概率习题课
概率论与数理统计 习题课1-1

P( A B C ) =
事件的关系 互斥: 互斥:AB = φ 对立事件, 对立事件,样本空间的划分
P ( B A) = P ( B )
n个事件两两互斥,就称这n个事件互斥 个事件两两互斥,就称这n
独立
P ( A B ) = P ( A)
P ( AB ) = P ( A) P ( B )
n个事件独立的要求很高
3 1 1 2 4未中, 3 或者1、、未中, 伤 L因此总的概率为 C 4 6 2 3
3 4
1 3 1 1 ∴ P ( A) = 1 − P ( A ) = 1 − − C 4 6 6 2
4
3
1 n k k
条件概率
乘法公式
全概公式和贝叶斯公式
n个独立事件至少发生其一的概率
伯努利概型
在n重伯努利试验中,事件A恰好发生k次的概率 重伯努利试验中,事件A恰好发生k
k Pn (k ) = Cn p k q n − k , k = 0,1,2, L , n
1. B
掷两颗骰子,已知两颗骰子的点数之和为7 2. 掷两颗骰子,已知两颗骰子的点数之和为7,求其中 一颗为1的概率。 一颗为1的概率。 解:
3. 某人忘记了电话号码的最后一个数字,因此他随意地拨号, 某人忘记了电话号码的最后一个数字,因此他随意地拨号, 求他拨号不超过3次而接通电话的概率; (1)求他拨号不超过3次而接通电话的概率; 若已知最后一个数字是奇数,那么此概率是多少? (2)若已知最后一个数字是奇数,那么此概率是多少?
解:设A = {第 i 次拨号拨对 }, i = 1,2,3 i
1 3
表示施放4枚深水炸弹击沉潜水艇的事件 解 设A表示施放 枚深水炸弹击沉潜水艇的事件,则 表示施放 枚深水炸弹击沉潜水艇的事件,
概率习题课一

性质 4 设 A、B 为两事件 , 且 A B , 则 P A B P A P B 并且 P A P B .
概率论
性质 5 对于任一事件 A , 都有 P A 1 . 性质 6 设 A, B 为任意两个事件 , 则
P A B P A P B P AB P A B C P A P B P C P AB P AC P BC P ABC
例9
分析:只需计算P( A1 D)和P( A3 D)比较大小
概率论
A1 , A2 , A3组成了样本空间的一个划分,且 1 P(A1 )=P(A 2 )=P(A3 )= 3 1 另外,P( D A1 ) , P( D A2 ) 0, P( D A3 ) 1, 2 则由贝叶斯公式:
1 1 P( A1 )P( D A1 ) 1 3 2 P( A1 D) 3 1 1 1 1 0 1 3 P( Ai )P( D Ai ) 3 2 3 3 i 1
2) P( A B) P( B A) P( B AB) y z 3) P( A B) P( A) P( B) P( AB) 1 x z
4) P( A B) P( A B) 1 x y z
概率论
例3 (摸球问题)设盒中有3个白球,2个红球,现 从合中任抽2个球,求取到一红一白的概率。 解:设A表示“取到一红一白”
n
i 1,2,, 一发子弹,
以A、B、C分别表示甲、乙、丙命中目标,试
用A、B、C的运算关系表示下列事件:
作业 P23 1.7
概率论
若W表示昆虫出现残翅,E表示有退化性眼睛,且 P(W)=0.125,P(E)=0.075, P(WE)=0.025, 求下列 事件的频率: (1)昆虫出现残翅或退化性眼睛 P(W+E)=P(W)+P(E)-P(WE)=0.175 (2)昆虫出现残翅,但没有退化性眼睛 P(W-E)=P(W)-P(WE)=0.1 (3)昆虫未出现残翅,也无退化性眼睛
1概率ACH1-习题课

C
(1)最小号码为5,即从6、7、8、9、10里选两个, 所求概率为:
C C
2 5 3 10
1 12
(2)最大号码为5,即从1,2,3,4里选两个,
2 所求概率为: 4 3 10
1 C = 20 C
8、从一批由1100件正品,400件次品组成的产品中
任取200件.求: (1)恰有90件次品的概率;(2)至少有2件次品的概率。
解: P( AB) P( A) P( AB ) =0.7-0.5=0.2
P ( AB) P( AB) P( B A B ) P ( A B ) P( A) P ( B ) P( AB )
0.2 0.25. 0.7 0.6 0.5
16、根据以往资料表明,某一3口之家,患某种传染病的概率
贝叶斯公式
P ( Bi A) P ( Bi | A) P ( A) P ( A | Bi ) P ( Bi )
P( A | B )P( B )
j 1 j j
n
i 1,2,, n
事件的独立性
P ( A1 An ) P ( A1 ) P ( An ) P ( A1 An ) 1 P ( A1 An ) 1 P ( A1 An ) 1 P ( A1 ) P ( An )
配成一双”(事件A)的概率是多少?
