分数应用题解题技巧

合集下载

分数应用题的解题方法

分数应用题的解题方法

分数应用题的解题方法1、引言在数学学习中,分数应用题是经常出现的题型之一。

解答这类题目需要掌握一定的解题方法和技巧。

本文将为大家介绍几种常见的解题方法,以帮助大家更好地解决分数应用题。

2、换算法在分数应用题中,经常需要将一个分数表达成另一种形式,这就需要用到换算法。

换算法的基本原理是乘以一个合适的分式,使得原分数的分母变化为所需的分母。

例如,将分数$\frac{2}{3}$转换成分母为6的分数,我们可以乘以$\frac{6}{2}$,得到$\frac{2}{3}\times\frac{6}{2}=\frac{12}{6}$,即$\frac{2}{3}=\frac{12}{6}$。

通过换算法,我们可以灵活地将分数转换为需要的形式,便于进行计算和分析。

3、化简法有时,分数应用题给出的分数较为复杂,需要进行化简才能得到准确的结果。

化简法是一种常见的解题方法。

化简法的关键在于找到分子和分母的最大公约数,并将分子分母同时除以最大公约数,从而将分数化简为最简形式。

例如,将分数$\frac{15}{25}$化简为最简形式,我们可以找到15和25的最大公约数为5,然后将分子分母同时除以5,得到$\frac{15}{25}=\frac{3}{5}$。

通过化简法,我们可以得到最简分数,便于进行计算和比较。

4、分数的加减法在分数应用题中,经常需要进行分数的加减运算。

分数的加减法需要找到相同的分母,然后按照相同的分母进行计算。

具体步骤如下:(1)找到两个分数的最小公倍数,作为相同的分母;(2)将分子按照相同的分母进行放大或缩小;(3)按照相同的分母进行分子的加减运算;(4)化简得到最简分数形式。

例如,计算$\frac{2}{3}+\frac{1}{4}$:(1)相同的分母为12,即$\frac{2}{3}\times\frac{4}{4}=\frac{8}{12}$,$\frac{1}{4}\times\frac{3}{3}=\frac{3}{12}$;(2)按照相同的分母进行计算,$\frac{8}{12}+\frac{3}{12}=\frac{11}{12}$;(3)化简得到最简分数形式,$\frac{11}{12}$。

