《离散数学》考试试卷(试卷库14卷)及答案

合集下载

离散数学样卷十二套(含答案)

离散数学样卷十二套(含答案)

一、证明下列各题1、 (10分)证明蕴涵式:()P P Q Q ∧→⇒2、(10分)证明:,1111f g f g -⇒-I 为函数为函数。

5、 3、(10分)给定代数结构,N ⨯和{}0,1,⨯,其中N 是自然数集合,⨯是数的乘法。

设{}:0,1f N →,定义为:12,,()0k n n k N f n ⎧=∈=⎨⎩否则试证}01N ⨯≅⨯,,,。

4、(10分)给定代数结构,R *,其中R 是实数集合,对R 中任意元a 和b ,*定义如下:a b a b a b *=++⨯ 试证明:,R *是独异点。

二、求下列各题的解:1、试求下列公式的主析取范式和主合取范式(15分):()()P Q P Q ⌝∨⌝→⌝€2、(15分){}010*********R =设,,,,,,,,,,,,试求(1)、R R *,(2)、{}1R ↑,(3)、{}11R -↑,(4)、{}1R ⎡⎤⎣⎦,(5)、{}11R -⎡⎤⎣⎦3、(15分给定无向图,G V E =,如图,试求: F E DCA B(1) 从A 到D 的所有基本链; (2) 从A 到D 的所有简单链;(3) 长度分别是最小和最大的简单圈; (4) 长度分别是最小和最大的基本圈; (5) 从A 到D 的距离。

4、(15分)给定二部图12,,G E V =,如图 9v 8v 7v 6v 1V1v 2v 3v 4v 5v 2V 试求1V 到2V 的最大匹配一、证明下列各题1、 (10分)证明蕴涵式:()P Q P P Q →⇒→∧2、(10分)证明:()()()A B C A B A C ⨯-=⨯-⨯3、(10分)给定群,G ,则,G 为Abel 群⇔222()()(,())∀∀∈→=a b a b G a b a b4、(10分)给定代数结构,S *,其中S 中元为实数有序对,*定义为 ,,,2a b c d a c b d bd *=+++,试证,S *是可交换独异点。

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、单项选择题(每题2分,共10分)1. 在集合{1,2,3}和{3,4,5}的笛卡尔积中,元素(3,4)属于()。