4 解: 样本空间总数:C10 210
1
3
5
7
9
事件A:4只恰成1双或恰成2双.
2 4只恰成2双的取法: C5 10
2 4 2 61 8 10 1 1 2 1 1 ) 4只恰成1双的取法:C5 C4 C2C2 120 或C(C8 - C4 120 5
高中数学必修二课件:随机事件与概率 习题课

2.事件A与事件B的关系如图所示,则( C )
A.A⊆B C.A与B互斥
B.A⊇B D.A与B互为对立事件
解析 由题图知,事件A与事件B不能同时发生,且A∪B≠Ω,因此A与B互 斥不对立,故选C.
3.从分别写有A,B,C,D,E的5张卡片中任取2张,这2张卡片上的字母
恰好是按字母顺序相邻的概率为 ( B )
4.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄
5
球.从中一次随机摸出2只球,则这2只球颜色不同的概率为____6____.
解析 从4只球中一次随机摸出2只球,有6种结果,其中这2只球颜色不同 有5种结果,故所求概率为56.
5.为了对某课题进行研究,用分层随机抽样方法从三所高校A,B,C的相
【解析】 (1)设该厂这个月共生产轿车n辆. 则5n0=1001+0300,所以n=2 000. 则z=2 000-100-300-150-450-600=400. (2)设所抽样本中有a辆舒适型轿车, ∴1400000=a5,则a=2.
因此抽取的容量为5的样本中有2辆舒适型轿车,3辆标准型轿车,用A1,A2 表示2辆舒适型轿车,用B1,B2,B3表示3辆标准型轿车,用E表示“在该样本中 任取2辆,其中至少有一辆舒适型轿车”,则样本空间中包含的基本事件有 (A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1, B2),(B1,B3),(B2,B3),共10个.
性别
选考方案确定情况 物理 化学 生物 历史 地理 政治
选考方案确定的有5人 5
5
2
1
2
0
男生
选考方案待确定的有7人 6
4
本科概率1-全概,习题课(白底)

概率统计第一章习题课
习题一
4. 从一副扑克牌的 张黑桃 中,有放回抽三次 , 13 求取出的三张牌中: (1)没有同号的概率 ; (2)有同号的概率.
13 ⋅12 ⋅11 P( A) = 133
13 ⋅12 ⋅11 P( A) = 1 − P( A) = 1 − 133
5.某城市有A, B, C三种报纸.在居民中, 订A报的占 45%, 订B报的占35%, 订C报的占30%,同时订A与 B报的占10%,同时订A与C报的占8%,同时订B与 C报的占5%,同时订A, B与C报的占3%, 求下列概率:
P ( A3 ) = P ( H1H2 H3 )
加法公式 独立性
P(A1)=0.36; P(A2)=0.41; P(A3)=0.14. P(B)=P(A1)P(B |A1)+ P(A2)P(B|A2)+ P(A3)P(B |A3) =0.36×0.2+0.41 ×0.6+0.14 ×1 =0.458 × 即飞机被击落的概率为0.458. 即飞机被击落的概率为
P( (1)只订A报的; AB C ) = P( A) − P( AB) − P( AC) + P( ABC ) = 0.3
(2)只订A与B报的; P( ABC ) = P( AB) − P( ABC ) = 0.07 (3)只订一种报的; P( ABC ) + P( ABC ) + P( ABC) = 0.73 (4)恰好订两种报的;P( ABC ) + P( ABC ) + P( ABC) = 0.14
∑ P( A ) P( B|A )
k =1 k k
3
将这里得到的公式一般化, 将这里得到的公式一般化,就得到 贝叶斯公式
概率论第一章习题课

概率论与数理统计第一章习题课1. 掷3枚硬币, 求出现3个正面的概率. 解: 设事件A ={出现3个正面}基本事件总数n =23, 有利于A 的基本事件数n A =1, 即A 为一基本事件,则125.08121)(3====n n A P A .2. 10把钥匙中有3把能打开门, 今任取两把, 求能打开门的概率. 解: 设事件A ={能打开门}, 则A 为不能打开门基本事件总数210C n =, 有利于A 的基本事件数27C n A =, 467.0157910212167)(21027==⨯⨯⋅⨯⨯==C C A P因此, 533.0467.01)(1)(=-=-=A P A P .3. 100个产品中有3个次品,任取5个, 求其次品数分别为0,1,2,3的概率.