分数应用题解题技巧4则

分数应用题解题技巧4则

分数应用题解题技巧4则分数应用题是数学中的一大类题目,涉及的概念和计算方法较为抽象,对于很多学生来说是一个难题。

但只要我们掌握了一些基本的解题技巧,这类题目便会迎刃而解。

下面,就为大家介绍四种实用的分数应用题解题技巧。

技巧一:明确题目中的分数表示的是什么很多学生在解分数应用题时,首先就被分数给弄糊涂了。

实际上,我们需要明白,分数只是一个表示比例或者部分的形式。

因此,首要任务就是明确题目中的分数到底表示的是什么。

例如,它可能表示一个整体中的部分,也可能是两个量之间的比例关系。

只有明确了分数的具体意义,我们才能进行下一步的计算。

技巧二:合理转化分数形式在明确了分数的具体意义后,下一步就是进行合理的分数形式转化。

有些分数应用题中,给出的分数形式可能并不适合直接计算,这时就需要我们将其转化为更容易计算的形式。

例如,可以将带分数转化为假分数,或者将复杂的分数化简为更简单的形式。

这样,计算过程就会变得更加简便。

技巧三:利用线段图进行分析对于一些较为复杂的分数应用题,我们可以尝试利用线段图进行分析。

线段图可以直观地表示出各个量之间的关系,使我们更容易理解题目的意思。

通过线段图,我们可以清晰地看出各个部分之间的关系,进而找出解决问题的方法。

技巧四:注意检验答案的合理性在解完分数应用题后,很多学生都忽视了检验答案这一重要步骤。

实际上,检验答案的合理性是非常必要的。

我们可以通过逆运算或者代入原题等方法,检验我们的答案是否正确。

如果答案不合理,那么我们就需要重新审视自己的解题过程,找出错误所在。

以上就是四种实用的分数应用题解题技巧。

当然,要想真正掌握这些技巧,还需要大量的练习和思考。

只有通过不断的实践,我们才能更加熟练地运用这些技巧,解决各种复杂的分数应用题。

希望这些技巧能对大家有所帮助,祝大家在数学学习中取得更大的进步!。

六年级数学上应用题分数技巧与方法

六年级数学上应用题分数技巧与方法

六年级数学上应用题分数技巧与方法一、分数应用题的解题方法1. 找单位“1”的量。

在审题时,首先要把问题中涉及的量与分率对应起来,看题目中有几个量,每个量所占的分率是多少,并确定出单位“1”的量。

2. 确定解题方法。

如果题目中单位“1”的量是未知的,就采用除法,进而转化为乘法运算;如果题目中单位“1”的量是已知的,就采用乘法运算。

3. 对应解题。

根据数量关系,把具体数量与分率对应起来,列出算式并计算。

二、分数应用题的解题步骤1. 读懂题意,确定解题方法。

在解答分数应用题时,首先要认真审题,弄清题目中涉及的量和分率,然后根据数量关系列出算式并计算。

2. 找准量与分率的对应关系。

在分数应用题中,量与分率对应是解题的关键。

要分清每个量所占的分率,进而确定出单位“1”的量。

3. 掌握基本数量关系式。

在分数应用题中,常用的数量关系式有:单位“1”的量×分率=部分量等。

4. 逐步解答。

在解答分数应用题时,要按照题目所给的条件,逐步解答。

一般可采用综合算式或分步计算的方法进行解答。

5. 检验答案。

在解答分数应用题时,要检验答案是否正确。

可以采用逆向思维或代入法进行检验。

三、分数应用题的练习方法1. 专项训练。

可以针对某一类型的分数应用题进行专项训练,如工程问题、行程问题等。

通过专项训练,可以加深对某一类型题目的理解和掌握。

2. 多做练习。

熟能生巧,多做练习是提高分数应用题解题能力的有效方法。

可以通过练习册、习题集等途径进行练习。

3. 归纳总结。

在练习过程中,要注意归纳总结解题方法,形成自己的解题思路和技巧。

同时,也可以借鉴他人的经验和技巧,不断提高自己的解题能力。

4. 注重思路。

在练习过程中,不要只关注答案是否正确,更要注重解题思路是否清晰、合理。

只有掌握了正确的解题思路,才能真正提高分数应用题的解题能力。

(完整版)六年级分数应用题解题技巧

(完整版)六年级分数应用题解题技巧

(完整版)六年级分数应用题解题技巧六年级分数应用题解题技巧一、问题分析在解题过程中,首先要明确问题是要求什么,例如计算、比较大小、化简等,然后根据具体情况选择合适的解题方法。