A. {1,2,3}B. {3,4,5}C. {1,2,3,4,5}D. {1,2,3}×{3,4,5}答案:D2. 命题“若x>2,则x>1”的逆否命题是()。

A. 若x≤2,则x≤1B. 若x≤1,则x≤2C. 若x≤1,则x≤2D. 若x≤2,则x≤1答案:C3. 函数f: A→B的定义域是集合A,值域是集合B的()。

A. 子集B. 真子集C. 任意子集D. 非空子集答案:D4. 以下哪个图是无向图()。

A. 有向图B. 无向图C. 完全图D. 树答案:B5. 以下哪个命题是真命题()。

A. 所有的马都是白色的B. 有些马是白色的C. 没有马是白色的D. 以上都不是答案:B二、填空题(每题2分,共10分)6. 集合{1,2,3}的子集个数为______。

答案:87. 命题“若x>0,则x>1”的逆命题是:若x>1,则______。

答案:x>08. 函数f: A→B中,若A={1,2},B={3,4},则f的值域可以是{3}或{4}或{3,4},但不能是______。

答案:{1,2}9. 在有向图中,若存在从顶点A到顶点B的有向路径,则称A到B是______的。

答案:可达10. 命题逻辑中,合取(AND)的符号是______。

答案:∧三、解答题(每题15分,共30分)11. 证明:若p∧q为真,则p和q都为真。

证明:根据合取(AND)的定义,p∧q为真当且仅当p和q都为真。

因此,若p∧q为真,则p和q都为真。

12. 给定函数f: A→B,其中A={1,2,3},B={4,5,6},且f(1)=4,f(2)=5,f(3)=6。

请找出f的值域。

答案:根据函数的定义,f的值域是其所有输出值的集合。

因此,f的值域为{4,5,6}。

(完整版)离散数学题目及答案

(完整版)离散数学题目及答案

数理逻辑习题判断题1.任何命题公式存在惟一的特异析取范式 ( √ ) 2. 公式)(q p p →⌝→是永真式 ( √ ) 3.命题公式p q p →∧)(是永真式 ( √ ) 4.命题公式r q p ∧⌝∧的成真赋值为010 ( × ) 5.))(()(B x A x B x xA →∃=→∀ ( √ )6.命题“如果1+2=3,则雪是黑的”是真命题 ( × ) 7.p q p p =∧∨)( ( √ )8.))()((x G x F x →∀是永真式 ( × ) 9.“我正在撒谎”是命题 ( × ) 10. )()(x xG x xF ∃→∀是永真式( √ )11.命题“如果1+2=0,则雪是黑的”是假命题 ( × ) 12.p q p p =∨∧)( ( √ )13.))()((x G x F x →∀是永假式 ( × )14.每个命题公式都有唯一的特异(主)合取范式 ( √ ) 15.若雪是黑色的:p ,则q →p 公式是永真式 ( √ ) 16.每个逻辑公式都有唯一的前束范式 ( × ) 17.q →p 公式的特异(主)析取式为q p ∨⌝ ( × ) 18.命题公式 )(r q p →∨⌝的成假赋值是110 ( √ ) 19.一阶逻辑公式)),()((y x G x F x →∀是闭式( × )单项选择题1. 下述不是命题的是( A )A.花儿真美啊! B.明天是阴天。

C.2是偶数。

D.铅球是方的。

2.谓词公式(∀y)(∀x)(P(x)→R(x,y))∧∃yQ(x,y)中变元y (B)A.是自由变元但不是约束变元B.是约束变元但不是自由变元C.既是自由变元又是约束变元D.既不是自由变元又不是约束变元3.下列命题公式为重言式的是( A )A.p→ (p∨q)B.(p∨┐p)→qC.q∧┐q D.p→┐q4.下列语句中不是..命题的只有(A )A.花儿为什么这样红?B.2+2=0C.飞碟来自地球外的星球。

2024年4月离散数学真题

2024年4月离散数学真题

2024年4月高等教育自学考试全国统一命题考试离散数学(课程代码 02324)注意事项:1.本试卷分为两部分,第一部分为选择题,第二部分为非选择题。

2.应考者必须按试题顺序在答题卡(纸)指定位置上作答,答在试卷上无效。

3.涂写部分、画图部分必须使用2B铅笔,书写部分必须使用黑色字迹签字笔。

第一部分选择题一、单项选择题:本大题共15小题,每小题2分,共30分。

在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。

1.含有3个命题变元的任一命题公式的指派个数是A.6个B.8个C.9个D.10个2.下列命题公式为矛盾式的是A.P→(P ⋁Q ⋁R)B.¬(Q→P) APC.(P→¬P)→¬PD.(P ⋀¬P)→Q3.含有2个命题变元的命题A是重言式的条件是A的主析取范式含有A.4个小项B.1个小项C.4个大项D.1个大项4.设论域元素为a、b,与∀xR(x) ∧(∋y)S(x) 等价的是A.(R(a) ⋀R(b)) ⋀(S(a) ⋀S(b))B.(R(a) ⋀R(b)) ⋀(S(a) ⋁S(b))C.(R(a) ⋁R(b)) ⋀(S(a) ⋀S(b))D.(R(a) ⋁R(b)) ⋀(S(a) ⋁S(b))5.谓词公式 ∀xF(x) ⋀G(x,y) 中变元x 为A.自由出现B.约束出现C.既不是自由出现也不是约束出现D.既是自由出现也是约束出现6.设论域是正整数,下列谓词公式中值为真的是A.)10(22=+∃∀y x y xB.)10(22=+∃∀y x x yC.)10(22=+∀∀y x y xD.)10(22=+∃∃y x y x7.设A ={a,∅},P(A)是A 的幂集,下列选项中正确的是A.{a}∈ P(A),{a}⊆P(A)B.{{A}}∈P(A),{{a}}⊆P(A)C.{a}∈P(A),{∅}∈P(A)D.{a}∈P(A),{∅}⊆P(A)8.一个8阶简单图的边数最大为A.20B.25C.28D.309.下面关于n 阶树的描述,错误..的是 A.连通图 B.连通且有n-1条边C.无回路且有n-1条边D.连通且无回路10.R={<0,1>,<1,2>,<2,3>},S={<2,1>,<1,2>,<3,3>},下列正确的是A.ran(R) ⊂ ran(R ∩S)B.ran(S) = ran(R ∪S)C.dom(R) = dom(S)D.dom(R) ∪ dom(S) = ran(R) ∪ ran(S)11.设A={1,2,3},则下列关系中是反自反关系的为A.R={<1,1>,<1,2>}B.R={<1,2>,<3,3>}C.R={<1,2>,<3,2>}D.R={<3,1>,<1,3>,<2,2>}12.设A={a,b,c} ,下列选项中既不是对称也不是反对称的是A.R={<a,a>,<a,b>,<b,a>,<c,b>,<b,c>}B.R={<a,a>,<b,b>}C.R={<a,c>,<a,b>}D.R={<a,c>,<b,b>}13. 设f: R →R,f(x) =⎩⎨⎧<-≥3232x x x ,,;g:R →R,g(x)=x+2,则g ∘f:R →R 是A.单射不满射B.满射不单射C.不单射不满射D.双射14.一个5阶简单图G,保证G 为连通图的最少边数为A.4B.5C.6D.715.下列各集合对于整除关系构成偏序集,不能..构成格的集合是 A.L 1={1,2,3,4} B.L 2={1,2,3,6}C. L 3={1,3,5,15}D.L 4={1,3,9,81}第二部分 非选择题二、填空题:本大题共10小题,每小题2分,共20分。