解: 设A i 为取到i 个次品, i =0,1,2,3,基本事件总数5100C n =, 有利于A i 的基本事件数为3,2,1,0,5973==-i C C n i i i则138.09833209495432194959697396979899100543213)(856.0334920314719969798991009394959697)(510049711510059700=⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯=⨯===⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯===C C n n A P C C n n A P00006.09833512196979697989910054321)(006.0983359532195969739697989910054321)(51002973351003972322=⨯⨯==⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯====⨯⨯=⨯⨯⨯⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯===C C n n A P C C C n n A P4. 一个袋内有5个红球, 3个白球, 2个黑球, 计算任取3个球恰为一红, 一白, 一黑的概率.解: 设A 为任取三个球恰为一红一白一黑的事件,则基本事件总数310C n =, 有利于A 的基本事件数为121315C C C n A =, 则25.0412358910321)(310121315==⨯⨯⨯⨯⨯⨯⨯===C C C C n n A P A5. 两封信随机地投入四个邮筒, 求前两个邮筒内没有信的概率以及第一个邮筒内只有一封信的概率.解: 设A 为前两个邮筒没有信的事件, B 为第一个邮筒内只有一封信的事件,则基本事件总数1644=⨯=n , 有利于A 的基本事件数422=⨯=A n , 有利于B 的基本事件数632=⨯=B n , 则25.041164)(====n n A P A 375.083166)(====n n B P B . 6. 为防止意外, 在矿内同时设有两种报警系统A 与B , 每种系统单独使用时, 其有效的概率系统A 为0.92, 系统B 为0.93, 在A 失灵的条件下, B 有效的概率为0.85, 求(1) 发生意外时, 这两个报警系统至少有一个有效的概率 (2) B 失灵的条件下, A 有效的概率解: 设A 为系统A 有效, B 为系统B 有效, 则根据题意有P (A )=0.92, P (B )=0.93, 85.0)|(=A B P(1) 两个系统至少一个有效的事件为A ∪B , 其对立事件为两个系统都失效, 即B A B A = , 而15.085.01)|(1)|(=-=-=A B P A B P , 则988.0012.01)(1)(012.015.008.015.0)92.01()|()()(=-=-==⨯=⨯-==B A P B A P A B P A P B A P(2) B 失灵条件下A 有效的概率为)|(B A P , 则829.093.01012.01)()(1)|(1)|(=--=-=-=B P B A P B A P B A P 7. 用3个机床加工同一种零件, 零件由各机床加工的概率分别为0.5, 0.3, 0.2, 各机床加工的零件为合格品的概率分别等于0.94, 0.9, 0.95, 求全部产品中的合格率.解: 设A 1,A 2,A 3零件由第1,2,3个机床加工, B 为产品合格,A 1,A 2,A 3构成完备事件组.则根据题意有P (A 1)=0.5, P (A 2)=0.3, P (A 3)=0.2, P (B |A 1)=0.94, P (B |A 2)=0.9, P (B |A 3)=0.95,由全概率公式得全部产品的合格率P (B )为93.095.02.09.03.094.05.0)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P8. 12个乒乓球中有9个新的3个旧的, 第一次比赛取出了3个, 用完后放回去, 第二次比赛又取出3个, 求第二次取到的3个球中有2个新球的概率.解: 设A 0,A 1,A 2,A 3为第一次比赛取到了0,1,2,3个新球, A 0,A 1,A 2,A 3构成完备事件组.设B 为第二次取到的3个球中有2个新球. 则有22962156101112321)|(,552132101112789321)(,442152167101112321)|(,55272101112389321)(,552842178101112321)|(,2202710111239321)(,552732189101112321)|(,2201101112321)(312162633123933121527231213292312142813122319131213290312330=⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯⨯⨯⨯===⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯⨯⨯===⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯===⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯==C