大学物理下册总复习(可拷)

合集下载

大学物理下册总复习

大学物理下册总复习
德布罗意波
德布罗意波是指微观粒子(如电子、质子、中子等)所具有的波动性。这个概念是由法国物理学家德 布罗意在1924年提出的。德布罗意认为,所有微观粒子都具有波动性,其波长与粒子的动量成反比。 这个概念为量子力学的发展奠定了基础。
不确定关系与量子力学基本原理
不确定关系
不确定关系是指微观粒子的某些物理量 (如位置和动量、时间和能量等)不能 同时被精确测量的现象。这个概念是由 德国物理学家海森堡在1927年提出的。 不确定关系是量子力学的基本原理之一 ,它揭示了微观世界的本质特征,即微 观粒子的运动状态具有不确定性。
探讨电磁波的基本性质以及在通信、遥感等 领域的应用。
电磁场与电磁波的应用
电磁波的发射与接收 介绍电磁波的产生、发射和接收 过程,包括天线的设计和工作原 理。
电磁场在科技领域的应用 介绍电磁场在医疗、工业、科研 等领域的应用,如核磁共振成像、 电磁冶金、粒子加速器等。
电磁波谱与电磁波的应用 阐述不同频率电磁波的特性以及 在各个领域的应用,如无线电通 信、微波技术、红外线技术等。
磁场对电流的作用
探讨磁场对通电导线的作用力 以及磁场对运动电荷的洛伦兹 力。
电磁感应与电磁波
法拉第电磁感应定律
描述磁场变化时会在导体中产生感应电动势 的规律。
麦克斯韦电磁场理论
将电场和磁场统一起来,揭示了电磁波的存 在和传播规律。
楞次定律
阐述感应电流的方向总是阻碍引起感应电流 的磁通量的变化。
电磁波的性质与应用
表达式
对于可逆过程,有dS=(δQ/T); 对于不可逆过程,有dS>(δQ/T)。
实质
揭示了自然界中进行的涉及热现 象的宏观过程都具有方向性。
气体动理论
01

(完整word版)《大学物理》下册复习资料.docx

(完整word版)《大学物理》下册复习资料.docx

《大学物理》(下)复习资料一、电磁感应与电磁场1. 感应电动势——总规律:法拉第电磁感应定律i d m,多匝线圈dt id,N m 。

dti 方向即感应电流的方向,在电源内由负极指向正极。

由此可以根据计算结果判断一段导体中哪一端的电势高(正极)。

①对闭合回路,i 方向由楞次定律判断;②对一段导体,可以构建一个假想的回路(使添加的导线部分不产生i)( 1)动生电动势(B不随t变化,回路或导体L运动)bi v B 一般式:i v B d;直导线:a动生电动势的方向: v B 方向,即正电荷所受的洛仑兹力方向。

(注意)一般取 v B 方向为d方向。

如果 v B ,但导线方向与v B 不在一直线上(如习题十一填空 2.2 题),则上式写成标量式计算时要考虑洛仑兹力与线元方向的夹角。

( 2)感生电动势(回路或导体L不动,已知 B / t 的值):B,B与回路平面垂直时i d s is tBStB磁场的时变在空间激发涡旋电场 E i :E i dsB d s(B增大时B同磁场方向,右图)t L t t E i[解题要点 ]对电磁感应中的电动势问题,尽量采用法拉第定律求解——先求出 t 时刻穿过回路的磁通量m B dS ,再用Sd m求电动势,最后指出电动势的方向。

(不用法拉弟定律:①直导线切割磁力线;②L不动且已知 B / t 的值)idt[ 注 ] ①此方法尤其适用动生、感生兼有的情况;②求m时沿 B 相同的方向取dS,积分时t 作为常量;③长直电流/;④i 的结果是函数式时,根据“i>0 即m减小,感应电流的磁场方向与回路中原磁场同向,而i与感应B r = μI 2πr电流同向”来表述电动势的方向:i >0 时,沿回路的顺(或逆)时针方向。

2. 自感电动势i LdI,阻碍电流的变化.单匝:dtm LI ;多匝线圈NLI ;自感系数L N mI I互感电动势12M dI 2,21M dI1。

(方向举例:1线圈电动势阻碍2线圈中电流在1线圈中产生的磁通量的变化)dt dt若dI2dI1 则有1221;1 2MI 2,21MI 1,M12M 21 M ;互感系数M12 dt dt I 2I13.电磁场与电磁波位移电流:I D=D dS ,j D D(各向同性介质D E )下标C、D分别表示传导电流、位移电流。