《离散数学》考试试卷(试卷库14卷)及答案

《离散数学》考试试卷(试卷库14卷)及答案

第 1 页/共 4 页《离散数学》考试试卷(试卷库14卷)试题总分: 100 分 考试时限:120 分钟一、选择题(每题2分,共20分)1. 下述命题公式中,是重言式的为( )(A ))()(q p q p ∨→∧ (B )q p ∨))()((p q q p →∨→⇔(C )q q p ∧→⌝)((D )q q p →⌝∧)(2. 对任意集合A,B,C,下列结论正确的是( )(A )若A ⊆B,B ∈C,则A ⊆C ; (B )若A ∈B,B⊆C,则A ⊆C ; (C )若A ⊆B,B ∈C,则A ∈C ; (D )若A ∈B,B ⊆C,则A ∈C ; 3. 设} 3 ,2 ,1 {=S ,定义S S ⨯上的等价关系,,则由R 产生的S S ⨯上一个划分共有( )个分块。

(A )4(B )5(C )6(D )94. 下列偏序集( )能构成格5. 连通图G 是一棵树当且仅当G 中( )(A )有些边是割边 (B )每条边都是割边(C )所有边都不是割边 (D )图中存在一条欧拉路径6. 有n 个结点)3(≥n ,m 条边的连通简单图是平面图的必要条件( )(A ) 63-≤n m(B )63-≤m n (C )63-≥n m (D ) 63-≥m n7. 设P,Q 的真值为0,R,S 的真值为1,则下面命题公式中真值为1的是( )(A )R →P (B )Q ∧S (C )P S (D )Q ∨R 8. 在图G=<V,E>中,结点总度数与边数的关系是( )(A )deg()2||i v E =(B )deg()||i v E =(C )deg()2||iv Vv E ∈=∑(D )deg()||iv Vv E ∈=∑9. 设有33盏灯,拟公用一个电源,则至少需有五插头的接线板数( )(A )7 (B )8 (C )9 (D )14 10. 设集合A 上有四个元素,则A 上的不同的等价关系的个数为( )(A )11 (B )14 (C )17(D )15二、填空题(每题2分,共20分)1. 设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则R= 。

《离散数学》题库及答案

《离散数学》题库及答案

《离散数学》题库及答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?()(1)Q=>Q→P(2)Q=>P→Q(3)P=>P→Q(4)P(PQ)=>P答:(1),(4)2、下列公式中哪些是永真式?()(1)(┐PQ)→(Q→R)(2)P→(Q→Q)(3)(PQ)→P(4)P→(PQ)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式()(1)P=>PQ(2)PQ=>P(3)PQ=>PQ(4)P(P→Q)=>Q(5)(P→Q)=>P(6)P(PQ)=>P答:(2),(3),(4),(5),(6)4、公式某((A(某)B(y,某))zC(y,z))D(某)中,自由变元是(变元是()。