C C A B P C C A P C C C A B P C C C A P C C C A B P C C C A P C C C A B P C C A P根据全概率公式有455.01562.02341.00625.00022.022955214421552755282202755272201)|()()(30=+++=⋅+⋅+⋅+⋅==∑=i i i A B P A P B P9. 某商店收进甲厂生产的产品30箱, 乙厂生产的同种产品20箱, 甲厂每箱100个, 废品率为0.06, 乙厂每箱装120个, 废品率是0.05, 求:(1)任取一箱, 从中任取一个为废品的概率;(2)若将所有产品开箱混放, 求任取一个为废品的概率. 解: (1) 设B 为任取一箱, 从中任取一个为废品的事件. 设A 为取到甲厂的箱, 则A 与A 构成完备事件组4.05020)(,6.05030)(====A P A P 05.0)|(,06.0)|(==AB P A B P 056.005.04.006.06.0)|()()|()()(=⨯+⨯=+=A B P A P A B P A P B P(2) 设B 为开箱混放后任取一个为废品的事件.则甲厂产品的总数为30×100=3000个, 其中废品总数为3000×0.06=180个,乙厂产品的总数为20×120=2400个, 其中废品总数为2400×0.05=120个, 因此...055555555.0540030024003000120180)(==++=B P10. 有两个口袋, 甲袋中盛有两个白球, 一个黑球, 乙袋中盛有一个白球两个黑球. 由甲袋中任取一个球放入乙袋, 再从乙袋中取出一个球, 求取到白球的概率.解: 设事件A 为从甲袋中取出的是白球, 则A 为从甲袋中取出的是黑球, A 与A 构成完备事件组. 设事件B 为从乙袋中取到的是白球. 则P (A )=2/3, P (A )=1/3, P (B |A )=2/4=1/2, P (B |A )=1/4, 则根据全概率公式有417.012541312132)|()()|()()(==⨯+⨯=+=A B P A P A B P A P B P11. 上题中若发现从乙袋中取出的是白球, 问从甲袋中取出放入乙袋的球, 黑白哪种颜色可能性大?解: 事件假设如上题, 而现在要求的是在事件B 已经发生条件下, 事件A 和A 发生的条件概率P (A |B )和P (A |B )哪个大, 可以套用贝叶斯公式进行计算, 而计算时分母为P (B )已上题算出为0.417, 因此2.0417.04131)()|()()|(8.0417.02132)()|()()|(=⨯===⨯==B P A B P A P B A P B P A B P A P B A PP (A |B )>P (A |B ), 因此在乙袋取出的是白球的情况下, 甲袋放入乙袋的球是白球的可能性大.12. 假设有3箱同种型号的零件, 里面分别装有50件, 30件和40件, 而一等品分别有20件, 12件及24件. 现在任选一箱从中随机地先后各抽取一个零件(第一次取到的零件不放回). 试求先取出的零件是一等品的概率; 并计算两次都取出一等品的概率.解: 称这三箱分别为甲,乙,丙箱, 假设A 1,A 2,A 3分别为取到甲,乙,丙箱的事件, 则A 1,A 2,A 3构成完备事件组. 易知P (A 1)=P (A 2)=P (A 3)=1/3. 设B 为先取出的是一等品的事件. 则6.04024)|(,4.03012)|(,4.05020)|(321======A B P A B P A B P 根据全概率公式有467.036.04.04.0)|()()(31=++==∑=i i i A B P A P B P 设C 为两次都取到一等品的事件, 则38.039402324)|(1517.029301112)|(1551.049501920)|(240224323021222502201=⨯⨯===⨯⨯===⨯⨯==C C A C P C C A C P C C A C P根据全概率公式有22.033538.01517.01551.0)|()()(31=++==∑=i i i A C P A P C P13. 发报台分别以概率0.6和0.4发出信号“·”和“—”。
概率论与数理统计习题课1
(2)机床因无人照管而停工的概率.
解:设 A 机床甲不需要工人照顾, B 机床乙不需要工人照顾, C 机床丙不需要工人照顾,
依题意,A、B、C 相互独立。
2019/7/17
16
第1章 习 题 课
(1) P( A B C ) P( ABC )
)
1
29 90
61 90
.
