+2t﹣56=0,解得:t=4,或t=﹣(舍去),∴t=4,∴m%=4,∴m=400;答:丙类芯片2020年的产量为8000万块,m=400.【点评】本题考查了一元二次方程的应用、一元一次方程的应用以及一元二次方程和一元一次方程的解法;弄清数量关系列出方程是解题的关键.14.【分析】(1)观察到方程组两方程相加,左边出现3(x+y),把x+y作为一个整体来计算.(2)根据韦达定理求出用m表示x1+x2和x1x2的值,利用完全平方公式的变形得到x12+x22的式子,进而得到关于m的方程.【解答】解:(1)根据题意把方程组两式相加得:2x+y+x+2y=m+3m+13(x+y)=4m+1∴x+y=又∵x+y=5∴解得:m=(2)∵a=1,b=﹣(m﹣1),c=﹣m∴△=[﹣(m﹣1)]2﹣4•(﹣m)=m2﹣2m+1+4m=m2+2m+1=(m+1)2≥0∴无论m为何值时,方程一定有实数根.∵x1+x2==m﹣1,x1x2==﹣m∴x12+x22=(x1+x2)2﹣2x1x2=(m﹣1)2+2m∵x12+x22=5∴(m﹣1)2+2m=5解得:m=±2当m=2时,==当m=﹣2时,==∴的值为或【点评】本题考查了解二元一次方程,一元二次方程根与系数的关系,完全平方公式,分式的加减.15.【分析】根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【解答】解:∵方程x2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4×1×m=4﹣4m>0,解得:m<1.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的两个实数根”是解题的关键.16.【分析】(1)求出△=[﹣(m+3)]2﹣4(m+2)=(m+1)2,再判断即可;(2)求出方程的根是±1,再代入方程,即可求出答案.)【解答】(1)证明:x2﹣(m+3)x+m+2=0,△=[﹣(m+3)]2﹣4(m+2)=(m+1)2≥0,所以无论实数m取得何值,方程总有两个实数根;(2)解:∵方程有一个根的平方等于1,∴此根是±1,当根是1时,代入得:1﹣(m+3)+m+2=0,即0=0,此时m为任何数;当根是﹣1时,1+(m+3)+m+2=0,解得:m=﹣3.【点评】本题考查了解一元二次方程和根的判别式,能熟记根的判别式的内容是解此题的关键.17.【分析】(1)利用配方法解方程;(2)分别解两个一次不等式得到x>﹣2和x≤2,然后根据确定不等式组的解集.【解答】解:(1)x2﹣2x=1,x2﹣2x+1=2,(x﹣1)2=2,x﹣1=,所以x1=1+,x2=1﹣;(2)解①得x>﹣2,解②得x≤2,所以不等式组的解集为﹣2<x≤2.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了解一元一次不等式组.18.【分析】(1)根据方程的系数结合根的判别式,即可得出△=1>0,由此即可证出方程总有两个不相等的实数根;(2)先计算出△并且设△=(2m+1)2﹣4(2m﹣1)=4m2﹣4m+5=(2m﹣1)2+4=n2(n为整数),整系数方程有有理根的条件是△为完全平方数.解不定方程,讨论m的存在性.变形为(2m﹣1)2﹣n2=4,(2m﹣1﹣n)(2m﹣1+n)=﹣4,利用m,n都为整数进行讨论即可.【解答】(1)证明:①当2m﹣1=0即m=时,此时方程是一元一次方程,其根为x=,符合题意;②当2m﹣1≠0即m≠时,△=[﹣(2m+1)]2﹣4(2m﹣1)=(2m﹣1)2+4>0,∴当m≠时,方程总有两个不相等的实数根;综上所述,不论m为何值,方程必有实数根.(2)当m为整数时,关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0没有有理根.理由如下:①当m为整数时,假设关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0有有理根,则要△=b2﹣4ac为完全平方数,而△=(2m+1)2﹣4(2m﹣1)=4m2﹣4m+5=(2m﹣1)2+4,设△=n2(n为整数),即(2m﹣1)2+4=n2(n为整数),所以有(2m﹣1﹣n)(2m﹣1+n)=﹣4,∵2m﹣1与n的奇偶性相同,并且m、n都是整数,所以或,解得m=,②2m﹣1=0时,m=(不合题意舍去).所以当m为整数时,关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0没有有理根.【点评】考查了一元二次方程ax2+bx+c=0(a≠0)根的判别式为△=b2﹣4ac.△=b2﹣4ac为完全平方数是方程的根为有理数的充要条件.