答:某,y,某,z5、判断下列语句是不是命题。

若是,给出命题的真值。

((1)北京是中华人民共和国的首都。

(2)陕西师大是一座工厂。

),约束)(3)你喜欢唱歌吗?(4)若7+8>18,则三角形有4条边。

(5)前进!(6)给我一杯水吧!答:(1)是,T(2)是,F(3)不是(4)是,T(5)不是(6)不是6、命题“存在一些人是大学生”的否定是(),而命题“所有的人都是要死的”的否定是()。

答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为()。

(1)只有在生病时,我才不去学校(2)若我生病,则我不去学校(3)当且仅当我生病时,我才不去学校(4)若我不生病,则我一定去学校答:(1)QP(2)PQ(3)PQ(4)PQ8、设个体域为整数集,则下列公式的意义是()。

(1)某y(某+y=0)(2)y某(某+y=0)答:(1)对任一整数某存在整数y满足某+y=0(2)存在整数y对任一整数某满足某+y=09、设全体域D是正整数集合,确定下列命题的真值:(1)某y(某y=y)()(2)某y(某+y=y)()(3)某y(某+y=某)()(4)某y(y=2某)()答:(1)F(2)F(3)F(4)T10、设谓词P(某):某是奇数,Q(某):某是偶数,谓词公式某(P(某)Q(某))在哪个个体域中为真()2(1)自然数(2)实数(3)复数(4)(1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。

B. 如果今天是周一,那么明天是周三。

C. 如果今天是周一,那么明天是周四。

D. 如果今天是周一,那么明天是周五。

答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。

答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。

答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。

答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。

答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。

答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。

例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。

2. 解释什么是逻辑蕴含,并给出一个例子。

答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。

例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。

如果今天是周一,那么根据逻辑蕴含,明天必须是周二。

3. 请描述什么是二叉搜索树,并给出它的一个性质。

答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。

它的一个性质是中序遍历可以得到一个有序序列。

四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。

大学试卷《离散数学》及答案.docx

大学试卷《离散数学》及答案.docx

离散数学一、填空题(本大题共48分,共16小题,每小题3分)1.--公式为之充分必要条件是其合取范式之每一合取项中均必同时包含一命题变元及其否定2.无向图G具有是生成树,当且仅当的,若G为(n,m)连通图,要确定G的一棵生成树必删掉G的条边。

3.一个无向图的欧拉回路要求经过图中一次且仅一次,汉密顿图要求经过图中一次且仅一次。

4.设P:我生病,Q:我去学校(1)命题“我虽然生病但我仍去学校”符号化为o (2)命题“只有生病的时候,我才不去学校”符号化为o (3)命题"如果我生病,那么我不去学校”符号化为o5.设有33盏灯,拟公用一个电源,则至少需要5个插头的接线板数6.若HlAH2A-AHn是 ,则称Hl, H2, -Hn是相容的,若HlAH2A-AHn是 ,则称H1.H2, -Hn是不相容的7.设f,g,h 是N 到N上的函数(N 为自然数集合),f(n)=n+l;g(n)=2n;h(n)=0;贝lj(fdg)oh=8.K5的点连通度为 ,边连通度为o9.A={1, 2, 3, 4, 5, 6, 8, 10, 24, 36}, R 是A 上的整除关系。

子B={1, 2, 3, 4},那么B的上界是; B的下界是;:6的上确界是; B的下确界为10.命题公式P-*QAR的对偶式为11.设入={1, {2}, <t>},则A的幕集有元素个。