3
P(B1B2 ) P( Ai )P(B1B2 | Ai )
i 1
1 ( 3 7 7 8 5 20) 2 . 3 10 9 15 14 25 24 9
2019/7/17
21
第1章 习 题 课
从而
P ( B1
|
B2 )
P(B1B2 ) P(B2 )
于是 P( A) p 0.25(1 p) p [0.25(1 p)]2 p .
这是一个几何级数求和问题。由于公比
0 0.25(1 p) 1,该级数收敛。
P( A)
p
.
1 0.25(1 p)
若甲乙胜率相同,则
p
0.5 p 3 .
1 0.25(1 p)
i 1,2,3,.
A 甲获胜,
B 乙获胜,
2019/7/17
18
第1章 习 题 课
则 A A1 A1B2B3 A4 A1B2B3 A4B5B6 A7 ;
P( A1 ) p ; P( A1B2B3 A4 ) 0.25(1 p) p ; P( A1B2B3 A4B5B6 A7 ) [0.25(1 p)]2 p ;
概率习题第一章(学生用)
第一次习题课一、填空题1.设A 、B 、C 是3个随机事件,则“3个事件中恰有一个事件发生”用A 、B 、C 表示为。
2.设31)(=A P ,21)(=B P ,分别在下列条件下求)(A B P : (1)若A B ⊂时,则=)(A B P ,(2)若A B 、互斥,则=)(A B P ,(3)若81)(=AB P ,则=)(A B P , 又()P AB =,=)(B A P 。
3.设A 、B 为随机事件,已知P (A )=0.5,P (B )=0.6,P (B |A )=0.5,则P (A ⋃B )=。
4.有两批零件,其合格率分别为0.9和0.8,在每批零件中随机取一件,则至少有一个是合格品的概率为;而恰好有一件是合格品的概率为。
5.从一副扑克牌的13张黑桃中,一张接一张有放回地抽取3张,没有同号的概率为;有同号的概率为。
二、选择题1.A 、B 为两个概率不为零的不相容事件,则下列结论肯定正确的是。
A .A 和B 不相容; B .A 和B 相容;C .P (AB )=P (A )P (B );D .P (A -B )=P (A )。
2.设当A 、B 同时发生时,事件C 必发生,则下列式子中正确的是。
A .P (C )≤P (A )+P (B )-1; B .P (C )≥P (A )+P (B )-1;C .P (C )=P (AB );D .P (C )=P (A ⋃B )。
3.设A 、B 、C 三个事件两两独立,则A 、B 、C 相互独立的充要条件是。
A .A 与BC 独立;B .AB 与A ⋃C 独立;C .AB 与AC 独立;D .A ⋃B 与A ⋃C 独立。
4.设甲、乙两人进行象棋比赛,考虑事件A =“乙胜甲负”,则A 为。
A .“乙负甲胜”; B .“甲乙平局”;C .“乙负”;D .“乙负或平局”。
5.设8.0)(=A P ,7.0)(=B P ,8.0)(=B A P ,则下列结论正确的是。
初等概率论习题课讲义
初等概率论习题课讲义专题一. 一些组合计数模式在古典概率问题中的应用.1.多组组合模式 有n 个不同元素,要把它们分为k 个不同的组,使得各组依次有121,,...,()kk i i n n n n n ==∑个元素,则一共有12!!!...!k n n n n 种不同分法.2.不尽相异元素的排列模式 有n 个元素,属于k 个不同的类,同类元素之间不可辨认,各类元素分别有121,,...,()kk i i n n n n n ==∑个,要把它们排成一列,则一共有12!!!...!k n n n n 种不同排法.3.分球入盒问题第一类 有n 个不同的小球,要把它们分入k 个不同的盒子,使得各盒依次有121,,...,()kk i i n n n n n ==∑个小球,则一共有多少种不同分法?(注意此问题的两个特征:小球不同,盒子也不同)(12!!!...!k n n n n )第二类 有n 个相同的小球,要把它们分入k 个不同的盒子,一共有多少种不同分法?(1) 允许空盒出现;(1nn k C +-) (2) 不允许空盒出现.(11k n C --)第三类 有n 个不同的小球,要把它们分入k 个相同的盒子,使得第i k 个盒子有i n 个小球,11,mmii i i i kk n k n ====∑∑,则一共有多少种不同分法?(11!(!)(!)imk ii mii n n k ==∏∏)4.