二、解题步骤1. 分析题意:仔细阅读题目,理解题意,明确所给信息和要求。

2. 提取关键信息:找出题目中的关键信息,将其列出。

3. 列式计算:根据题目要求列出对应的算式。

4. 计算结果:根据列出的算式进行计算,得到结果。

5. 检查答案:将结果带入原题中,验证答案是否正确。

三、解题技巧1. 找出最小公倍数:如果题目中需要对两个或多个分数进行计算,要先找出最小公倍数,然后统一分母进行计算。

2. 化简分数:当出现大分子大分母的分数时,可以通过约分化简来简化计算。

3. 分数的大小比较:将两个分数化为相同的分母,然后比较分子的大小。

4. 分数的加减运算:将两个分数化为相同的分母,然后分子进行相应的加减运算。

5. 分数的乘除运算:将两个分数的分子相乘,分母相乘,然后进行相应的乘除运算。

四、注意事项1. 仔细读题:对于应用题,要仔细读题并理解题意,避免因为理解错误而导致计算错误。

2. 注意算式的正确性:在列出算式和进行计算时,要注意符号和数字的位置,确保算式的正确性。

3. 及时检查答案:解答完题目后,要及时检查答案,确保计算的准确性。

五、例题分析例题1:某班有30个学生,其中男生占总人数的3/5,女生占总人数的几分之几?解题步骤:1. 分析题意:计算女生占总人数的分数。

2. 提取关键信息:男生占总人数的3/5。

3. 列式计算:女生占总人数的分数为:1 - 3/5。

4. 计算结果:女生占总人数的分数为:2/5。

5. 检查答案:男生占总人数的3/5 + 女生占总人数的2/5等于总人数的1。

例题2:甲乙两个人在同一时间、同一速率下走,甲比乙走得快12分之8,问甲、乙每走8米,甲要比乙多走几分之几?解题步骤:1. 分析题意:计算甲比乙多走的分数。

2. 提取关键信息:甲比乙走得快12分之8。

分数乘除法应用题解题步骤与技巧

分数乘除法应用题解题步骤与技巧

分数乘除法应用题解题步骤与技巧分数百分数应用题是五、六年级数学中的重点和难点,也是进一步学习初中数学的重要基础。

但是有相当多的学生遇到分数应用题就感到困难。

以下是小编整理的关于分数乘除法应用题解题步骤与技巧,希望大家认真阅读!解答分数应用题的步骤概括的说是:一找、二转、三画、四列、五算、六查这六个环节。

一找:找单位“1”的量。

找单位“1”的量是解答分数应用题的前提,靠“是”谁、“比”谁、“占”谁,“相当于”谁就把谁看做单位“1”的量,靠生搬硬套仅能解决一部分分数应用题。

例如:*的2/5比乙多3/8米,比乙就把乙看作单位“1”是错误的,正确的是要分析2/5是谁的,就把谁看作单位“1”。

分析应用题句子中的分率是分谁就把谁看作单位“1”是最可靠的找单位“1”的方法。

二转:转化单位“1”在分数应用题中,如果题中只有一个单位“1”,那么再难也难不到哪里去了。

只有一个单位“1”的题,可以直接进入下一步,画线段图。

如果题中有多个单位“1”就需要先转化单位“1”再画线段图。

转化单位“1”也是有技巧的,例如:*是乙的3/5可以转化成乙是*的5/3、*比乙少2/5、乙比*多2/3、*是*乙之和的3/8等13种不同的情况,在单位“1”统一后,才能进行下一步,画线段图来解答。

三画:画线段图很多复杂的分数应用题,不画线段图是无法找到数量、分率之间的关系的。

只有学会画线段图,才能找到解答分数应用题的钥匙。

要把线段图画的准,应先画应用题中含有分率的句子,再画既有分率又有数量的句子,第三画含有数量的句子,最后画问题。

把分率画在线段的上方、数量画在线段的下方,可以避免学生把分率和数量相加,也方便清晰的找到数量和分率的对应关系。

四列:看图列式画完线段图,要学会看图,根据分数应用题数量关系列式。

单位“1”的量×所求问题的对应分率=所求问题对应量÷对应分率=单位“1”的量对应量÷单位“1”的量=对应分率五算:准确计算六查:认真检查把计算结果代入到原题中,能够推导回去或者用不同的解题方法得到同一个结果,可以验*,这道题解答正确。

分数应用题的解题方法和技巧

分数应用题的解题方法和技巧

分数应用题解题的一般步骤:
1、 找出单位“1” (标准量),观察单位“1”(标准量)是已知还是未知,如果已知时,可以确定用乘法计算;如果未知就用除法计算。

2、分析题意,找出各个信息所对应的量。

并能有条理地说明解题思路、有根有据地说清楚自己是怎么思考的,这样是培养逻辑思维能力的一个有效方法。

3、 根据(比较量 ÷单位“1” =对应分率)(单位“1”×对应分率=比较量)(比较量 ÷对应分率=单位“1”)各量之间的关系列式计算。

总结:以上步骤可以用一句话概括:一找二定三列式,即第一步找单位“1”,第二步确定单位“1”已知还是未知,第三步列式解答。

分数或百分数应用题解题的口诀
知“1”用乘:单位“1”的量×所求的量对应的分率=所求的量
求“1”用除:已知的量÷已知的量对应的分率=单位“1”的量
了解什么是“1”。