同时考查了不定方程特殊解的求法.19.【分析】(1)设养鸡场的宽为x米,则长为(33﹣2x)米,利用厂房的面积公式结合养鸡场的面积为130m2,即可得出关于x的一元二次方程,解之即可得出结论;(2)由(1)的结论结合10≤a<18,可得出长方形的长为13米宽为10米.【解答】解:(1)设养鸡场的宽为x米,则长为(33﹣2x)米,依题意,得:(33﹣2x)x=130,解得:x1=6.5,x2=10,∴33﹣2x=20或13.答:养鸡场的长为20米宽为6.5米或长为13米宽为10米.(2)∵10≤a<18,∴33﹣2x=13,∴养鸡场的长为13米宽为10米.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.20.【分析】(1)设平均每年增加的百分率为x,根据该公式2019年及2021年赞助矿泉水的数量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)根据2022年该公司赞助的矿泉水数量=2021年该公司赞助的矿泉水数量×(1+增长率),即可求出结论.【解答】解:(1)设平均每年增加的百分率为x,依题意,得:5000(1+x)2=7200,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:平均每年增加的百分率为20%.(2)7200×(1+20%)=8640(瓶).答:预测2022年该公司赞助矿泉水8640瓶.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.。
初中数学一元二次方程综合练习题(附答案)

初中数学一元二次方程综合练习题一、单选题1.一元二次方程293x x -=-的解是( )A.3x =B.4x =-C.123,4x x ==-D.123,4x x ==2.直角三角形两条直角边长的和是7,面积是6,则斜边长是()B.5D.73.一元二次方程220x x -=的两根分别为1x 和2x ,则12x x 为( )A.2-B.1C.2D.0A.2m =±B.2m =C.2m =-D.2m ≠±5.若a ,β为方程22510x x --=的两个实数根,则2235a a ββ++的值为( )A.13-B.12C.14D.15A.2B. 1-C.2或1-D.不存在7.已知关于x 的一元二次方程2(1)2(1)0a x bx a ++++=有两个相等的实数根,下列判断正确的是( )A.1一定不是关于x 的方程20x bx a ++=的根B.0一定不是关于x 的方程20x bx a ++=的根C.1和1-都是关于x 的方程20x bx a ++=的根D.1和1-不都是关于x 的方程20x bx a ++=的根8.关于x 的一元二次方程2(1)320a x x -+-=有实数根,则a 的取值范围是( )A.18a >-B.18a ≥-C. 18a >-且1a ≠D. 18a ≥-且1a ≠9.一个正方体的表面展开图如图所示,已知正方体相对两个面上的数值相同,且不相对两个面上的数值不相同,则“★”面上的数为( )A.1B.1或2C.2D.2或310.定义一种新运算:()a b a a b =-♣.例如,434(43)4=⨯-=♣.若23x =♣,则x 的值是( )A.3x =B.1x =-C.123,1x x ==D.123,1x x ==-二、解答题11.已知关于x 的一元二次方程2(1)210m x mx m --++=.(1)求方程的根;(2)当m 为何整数时,此方程的两个根都为正整数?12.阅读材料:把形如2ax bx c ++ (,,a b c 为常数)的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即2222()a ab b a b ±+=±.例如:222213(1)3,(2)2,(2)24x x x x x -+-+-+是224x x -+的三种不同形式的配方,即“余项”分别是常数项、一次项、二次项.请根据阅读材料解决下列问题:(1)仿照上面的例子,写出242x x -+的三种不同形式的配方;(2)已知2223240a b c ab b c ++---+=,求a b c ++的值.14.关于x 的方程2()0a x m b ++=的解是12x =-,21x =(a ,m ,b 均为常数,0a ≠),则方15.若关于x 的一元二次方程220mx x m ++=的两根之积为-1,则m 的值为 .16.小明设计了一个魔术盒,当任意实数对(,)a b 进入其中时,会得到一个新的实数223a b -+.若17.已知关于x 的方程260x x k -+=的两根分别是12,x x ,且满足12113x x +=,则k = .