大间距组合问题 设从数集{}1,2,...,n 中选出k 个不同的数11...k j j n ≤≤≤≤, 使之满足条件1(2,3,...,)i i j j m i k -->=,m 为正整数,且(1)k m n -<,求出不同的取法数目.((1)kn k m C --)5.相异元素的圆排列和项链数 将n 个不同元素不分首尾排成一圈,称为n 个相异元素的圆排列,则其排列总数为多少?((1)!n -)项链数:将n 粒不同珠子用线串成一副项链,则得到的不同项链数为多少? (n=1或2时为1,n>2时为(1)!n -/2)6.有限集合计数的容斥原理: 1111...(1)nnnnk ki j k k k k i j nA AA A A ===≤<≤⋃=-⋂++-⋂∑∑.(注意和概率论中加法公式进行类比和区分) 习题:1.设有 10只猫和4头猪随机地站成一行,求每两头猪之间都至少间隔两只猫的概率.2.将n 条手杖都截成一长一短两部分,然后将所得的2n 个小段随机分成n 对,每对连接成一条新的手杖,求以下事件的概率:(1)这2n 个小段全部被重新组成原来的手杖; (2)均为长的部分和短的部分连接.3.找零钱问题:设有一台自动售票机销售地铁车票,票价为5元。
概率统计习题集(含答案)
第一章 随机事件及其概率一、选择题:1.设A 、B 、C 是三个事件,与事件A 互斥的事件是: ( )A .AB AC + B .()A B C + C .ABCD .A B C ++2.设B A ⊂ 则 ( )A .()P AB =1-P (A ) B .()()()P B A P B A -=-C . P(B|A) = P(B)D .(|)()P AB P A =3.设A 、B 是两个事件,P (A )> 0,P (B )> 0,当下面的条件( )成立时,A 与B 一定独立A .()()()P AB P A P B = B .P (A|B )=0C .P (A|B )= P (B )D .P (A|B )= ()P A4.设P (A )= a ,P (B )= b, P (A+B )= c, 则 ()P AB 为: ( )A .a-bB .c-bC .a(1-b)D .b-a5.设事件A 与B 的概率大于零,且A 与B 为对立事件,则不成立的是 ( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 互不独立D .A 与B 互不相容6.设A 与B 为两个事件,P (A )≠P (B )> 0,且A B ⊃,则一定成立的关系式是( )A .P (A|B )=1 B .P(B|A)=1C .(|A)1p B =D .(A|)1p B =7.设A 、B 为任意两个事件,则下列关系式成立的是 ( )A .()AB B A -= B .()A B B A -⊃C .()A B B A -⊂D .()A B B A -=8.设事件A 与B 互不相容,则有 ( )A .P (AB )=p (A )P (B ) B .P (AB )=0C .A 与B 互不相容D .A+B 是必然事件9.设事件A 与B 独立,则有 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (AB )=0D .P (A+B )=110.对任意两事件A 与B ,一定成立的等式是 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (A|B )=P (A )D .P (AB )=P (A )P (B|A )11.若A 、B 是两个任意事件,且P (AB )=0,则 ( )A .A 与B 互斥 B .AB 是不可能事件C .P (A )=0或P (B )=0D .AB 未必是不可能事件12.若事件A 、B 满足A B ⊂,则 ( )A .A 与B 同时发生 B .A 发生时则B 必发生C .B 发生时则A 必发生D .A 不发生则B 总不发生13.设A 、B 为任意两个事件,则P (A-B )等于 ( )A . ()()PB P AB - B .()()()P A P B P AB -+C .()()P A P AB -D .()()()P A P B P AB --14.设A 、B 、C 为三事件,则AB BC AC 表示 ( )A .A 、B 、C 至少发生一个 B .A 、B 、C 至少发生两个C .A 、B 、C 至多发生两个D .A 、B 、C 至多发生一个15.设0 < P (A) < 1. 