12.设A={0, 1,2, 3}, B={4,6, 7}, C={8, 9, 12, 14}, R1 是由A 到B 的关系,R2 是由B到C原关系,分别定义为Rl={<2, 6>, <3, 4>, <0, 7>} ;R2={<4, 8>, <4, 12>, <6, 12>,〈7, 14〉},则复合关系RloR2 为:13.设A= {<i)}, B={<t>, (<!>}},贝i]P(A) nP(B)= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页/共 4 页
《离散数学》考试试卷(试卷库14卷)
试题总分: 100 分 考试时限:120 分钟
一、选择题(每题2分,共20分)
1. 下述命题公式中,是重言式的为( )
(A ))()(q p q p ∨→∧ (B )q p ∨))()((p q q p →∨→⇔
(C )q q p ∧→⌝)(
(D )q q p →⌝∧)(
2. 对任意集合A,B,C,下列结论正确的是( )
(A )若A ⊆B,B ∈C,则A ⊆C ; (B )若A ∈B,B
⊆C,则A ⊆C ; (C )若A ⊆B,B ∈C,则A ∈C ; (D )若A ∈B,B ⊆C,则A ∈C ; 3. 设} 3 ,2 ,1 {=S ,定义S S ⨯上的等价关系,
,则由R 产生的
S S ⨯上一个划分共有( )个分块。

(A )4
(B )5
(C )6
(D )9
4. 下列偏序集( )能构成格
5. 连通图G 是一棵树当且仅当G 中( )
(A )有些边是割边 (B )每条边都是割边
(C )所有边都不是割边 (D )图中存在一条欧拉路径
6. 有n 个结点)3(≥n ,m 条边的连通简单图是平面图的必要条件( )
(A ) 63-≤n m
(B )63-≤m n (C )63-≥n m (D ) 63-≥m n
7. 设P,Q 的真值为0,R,S 的真值为1,则下面命题公式中真值为1的是( )
(A )R →P (B )Q ∧S (C )P S (D )Q ∨R 8. 在图G=<V,E>中,结点总度数与边数的关系是( )
(A )deg()2||i v E =
(B )deg()||i v E =
(C )
deg()2||i
v V
v E ∈=∑
(D )
deg()||i
v V
v E ∈=∑
9. 设有33盏灯,拟公用一个电源,则至少需有五插头的接线板数( )
(A )7 (B )8 (C )9 (D )14 10. 设集合A 上有四个元素,则A 上的不同的等价关系的个数为( )
(A )11 (B )14 (C )17
(D )15
二、填空题(每题2分,共20分)
1. 设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为
则R= 。

2. 设},2|{N n x
x A n
∈==,定义A 上的二元运算*为普通乘法、除法和加法,则代数系统<A ,*>中运算*关于 运
算具有封闭性。

3. A ,B ,C 表示三个集合,文氏图中阴影部分的集合表达式为。

4. 矛盾式又叫 式,其定义为 。

5. 的图称为无向图。

6. 设<A, ≤ >是一个偏序集合,在A 的一个子集中,如果 ,则称这个子集为链。

7. 在真值表中,一个公式的真值为F的指派所对应的大项的合取,即为此公式的 范式。

8. 设R 是非空集合A 上的等价关系,对任意的a ∈A ,定义 为a 关于R 的等价类。

9. 设<G,*>是一个群,A ,B ∈P(G)且A ≠∅,B ≠∅,则A 和B 的积AB= 。

10. 的无向图称为树。

三、判断题(每题1分,共10分)
1. 公式),()(y x yQ x xP ∃→∀的前束范式为)),()((y x Q x P y x →∀∀。

( )
2. (A ⊕B)⨯C=(A ⨯C) ⊕(B ⨯C)。

( )
3. 不存在既对称又反对称的关系。

( )
4. 若无向连通图G 中存在桥,则G 的点连通度和边连通度都是1。

( )
5. {{Ø}}⊆{ Ø,{{Ø}}}。

( )
6. 任意图结点度数的总和等于边数的两倍。

( )
7. 设>∨∧<,,A 是布尔代数,则>∨∧<,,A 一定为有补分配格。

( ) 8. 群中有零元。

( )
9. 质数阶群没有非平凡子群。

( )
10. (∀x)A(x)∨(∀x)B(x) ⇐(∀x)(A(x)∨B(x))( )
四、解答题(3小题,共20分)
1. (5分)考虑在七天内安排七们功课的考试,使得同一位教师所任的两们课程考试不安排在接连的两天里,试说明如果没有教
师担任多于四门课程,则符合上述要求的考试安排总是可能的。