参考答案1.答案:C解析:方程293x x -=-变形为(3)(3)(3)0x x x +-+-=,将方程左边因式分解得(3)(4)0x x -+=,所以123,4x x ==-.2.答案:B解析:设其中一条直角边的长为x ,则另一条直角边的长为7x -,由题意,得1(7)62x x -=,解得1234x x ==,5=.故选B3.答案:D解析:∵一元二次方程220x x -=的两根分别为1x 和2x ,∴120x x =.故选:D .4.答案:B方程,故2m =5.答案:B解析:a β,为方程22510x x --=的两个实数根,故251251022a a ββββ+==---=,,,从而2521ββ=- 222225123523212()1211222a a a a a a ββββββ⎛⎫⎛⎫∴++=++-=+--=---= ⎪ ⎪⎝⎭⎝⎭. 6.答案:A解析:由题意得0m ≠,2(2)44404m m m m ⎡⎤∆=-+-=+>⎣⎦,解得1m >-且0m ≠. 121212211414m x x m m x x x x +++=== 解得1221m m ==-,(舍去),所以m 的值为2.7.答案:D解析:关于x 的一元二次方程2(1)2(1)0a x bx a ++++=有两个相等的实数根,2210(2)4(1)0a b a +≠⎧∴⎨∆=-+=⎩ 1b a ∴=+或(1)b a =-+.当1b a =+时,有10a b -+=,此时1-是方程20x bx a ++=的根;当(1)b a =-+时,有10a b ++=,此时1是方程20x bx a ++=的根.10a +≠,1(1)a a ∴+≠-+1∴和1-不都是关于x 的方程20x bx a ++=的根.当0a =时,0是关于x 的方程20x bx a ++=的根.综上,D 正确.8.答案:D解析:根据一元二次方程的定义和根的判别式的意义得到1a ≠且234(1)(2)0a ∆=--⋅-≥,然后求出两个不等式解集的公共部分即可. 9.答案:C解析:正方体的平面展开图共有六个面,其中面“2x ”与面“32x -”相对,面“★”与面“1x +”相对.因为相对两个面上的数值相同,所以232x x =-,解得1x =或2x =.又因为不相对两个面上的数值不相同,当2x =时,2324x x +=-=,所以x 只能为1,即12x =+=★.10.答案:D解析:23,(2)3x x x =∴-=♣整理,得2230x x --=,因式分解,得(3)(1)0x x -+=,30x ∴-=或10x +=,123,1x x ∴==-.故选D.11.答案:(1)解:根据题意,得1m ≠1,2,1a m b m c m =-=-=+224(2)4(1)(1)4b ac m m m ∴∆=-=---+=(2)12(1)1m m x m m --±∴==--则121,11m x x m +==- (2)由(1),知112111m x m m +==+--. 方程的两个根都为正整数,21m ∴-是正整数, 11m ∴-=或12m -=,解得2m =或3.即m 为2或3时,此方程的两个根都为正整数。
人教版九年级数学一元二次方程章节综合测试(有答案)

人教版九年级数学一元二次方程章节综合测试(有答案)(时间:60分钟 满分:100分)一、选择题(每小题2分,共32分)1.关于x 的方程3x 2-5=2x 的二次项系数和一次项系数分别是( )A .3,-2B .3,2C .3,5D .5,22.一元二次方程x 2-x +10=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能确定3.若方程(m -3)xm 2-7-x +3=0是关于x 的一元二次方程,则m =( )A .9B .3C .-3D .3或-34.方程x 2+x -1=0的一个根是( )A .1- 5 B.1-52C .-1+ 5D.-1+525.若m ,n 是一元二次方程x 2-5x +2=0的两个实数根,则mn -m -n 的值是( )A .7B .-7C .3D .-36.已知关于x 的一元二次方程x 2+ax +b =0有一个非零根-b ,则a -b 的值为( )A .1B .-1C .0D .-27.如图,在宽为20 m 、长为32 m 的矩形地面上修筑同样宽的小路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540 m 2,求小路的宽.如果设小路的宽为x m ,根据题意,所列方程正确的是( )A .(32+x)(20+x)=540B .(32-x)(20-x)=540C .(32+x)(20-x)=540D .(32-x)(20+x)=548.将进货单价为40元的商品按50元出售时,就能卖出500个.