0 < P (B) < 1. P(|B)+P(A B A )=1. 则下列各式正确的是( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 相互对立D .A 与B 互不独立16.设随机实际A 、B 、C 两两互斥,且P (A )=0.2,P (B )=0.3,P (C )=0.4,则PA B C -= ()( ). A .0.5 B .0.1 C .0.44 D .0.317掷两枚均匀硬币,出现一正一反的概率为 ( )A .1/2B .1/3C .1/4D .3/418.一种零件的加工由两道工序组成,第一道工序的废品率为 1p ,第二道工序的废品率为2p ,则该零件加工的成品率为 ( )A .121p p --B .121p p -C .12121p p p p --+D .122p p --19.每次试验的成功率为)10(<<p p ,则在3次重复试验中至少失败一次概率为( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P( A B C) = P( A) P(B) P(C) = 1 − P( A) 1− P(B) 1− P(C)
= (1 − 0.7) × (1 − 0.7) ×(1 − 0.7) = 0.027
∴这段时间内至少有1个开关能够闭合,从而使线路能 这段时间内至少有1个开关能够闭合, 正常工作的概率是 P = 1 − P( A⋅ B ⋅ C) = 1 − 0.027 = 0.973
局才能取胜” (2) 记事件 A = “ 甲打完 3 局才能取胜” , 局才能取胜” 记事件 B =“甲打完 4 局才能取胜” , 局才能取胜” 记事件 C =“甲打完 5 局才能取胜” . 按比赛规则甲获胜” 事件 D =“按比赛规则甲获胜” 则 D = A + B + C , , 彼此互斥, 又因为事件 A 、 B 、 C 彼此互斥, 故 P ( D ) = P ( A + B + C ) = P ( A ) + P ( B ) + P (C ) 1 3 3 1 1 = + + = . : 答 按比赛规则甲获胜的概率为 . 8 16 16 2 2
n( AB) P( AB) P( B | A) = = n( A) P( A)
互斥事件 概 念
不可能同时发生的 两个事件叫做互斥 事件. 事件
相互独立事件
如果事件A 如果事件A(或B)是否发生对事 发生的概率没有影响, 件B(或A)发生的概率没有影响, 这样的两个事件叫做相互独立事 件
符
号
互斥事件A、B中 相互独立事件A、B同时 互斥事件A 相互独立事件A 有一个发生, 有一个发生, 发生, 发生, 记作:AB 记作 记作:A∪B( :A∪B(或 记作:A∪B(或A+B) P(A∪B)=P(A)+P(B) P(AB)= P(A)P(B) ∪ ( )
作业:方案活页
次独立重复试验中, 在 n 次独立重复试验中,如果事件 在其中1次试验中发生的概率是P A在其中1次试验中发生的概率是P, 那么在n次独立重复试验中这个事件恰 那么在 次独立重复试验中这个事件恰 次的概率是: 好发生 k 次的概率是
= C k P k (1 − P ) n − k ( k = 0 ,1, 2 , L n ). Pn ( k ) n
复习回顾
(1).条件概率的概念 条件概率的概念
设事件A和事件 , 在已知事件A发生的条 设事件 和事件B,且P(A)>0,在已知事件 发生的条 和事件 在已知事件 件下事件B发生的概率 叫做条件概率 记作P(B |A). 发生的概率, 条件概率.记作 件下事件 发生的概率,叫做条件概率 记作
(2).条件概率计算公式 条件概率计算公式: 15 16
21 22 31 32 41 42 51 52 61 62
23 24 25 26 33 34 35 36 43 44 45 46 53 54 55 56 63 64 65 66
61 62 63
64
65
66
B
A∩B ∩
A
的 “掷出点数之和不小于 ” 掷出点数之和不小于 ”1 6
5 、实力相等的甲、乙两队参加乒乓球团体比 实力相等的甲、
胜制( 局内谁先赢3局就算胜 赛,规定5局3胜制(即5局内谁先赢 局就算胜 规定 局 胜制 局内谁先赢 出并停止比赛). 出并停止比赛) 局才能取胜的概率. ⑴试求甲打完5局才能取胜的概率. 试求甲打完 局才能取胜的概率 ⑵按比赛规则甲获胜的概率. 按比赛规则甲获胜的概率.