“1”,就是单位“1”,也就是“标准量”。

如: 我班女生人数是男生人数的32。

这里是把男生人数做为一个标准,拿女生人数跟男生人数去做比较,我们就把这里的男生人数叫做单位“1”的量,即标准量。

女生人数是比较量,32
是女生所对应的分率。

如何判断单位“1”?
找到关键句,即含有分数或百分数的句子,把句子补充完整,与分数(或百分数)最接近的那个量是单位“1”,或“比”字“是”字后面,“的”字前面。

五年级分数应用题解题技巧

五年级分数应用题解题技巧

五年级分数应用题解题技巧一、分数应用题解题技巧及例题解析。

1. 确定单位“1”- 技巧:一般来说,“是”“比”“占”后面的量就是单位“1”。

- 例1:五年级一班男生人数占全班人数的(3)/(5),全班有50人,男生有多少人?- 解析:这里全班人数是单位“1”,已知全班人数为50人,求男生人数,就是求50的(3)/(5)是多少,用乘法计算,50×(3)/(5)=30(人)。

2. 已知单位“1”,求部分量。

- 技巧:用单位“1”的量乘以部分量对应的分率。

- 例2:果园里有苹果树200棵,梨树的棵数是苹果树的(3)/(4),梨树有多少棵?- 解析:苹果树的棵数是单位“1”,已知为200棵,梨树棵数是苹果树的(3)/(4),那么梨树的棵数为200×(3)/(4)=150棵。

3. 求单位“1”- 技巧:已知部分量和它对应的分率,用部分量除以分率得到单位“1”的量。

- 例3:五年级二班女生人数是18人,占全班人数的(3)/(7),全班有多少人?- 解析:这里全班人数是单位“1”,女生人数18人对应的分率是(3)/(7),所以全班人数为18÷(3)/(7)=18×(7)/(3)=42人。

4. 分数的加、减法应用题。

- 技巧:先确定各个量对应的分率,再根据题意进行加、减运算。

- 例4:一根绳子,第一次用去全长的(1)/(4),第二次用去全长的(1)/(3),两次一共用去全长的几分之几?- 解析:把绳子的全长看作单位“1”,第一次用去的分率是(1)/(4),第二次用去的分率是(1)/(3),两次一共用去的分率为(1)/(4)+(1)/(3)=(3 + 4)/(12)=(7)/(12)。

5. 比较两个量的分率关系。

- 技巧:先求出两个量分别对应的分率,然后进行比较。

- 例5:甲仓库有货物120吨,乙仓库有货物150吨,甲仓库货物是乙仓库货物的几分之几?乙仓库货物比甲仓库货物多几分之几?- 解析:- 甲仓库货物是乙仓库货物的:120÷150=(120)/(150)=(4)/(5)。