已知这种商品每涨价1元,其销售量就减少10个,为了赚得8 000元的利润,商品售价应为( )A .60元B .80元C .60元或80元D .30元 9.若2-3是方程x 2-4x +c =0的一个根,则c 的值是( )A .1B .3- 3C .1+ 3D .2+ 310.用配方法解方程x 2+x =2,要使方程左边为x 的完全平方式,应把方程两边同时( )A .加14B .加12C .减14D .减1211.a ,b ,c 为常数,且(a -c)2>a 2+c 2,则关于x 的方程ax 2+bx +c =0根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .有一根为012.用因式分解法解下列方程,变形正确的是( )A .(x +3)(x -1)=1,于是x +3=1或x -1=1B .(x -3)(x -4)=0,于是x -3=0或x -4=0C .(x -2)(x -3)=6,于是x -2=2或x -3=3D .x(x +2)=0,于是x +2=013.初三6班学生毕业时,每个同学都要给其他同学写一份毕业留言作为纪念,全班学生共写了930份留言.如果全班有x 名学生,根据题意,列出方程为( )A.x (x -1)2=930 B.x (x +1)2=930C .x(x +1)=930D .x(x -1)=93014.已知实数m ,n 满足条件m 2-7m +2=0,n 2-7n +2=0,则n m +m n的值是( )A.452B.152C.152或2 D.452或2 15.某机械厂七月份生产零件50万个,第三季度生产零件196万个,如果每月的增长率x 相同,那么( )A .50(1+x 2)=196B .50+50(1+x 2)=196C .50+50(1+x)+50(1+x)2=196 D .50+50(1+x)+50(1+2x)=19616.关于x 的方程mx 2-4x -m +5=0,有以下说法:①当m =0时,方程只有一个实数根;②当m =1时,方程有两个相等的实数根;③当m =-1时,方程没有实数根.其中正确的是( )A .①②B .①③C .②③D .①②③ 二、填空题(每小题3分,共12分)17.若将方程x 2-6x =7化为(x +m)2=b ,则m = ,b = .18.已知关于x 的一元二次方程x 2+(k +2)x +2k =0,若x =1是这个方程的一个根,则k = .19.若关于x 的一元二次方程x 2-4x +2k =0有两个不相等的实数根,则k 的取值范围是 .20.方程(x +3)2=5(x +3)的解为 . 三、解答题(共56分) 21.(9分)解方程:(1)3(2x -1)2=27;(2)2x 2+4x -1=0;(3)3(x +2)2=x 2-4.22.(8分)已知关于x 的一元二次方程x 2-(k +2)x +k -1=0.(1)若方程的一个根为-1,求k 的值和方程的另一个根; (2)求证:不论k 取何值,该方程都有两个不相等的实数根.23.(7分)有长为30 m 的篱笆,如图所示,一面靠墙(墙足够长),围成中间隔有一道篱笆的长方形花圃,当花圃的面积是72 m 2时,求AB 的长.24.已知:▱ABCD 的两边AB ,AD 的长是关于x 的方程x 2-mx +m 2-14=0的两个实数根.(1)m 为何值时,四边形ABCD 是菱形?求出这时菱形的边长; (2)若AB 的长为2,则▱ABCD 的周长是多少?25.(10分)某地2016年为做好“精准扶贫”,投入资金1 280万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1 600万元.(1)从2016年到2018年,该地投入异地安置资金的年平均增长率为多少? (2)在2018年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1 000户(含第1 000户)每户每天奖励8元,1 000户以后每户每天奖励5元,按租房400天计算,求2018年该地至少有多少户享受到优先搬迁租房奖励.26.(12分))某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产每提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1 080元,该烘焙店生产的是第几档次的产品?答案一、选择题(每小题2分,共32分)1.关于x的方程3x2-5=2x的二次项系数和一次项系数分别是(A)A.3,-2 B.3,2 C.3,5 D.5,22.一元二次方程x2-x+10=0的根的情况是(C)A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定3.