1 − P ( A ⋅ B ⋅ C ) = 1 − 0.5 × 0.55 × 0.6 = 0.835
> 0.8 = P ( D )
所以,合三个臭皮匠之力把握就大过诸葛亮. 所以,合三个臭皮匠之力把握就大过诸葛亮. 诸葛亮
练习 3:
一个元件能正常工作的概率r称为该元件的可靠性。 一个元件能正常工作的概率 称为该元件的可靠性。 称为该元件的可靠性 由多个元件组成的系统能正常工作的概率称为系统的可 靠性。今设所用元件的可靠性都为r(0< <1), (0<r<1) 靠性。今设所用元件的可靠性都为 (0< <1),且各元件能 否正常工作是互相独立的。试求各系统的可靠性。 否正常工作是互相独立的。试求各系统的可靠性。
(1)
1 (3) 1 2
1
2
(2)
1 2
P1
=r2
2
(4)
P2=1-(1-r)2 =1-(1-
1 1 2 2
P3=1-(1-r2)2 - -
P4=[1-(1-r)2]2 - -
答案
4. 如图,在一段线路中并联着3个自动控制的常开开关, 如图,在一段线路中并联着3个自动控制的常开开关, 只要其中有1个开关能够闭合,线路就能正常工作. 只要其中有1个开关能够闭合,线路就能正常工作.假定 在某段时间内每个开关能够闭合的概率都是0.7 0.7, 在某段时间内每个开关能够闭合的概率都是0.7,计算 在这段时间内线路正常工作的概率. 在这段时间内线路正常工作的概率. JA 解:分别记这段时间内开关JA,JB,JC能够 分别记这段时间内开关J 闭合为事件A C.由题意 由题意, 闭合为事件A,B,C.由题意,这段时间内 JB 个开关是否能够闭合相互之间没有影响, 3个开关是否能够闭合相互之间没有影响, 根据相互独立事件的概率乘法公式, 根据相互独立事件的概率乘法公式,这段 JC 时间内3 时间内3个开关都不能闭合的概率是
解:甲、乙两队实力相等,所以每局比赛甲获胜的概率为 乙两队实力相等, 1 1 , 乙获胜的概率为 . 2 2 ⑴甲打完 5 局才能取胜,相当于进行 5 次独立重复试验, 次独立重复试验, 甲打完 局才能取胜, 局比赛取胜, 且甲第 5 局比赛取胜 , 前 4 局恰好 2 胜 2 负 ∴ 甲打完 5 局才能取胜 1 2 1 2 1 3 2 的概率 P1 = C 4 × ( ) × ( ) × = . 2 2 2 16
1. 掷两颗均匀骰子 问: 掷两颗均匀骰子,问 第一颗掷出6点 的概率是多少? ⑴ “ 第一颗掷出 点”的概率是多少? 掷出点数之和不小于10”的概率又是多少 的概率又是多少? ⑵ “掷出点数之和不小于 的概率又是多少 已知第一颗掷出6点 则掷出点数之和不小于10”的概率呢? 的概率呢? ⑶ “已知第一颗掷出 点,则掷出点数之和不小于 已知第一颗掷出 的概率呢
n次独立重复试验 次独立重复试验 一般地,在相同条件下重复做的 次 一般地,在相同条件下重复做的n次 试验,各次试验的结果相互独立 就称为n 各次试验的结果相互独立, 试验 各次试验的结果相互独立,就称为 次独立重复试验. 次独立重复试验 注意 ⑴独立重复试验,是在相同条件下各次之 独立重复试验, 间相互独立地进行的一种试验; 间相互独立地进行的一种试验; ⑵每次试验只有“成功”或“失败”两种 每次试验只有“成功” 失败” 可能结果;每次试验“成功”的概率为p 可能结果;每次试验“成功”的概率为 , 失败”的概率为1-p. “失败”的概率为
P ( A) = = n( Ω ) 10 | P ( A B) P( B A = = )
3 6 = 6
,“第一颗掷出 点” 则“已知第一颗掷出 点,
P ( B) = = 3 6 = 6 3 1 n( Ω ) 2 | n( A B )= 6= 2 P( B A = ) nΑ ( )
0
n( A )
n( B)
6
1
1 2
P ( Α)
练习2: 练习2: 已知诸葛亮解出问题的概率为0.8, 0.8,臭皮匠 已知诸葛亮解出问题的概率为0.8,臭皮匠 老大解出问题的概率为0.5,老二为0.45, 0.5,老二为0.45,老三为 老大解出问题的概率为0.5,老二为0.45,老三为 0.4,且每个人必须独立解题 且每个人必须独立解题, 0.4,且每个人必须独立解题,问三个臭皮匠中 至少有一人解出的概率与诸葛亮解出的概率比 谁大? 较,谁大? 略解: 略解: 三个臭皮匠中至少有一人解出的概率为