最新大学物理复习提纲(下册)

最新大学物理复习提纲(下册)

大学物理复习提纲(下册)大学物理复习纲要(下册)第九章 静电场一、 基本要求 1、 理解库仑定律2、 掌握电场强度和电势概念3、 理解静电场的高斯定理和环路定理4、 熟练掌握用点电荷场强公式和叠加原理以及高斯定理求带电系统电场强度的方法5、 熟练掌握用点电荷的电势公式和叠加原理以及电势的定义式来求带电系统电势的方法 二、 内容提要 1、 静电场的描述描述静点场有两个物理量。

电场强度和电势。

电场强度是矢量点函数,电势是标量点函数。

如果能求出带电系统的电场强度和电势分布的具体情况。

这个静电场即知。

(1) 电场强度 0q E =点电荷的场强公式 r e rq 2041πε=(2) 电势 a 点电势 0.a a V E dl =⎰ (00V =) (3) a 、b 两点的电势差 .bab a b aV V V E dl =-=⎰(4) 电场力做功 00.()ba b aW q E dl q V V ==-⎰(5) 如果无穷远处电势为零,点电荷的电势公式: 04a q V rπε=2、表征静电场特性的定理(1)真空中静电场的高斯定理: 1.nii sqE d s ε==∑⎰高斯定理表明静电场是个有源场,注意电场强度通量只与闭合曲面内的电荷有关,而闭合面上的场强和空间所有电荷有关 (2)静电场的环路定理: .0lE dl =⎰表明静电场是一种保守场,静电力是保守力,在静电场中可以引入电势的概念。

3、电场强度计算(1) 利用点电荷的场强公式和叠加原理求 点电荷 21014ni i i q E r πε==∑ 带电体 2014r dqE e r πε=⎰ (2) 高斯定理求E高斯定理只能求某些对称分布电场的电场强度,用高斯定理求电场强度关键在于做出一个合适的高斯面。

4、电势计算(1)用电势的定义求电势(E 的分布应该比较容易求出).a aV E dl =⎰电势零点(2)利用点电荷的电势公示和电势叠加原理求电势: 014P dqV rπε=⎰第十章 静电场中的导体和电介质 一、基本要求1、 理解静电场中的导体的静电平衡条件,能从平衡条件出发分析导体上电荷分布和电场分布。

大学物理下册总复习汇总

大学物理下册总复习汇总

(D)都小于 L / 2 。
[D ]
16
设两个半环式的螺线管的自感系数为L’,
I
I
1
(L d I dt
M
dI dt
)
(L
M)
dI dt
2
(L d I dt
M
dI dt
电磁学、相对论、量子物理总复习
教师: 李美姮
1
一、选择题:
1. 半径分别为 R,r 的两个金属球,相距很远。用一根细长
导线将两球连接在一起并使它们带电,在忽略导线的影响
下,两球表面的电荷面密度之比 R / r 为:
(A) R / r , (B)R2 / r2 ,
(C)r2 / R2 , (D)r / R .
并联: I p Rp IQ RQ IQ 2I p
Wp
L
p
I
2 p
1
WQ
LQ
I
2 Q
2
15
14. 已知圆环式螺线管的自感系数为 L ,若将该螺线管锯成 两个半环式的螺线管,则两个半环式的螺线管的自感系数为:
(A)都等于 L / 2 ;
(B)有一个大于 L / 2 ,另一个下于 L / 2 ;
(C)都大于 L / 2 ;
带电体产生的.
(A) 半径为R的均匀带电球面; (B) 半径为R的均匀带电球体;
E dS
1
S
0
i
q内
(C) 点电荷;
(D) 外半径为R,内半径为R / 2的均匀带电球壳体.
E Er 关系曲线
E
E 1/ r2
R
3 0
r2
OR
r
O
R
r
[A ]