若方程(m-3)xm2-7-x+3=0是关于x的一元二次方程,则m=(C) A.9 B.3 C.-3 D.3或-34.方程x 2+x -1=0的一个根是(D)A .1- 5 B.1-52C .-1+ 5D.-1+525.若m ,n 是一元二次方程x 2-5x +2=0的两个实数根,则mn -m -n 的值是(D)A .7B .-7C .3D .-36.已知关于x 的一元二次方程x 2+ax +b =0有一个非零根-b ,则a -b 的值为(A)A .1B .-1C .0D .-27.如图,在宽为20 m 、长为32 m 的矩形地面上修筑同样宽的小路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540 m 2,求小路的宽.如果设小路的宽为x m ,根据题意,所列方程正确的是(B)A .(32+x)(20+x)=540B .(32-x)(20-x)=540C .(32+x)(20-x)=540D .(32-x)(20+x)=548.将进货单价为40元的商品按50元出售时,就能卖出500个.已知这种商品每涨价1元,其销售量就减少10个,为了赚得8 000元的利润,商品售价应为(C)A .60元B .80元C .60元或80元D .30元 9.若2-3是方程x 2-4x +c =0的一个根,则c 的值是(A)A .1B .3- 3C .1+ 3D .2+ 310.用配方法解方程x 2+x =2,要使方程左边为x 的完全平方式,应把方程两边同时(A)A .加14B .加12C .减14D .减1211.a ,b ,c 为常数,且(a -c)2>a 2+c 2,则关于x 的方程ax 2+bx +c =0根的情况是(B)A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .有一根为012.用因式分解法解下列方程,变形正确的是(B)A .(x +3)(x -1)=1,于是x +3=1或x -1=1B .(x -3)(x -4)=0,于是x -3=0或x -4=0C .(x -2)(x -3)=6,于是x -2=2或x -3=3D .x(x +2)=0,于是x +2=013.初三6班学生毕业时,每个同学都要给其他同学写一份毕业留言作为纪念,全班学生共写了930份留言.如果全班有x 名学生,根据题意,列出方程为(D)A.x (x -1)2=930 B.x (x +1)2=930C .x(x +1)=930D .x(x -1)=93014.已知实数m ,n 满足条件m 2-7m +2=0,n 2-7n +2=0,则n m +m n的值是(D)A.452B.152C.152或2 D.452或2 15.某机械厂七月份生产零件50万个,第三季度生产零件196万个,如果每月的增长率x 相同,那么(C)A .50(1+x 2)=196B .50+50(1+x 2)=196C .50+50(1+x)+50(1+x)2=196 D .50+50(1+x)+50(1+2x)=19616.关于x 的方程mx 2-4x -m +5=0,有以下说法:①当m =0时,方程只有一个实数根;②当m =1时,方程有两个相等的实数根;③当m =-1时,方程没有实数根.其中正确的是(A)A .①②B .①③C .②③D .①②③ 二、填空题(每小题3分,共12分)17.若将方程x 2-6x =7化为(x +m)2=b ,则m =-3,b =16.18.已知关于x 的一元二次方程x 2+(k +2)x +2k =0,若x =1是这个方程的一个根,则k =-1.19.若关于x 的一元二次方程x 2-4x +2k =0有两个不相等的实数根,则k 的取值范围是k <2.20.方程(x +3)2=5(x +3)的解为x 1=-3,x 2=2. 三、解答题(共56分) 21.(9分)解方程:(1)3(2x -1)2=27;解:(2x -1)2=9,2x -1=3或2x -1=-3, ∴x 1=2,x 2=-1.(2)2x 2+4x -1=0;解:a =2,b =4,c =-1, b 2-4ac =16-4×2×(-1)=24>0,x =-4±264=-2±62,即x 1=-2+62,x 2=-2-62.(3)3(x +2)2=x 2-4.解:3(x +2)2-(x +2)(x -2)=0, (x +2)[3(x +2)-(x -2)]=0, x +2=0或3(x +2)-(x -2)=0, ∴x 1=-2,x 2=-4.22.(8分)已知关于x 的一元二次方程x 2-(k +2)x +k -1=0.(1)若方程的一个根为-1,求k 的值和方程的另一个根; (2)求证:不论k 取何值,该方程都有两个不相等的实数根. 