2.
3. (8分)求公式(Q P) ∧P ∧R 的主析取范式和主合取范式。

4. (7分)已知无向图G 有11条边,2度与3度顶点各2个,其余都是4度顶点,求G 中共有几个顶点,写出过程。

五、证明(5小题,共30分)
1. (10分)用推理P,T 规则证明:P →(Q →R),R →(Q →S) ⇒ P →(Q →S)。

2. 对于正整数k,N k ={0,1,2,…,k-1},设*k 是N k 上的一个二元运算,使得a*k b=a*b(mod k),这里a,b ∈N k 。

当k =4时构造出的*k
运算表。

(4分)
3. (6分)设R 为集合A 上的二元关系,如果R 是反自反的和可传递的,则R 一定是反对称的。

4. (4分)设A,B,C是三个集合,证明:A -(B ⋃C)=(A -B)-C 。

5. (6分)设G 是连通简单平面图,结点数为n (3≥n ),边数为m ,面数为r ,则42-≤n r 。

试题参考答案及评分标准
一、选择题(每题2分,共20分) ADBCB ADCBD 二、填空题(每题2分,共20分)
1.{<a,b>,<a,c>,<a,d>,<b,d>,<c,d>}A I
2. 乘法
3. C B A C B ⋂--
4.永假公式 给定一个命题公式,若无论对分量作怎样的指派,其对应的真值永为F ,则称该命题公式为矛盾式。

5. 所有边都是无向边
6. 每两个元素都是有关系的
7. 主合取
8. [a]R = {x ∈A | aRx} 9. {a*b|a ∈A,b ∈B} 10. 连通且无回路
三、判断题(每题1分,共10分)×√×√× √√×√× 四、解答题(3小题,共20分) 1.(5分)设G 为七个结点的图,每一个结点对应一门功课的考试,如果这两个结点对应的课程的考试是由不同教师担任的,那么这两个结点之间有一条边,因为每个教师所任的课程不超过4,故每个结点的度数至少是3,任两个结点度数的和至少是6,故G 总包含一条汉密尔顿路,它对应于一个七门考试课目的一个适当安排。

2.(8分)各4分,步骤对,结果错,适当扣分,如果求出其一个,另一个直接写出,也不扣分。

只有结果,且结果对,给一半分,只有结果,且结果错,不给分。

解:主析取范式:(P ∧Q ∧R)
主合取范式: (P ∨Q ∨R)∧(P ∨┐Q ∨R)∧(P ∨Q ∨┐R)∧(P ∨┐Q ∨┐R) ∧(┐P ∨Q ∨R)∧(┐P ∨Q ∨┐R)∧(┐P ∨┐Q ∨R) 3.(7分)解:设图G 中有4度的顶点的个数为X ,总的顶点的个数为V ,则有V=2+2+X 根据顶点度数之和与边的数目的关系,则有2*2+3*2+4*X=2*11 (5分) 由此式得X=3 (3分)
总的顶点个数V=2+2+3=7 (2分)
五、证明(4小题,共30分)
1. (10分)每步约2分,没有P,T 标识扣3分,没有序号扣3分。

证明过程: (1)P →(Q →R) P (2)R →(Q →S) P (3)(Q →R)→S T(2)E (4)(Q →R)→(Q →S) T(3)E (5)P →(Q →S) T(1)(4)I
证明:设R 不是反对称的,即存在<x,y>∈R ∧<y,x>∈R 时有x ≠y ,则由R 是可传递的得<x,x>,<y,y>∈R,与R 是反自反的矛盾,所以R 不是反对称的不成立,即R 一定是反对称的。

(10分) 4. (4分)证明过程:
A -(
B ⋃C)=A ⋂~(B ⋃C) = A ⋂(~B ⋂~C)= (A ⋂~B)⋂~
C =(A -B)-C (4分)
5. (6分)证明过程:设G 是连通简单平面图,结点数为n (3≥n ),边数为m ,面数为r ,则42-≤n r 。

当n=3,m=2时,r=1, 42-≤n r 成立。

(1分)
当m ≥3时,则每一个面的次数不小于3,由于各面的次数之和为2m,因此 ,32r m ≥(3分)
代入欧拉公式得n+r-m=2,消去m 得42-≤n r (2分)。

相关文档
最新文档