分数应用题解题技巧

分数应用题解题技巧

分数应用题解题方法一、解题技巧:一抓,二找,三确定,四对应。

1.一抓:抓住关键句----含有分率的句子(不带单位的分数)2.二找:找准单位1的量:单位1一般都是在“的”前面,或是在“比、是、占、相当于”的后面。

看分率是谁的几分之几,谁就是单位1的量。

3.三确定:确定单位1是已知还是未知,单位1已知用乘法计算,单位1未知用除法或方程计算。

4.四对应:找出相对于的数量与分率。

乘法:单位1×对应分率=对应数量除法:对应数量÷对应分率=单位1二、解题方法:借助线段图帮助我们来分析数量关系,画图时先画单位1的量。

第一类:乘法一条公路:男生:女生:第二类:除法一条公路:男生:女生:三、分数应用题主要讨论的是以下三者之间的关系。

1.分率:表示一个数是另一个数的几分之几。

2.标准量:我们把单位1的量称为标准量。

3.比较量:我们把同标准量比较的量称之为比较量,也叫分率对应的数量。

四、分数应用题的分类。

第一类:已知两个数量,比较它们之间的倍数关系,应该用除法计算。

A求分率即就是求一个数是另一个数的几分之几。

(五下)基本关系式:比较量÷标准量=分率(几分之几)学校的果园里有梨树15棵,桃树20棵。

梨树是桃树的几分之几?B求一个数比另一个数多几分之几。

(六上)基本关系式:相差量÷标准量=分率学校的果园里有梨树15棵,桃树20棵。

桃树比梨树多几分之几?C秋一个数比另一个数少几分之几。

(六上)基本关系式:相差量÷标准量=分率学校的果园里有梨树15棵,桃树20棵。

梨树比桃树少几分之几?第二类:单位1已知,用乘法计算。

A求一个数的几分之几是多少。

(五下)把已知数量看多单位1,就是求它的几分之几是多少,它反映的是部分与整体之间的关系。

基本关系式:单位1的量×对应分率=对应数量1.一条公路全长1200米,已经修了全长的13,修了多少米?2.一支钢笔单价是30元,圆珠笔的单价是钢笔的16。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总页数×
2 3
2
=已看页数
总页数×(1-
2 3
)=未看页数
量 率
240页 1
已看?页
2 3
未看?页 12 3
二、学会从直接条件中找出间接条件。
在解答分数应用题时,我们还要学会通过分析条件与条件、 条件与问题的联系,从已知的直接条件中找出解答问题所需的间 接条件,从而解决问题。比如: 2
一本书有240页,小兰已经看了全书的 ,还剩下多少页没 有看? 3
1 一条公路,已经修了4/7
公路长度×4/7=已修长度
另外,分数应用题中有一个“量率对应”的明显特点,对一 个单位“1”来说,每个分率都对应着一个具体的数量,而每一个 具体的数量,也同样对应着一个分率,因此,正确地确定“量率 对应”是解题的关键。比如: 1 一本书有240页,小兰已经看了全书的 ,已经看了多少页? 还剩下多少页没衣服原价120元,现在降价了1/6
三、学会分率的正确转化。
2、部分与整体的转化 有的分数应用题,题中的单位"1"不止一个,不同单位"1"的 分率不能直接相加减,我们可以根据数量之间的联系先将部分所 对应的分率转化成相当于整体的几分之几,再进行解答。比如:
一本书有240页,小兰第一天看了全书的
单位“1”的量×对应分率=对应量 对应量÷对应分率=单位“1”的量 对应量÷单位“1”的量=对应分率
指出下列各题中的单位“1”,并写出等量关系 式
1 桃树的棵数是梨树的3/5
1 衣服原价120元,现在降价了1/6
原价×(1-1/6)=现价
梨树棵数×3/5=桃树棵数
1 男生人数的7/8相当于女生人数
男生人数×7/8=女生人数
六(1)有52人,男生与女生人数的比是6:7。男、女生各有 多少人? 分析:这道题目,我们可以采用“按比例分配”的方法来解。也可以 根据男、女生人数的比先求出男、女生人数各占总人数的几分之几, 再求出52人的几分之几是多少。
试一试:将下列各条件中的分数转化成比,比转化成分数。
桃树的棵数是梨树的3/5 一条公路,已经修了4/7
分析:这道题目中,已看的分率是已知条件,而问题是求未看的页数。 我们可以根据“已看页数+未看页数=总页数”知道未看部分的对应分 2 率是(1- ),再根据“单位1的量×对应分率=对应量”求出未看的页 3 数。
三、学会分率的正确转化。
1、分数与比的转化
在解答分数应用题或有关比的应用题时,我们还要学会根据 分数与比的关系,灵活地将分数转化成比或将比转化成分数,从 而降低解题的难度。比如:
)
1 1 3 240 1 1 4 4 5
分数应用题解题技巧
一、找准单位“1”,理清数量关系。 二、学会从直接条件中找出间接条件。 三、学会分率的正确转化。(分数与比的转化、部分与整体的转化)
一、找准单位“1”,理清数量关系。
在分数应用题中,能否找准单位“1”,是正确解题的基础。
比如:甲与乙进行比较,乙作为标准(单位"1"的量), 甲作为比较量 (对应量)。 乙与甲进行比较,甲作为标准(单位"1"的量),乙作为比较 量(对应量)。对应量、单位“1”的量、对应分率之间有着如下关系:
1 4
,第二天看了余下的
3 5

剩下的第三天看完。她第三天看了多少页? 分析:这道题目中,小兰第一天看的页数与第二天看的页数这两个分 率的单位"1"是不一样的。我们可以先将第二天看的页数转化成看了 全书的几分之几,然后再进行解答。当然,这道题还有其它解法。
240 (1
1 4
) (1
3 5
相关文档
最新文档