解:(1)将x =-1代入原方程,得 1+(k +2)+k -1=0,解得k =-1.当k =-1时,原方程为x 2-x -2=0, 解得x 1=-1,x 2=2. ∴方程的另一个根为2.(2)证明:∵a =1,b =-(k +2),c =k -1, ∴b 2-4ac =[-(k +2)]2-4×1×(k -1)=k 2+8>0. ∴不论k 取何值,该方程都有两个不相等的实数根.23.(7分)有长为30 m 的篱笆,如图所示,一面靠墙(墙足够长),围成中间隔有一道篱笆的长方形花圃,当花圃的面积是72 m 2时,求AB 的长.解:设AB 的长为x m ,则BC 的长为(30-3x)m.根据题意,得 x(30-3x)=72. 解得x 1=4,x 2=6.答:AB 的长为4 m 或6 m.24.已知:▱ABCD 的两边AB ,AD 的长是关于x 的方程x 2-mx +m 2-14=0的两个实数根.(1)m 为何值时,四边形ABCD 是菱形?求出这时菱形的边长; (2)若AB 的长为2,则▱ABCD 的周长是多少? 解:(1)∵四边形ABCD 是菱形,∴AB =AD.又∵AB ,AD 的长是关于x 的方程x 2-mx +m 2-14=0的两个实数根,∴b 2-4ac =(-m)2-4(m 2-14)=(m -1)2=0.∴m =1.∴当m 为1时,四边形ABCD 是菱形.当m =1时,原方程为x 2-x +14=0,即(x -12)2=0,解得x 1=x 2=12.∴菱形ABCD 的边长是12.(2)把x =2代入原方程,得 4-2m +m 2-14=0.解得m =52.将m =52代入原方程,得x 2-52x +1=0,∴方程的另一根AD =1÷2=12.∴▱ABCD 的周长是2×(2+12)=5.25.(10分)某地2016年为做好“精准扶贫”,投入资金1 280万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1 600万元.(1)从2016年到2018年,该地投入异地安置资金的年平均增长率为多少? (2)在2018年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1 000户(含第1 000户)每户每天奖励8元,1 000户以后每户每天奖励5元,按租房400天计算,求2018年该地至少有多少户享受到优先搬迁租房奖励.解:(1)设该地投入异地安置资金的年平均增长率为x ,根据题意,得1 280(1+x)2=1 280+1 600.解得x 1=0.5=50%,x 2=-2.5(舍去).答:从2016年到2018年,该地投入异地安置资金的年平均增长率为50%. (2)设2018年该地有a 户享受到优先搬迁租房奖励,根据题意,得 8×1 000×400+5×400(a -1 000)≥5 000 000. 解得a ≥1 900.答:2018年该地至少有1 900户享受到优先搬迁租房奖励. 26.(12分))某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产每提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1 080元,该烘焙店生产的是第几档次的产品?解:(1)(14-10)÷2+1=3(档次). 答:此批次蛋糕属第三档次产品.(2)设烘焙店生产的是第x 档次的产品,根据题意,得 (2x +8)(76+4-4x)=1 080.整理,得x 2-16x +55=0.解得x 1=5,x 2=11(不合题意,舍去). 答:该烘焙店生产的是第五档次的产品.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程周末练习题
(1))4(5)4(2
+=+x x (2)x x 4)1(2
=+
(3)2
2
)21()3(x x -=+ (4)31022
=-x x
一元二次方程测试题 一、选择题
1、方程(m ²-1)x ²+m x -5=0是关于x 的一元二次方程,则m 满足的条件是 ( ) (A ) m ≠1 (B) m ≠0 (C )∣m ∣≠1 (D) m=±1
2、已知方程x ²+x-1=0,以它的两根的倒数为根的新方程应是( ) (A) y ²-y-1=0 (B) y ²+y+1=0 (C) y ²-y+1=0 (D) y ²-2y-1=0
3、下列方程没有实数根的方程是( ) (A) x ²+3x =0 (B)2004 x ²+56x-1=0 (C)2004 x ²+56x+1=0 (D) (x -1)(x -2)=0
4、关于x 的一元二次方程x ²-2x+2k =0有实数根,则k 的取值范围是 ( )
(A )k <2
1 (B )k ≤2
1 (C )k >2
1 (D )k ≥2
1 5、已知关于x 的方程x ²-mx+2m-1=0的两个实数根的平方和为7,那么m 的值是( )
(A ) 5 (B )-1 (C )5或-1 (D )-5或1 6、用换元法解方程 x ²+x-1=x
x +2
6
时,如果设x ²+x=y ,那么原方
程可变形为( )
(A ) y ²-y-6=0 (B )y ²-y+6=0(C )y ²+y-6=0(D )y ²+y+6=0 7、王刚同学在解关于x 的方程x ²-3x+c =0时,误将-3x 看作+3x ,结果解得x 1=1 x 2=-4,则原方程的解为( )
(A ) x 1=-1 x 2=-4(B )x 1=1 x 2=4(C )x 1=-1 x 2=4(D )x 1=2x 2=3 8、某饲料厂一月份生产饲料500吨,三月份生产饲料720吨,若二、三月份每月平均增长的百分率为x ,则有( ) (A )500(1+x 2
)=720 (B )500(1+x)2
=720 (C )500(1+2x)=720 (D )720(1+x)2
=500
9、一列列车自2004年全国铁路第5次大提速后,速度提高了26千米/时,现在该列车从甲站到乙站所用的时间比原来减少了1小时,已知甲乙两站的路程是312千米,若设列车提速前的速度是x 千米/时,则根据题意所列方程正确的是( )
(A )
x 312-26312-x =1 (B )26312+x -x 312
=1
(C) x 312-26312+x =1 (D )26312-x -x
312=1
10. (2009山西省太原市)用配方法解方程2
250x x --=时,原方程应变形为( ) A .()2
16x += B .()2
16x -= C .()229x +=
D .()2
29x -=
11 (2009成都)若关于x 的一元二次方程2
210kx x --=有两个不相等的实数根,则k 的取值范围是( )
A .1k >-
B 。
1k >-且0k ≠ C.。
1k < D 。
1k <且0k ≠
12.(2009年潍坊)关于x 的方程2
(6)860a x x --+=有实数根,则整数a 的最大值是( ) A .6
B .7
C .8
D .9
13. (2009青海)方程2
9180x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为( ) A .12 B .12或15
C .15
D .不能确定
14(2009年烟台市)设a b ,是方程2
20090x x +-=的两个实数根,则2
2a a b ++的值为( )
A .2006
B .2007
C .2008
D .2009
15 (2009江西)为了让江西的山更绿、水更清,2008年省委、省政府提出了确保到2010年实现全省森林覆盖率达到63%的目标,已知2008年我省森林覆盖率为60.05%,设从2008
年起我省森林覆盖率的年平均增长率为x ,则可列方程( ) A .()60.051263%x += B .()60.051263x += C .()2
60.05163%x +=
D .()2
60.05163x +=
16.(2009青海)在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图5所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( ) A .2
13014000x x +-= B .2
653500x x +-= C .213014000x x --=
D .2
653500x x --=
二.填空题
1.若实数b a ,满足02
2
=-+b ab a ,则
b
a
= 。
2.若8)2)((=+++b a b a ,则b a += 。
3.已知1322++x x 的值是10,则代数式1642++x x 的值是 。
4. (2009年包头)关于x 的一元二次方程2
210x mx m -+-=的两个实数根分别是
12x x 、,且22
12
7x x +=,则212()x x -的值是 . 5.若方程02
=++c bx ax )0(≠a 中,c b a ,,满足0=++c b a 和0=+-c b a ,则方程的根是( )
(A )1,0 (B )-1,0 (C )1,-1 (D )无法确定
6、如果
x ²-2(m+1)x+m 2
+5=0是一个完全平方式,则m=
一元二次方程应用题专项
一元二次方程的应用
(一)传播问题(比赛问题)
1.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?。