大学物理2-2总复习

大学物理2-2总复习


[分析] B
0 I
2R
B
0 I (cos 1 cos 2 ) 4a
B
0 I
2R

0 I 2R
2、一无限长载流直导线,通有电流 I,弯成如图形状。设 各线段皆在纸面内,则P 点磁感应强度B 的大小为 3 0 I 8a I
[分析] B
4a
0

(cos 1 cos 2 )
0 I B (cos 1 cos 2 ) 4a
B
0 I
2R
1、无限长直导线在P 处弯成半径为R 的圆,当通以电流 I R 时,则在圆心O点的磁感应强度大小等于 I I I O A) 0 B) 0 C )0 1 0 1 2 R 4R 2 P 2 2 0 I 0 I 1 1 2 D) (1 ) E) (1 ) 2R 4R
合面上场强E处处为零. (3) 通过闭合面上任一面元的电场强度通量等于零.
E d S 0故闭
S
答 (1) 正确.
(2) 错误,虽然有 E d S 0 ,
Sቤተ መጻሕፍቲ ባይዱ
-q +q S
但本题中闭合面上各点场强均不为零。
(3)错误,通过整个闭合面的电场强度通量为零,而通 过任一面元的电场强度通量不一定为零(本题中任一面元 上都不为零)。
上底 下底
2 0 ③电荷分布是球对称
E
S
Φ E d S E 4r 2
E
E
Q 4 r 2
图示闭合面包围了两个等量异号点电荷±q.下列说法是 否正确?如有错误请改正. (1) 高斯定理 E d S q / 0 成立. S (2) 因闭合面内包围净电荷∑q i=0,得到

大学物理下复习资料

大学物理下复习资料
以0 r替代.
电位移矢量 D0EP
介质中的高斯定理 SDdSq0
极化率
对于均匀介质 Pe0E r 1e
D
0E
真空中
0rE介质中
15
电容器的能量
q2 W
1CU21qU
2C 2
2
静电场的能量密度
we
1E2
2
静电场的能量
WVwedVV12E2dV
1 DEdV
V2
16
第十一章 恒定磁场
11-1 恒定电流 11-2 磁场 磁感应强度 11-3 毕奥萨伐尔定律 11-4 磁场的高斯定理和安培环路定理 11-5 带电粒子在电场和磁场中的运动 11-6 磁场对载流导线和载流线圈的作用 *11-7 电磁场的相对论变换
电磁铁,继电器 、电机、以及 各种高频电磁 元件的磁芯
磁棒
记忆元件
35
第十三章 变化的电磁场
13-1 电磁感应定律 Laws of Induction 13-2 动生电动势和感生电动势 Motional Emf and Induced Emf 13-3 自感和互感Self-Induction and Mutual Induction 13-4 磁场的能量Energy in a Magnetic Field 13-5 麦克斯韦电磁场理论 Maxwell’s Theory of Electromagnetism 13-6 电磁波波动方程 13-7 电磁波的能量和动量 13-8 电磁波的辐射
U U 1 U 2 U n

q q 1 q 2 q n b
C C 1 C 2 C n
电容器的串联
q 1 q 2 q n q
q q qq q q
U U 1U 2 U n a

大学物理下册复习资料

大学物理下册复习资料

大学物理下册复习资料大学物理下册复习资料在大学物理学习的过程中,下册的内容往往更加深入和复杂。

为了更好地复习和掌握这些知识,我们需要有一份全面而有深度的复习资料。

本文将为大家提供一份关于大学物理下册的复习资料,帮助大家更好地备考。

一、电磁场与电磁波电磁场与电磁波是大学物理下册的重要内容。

电磁场包括静电场和静磁场,而电磁波则包括光波和无线电波等。

在复习这一部分内容时,我们可以从以下几个方面进行总结和梳理。

首先,我们可以回顾电场和磁场的基本概念和性质。

电场是由电荷产生的力场,而磁场是由电流产生的力场。

我们需要掌握电场和磁场的计算公式,以及它们的叠加原理和能量守恒定律等。

其次,我们可以深入学习电磁场的运动学和动力学。

在这一部分中,我们需要了解电磁场中的粒子运动规律,如洛伦兹力和质点在电磁场中的运动方程等。

同时,还需要掌握电磁场中的能量和动量守恒定律,以及电磁场的能量密度和能流密度等概念。

最后,我们需要学习电磁波的基本性质和传播规律。

电磁波是由振荡的电场和磁场组成的,具有波动性和粒子性。

我们需要了解电磁波的传播速度、波长和频率之间的关系,以及电磁波的干涉、衍射和偏振等现象。

二、量子力学量子力学是大学物理下册的另一个重要内容。

它是研究微观领域的物质和能量的理论。

在复习这一部分内容时,我们可以从以下几个方面进行总结和梳理。

首先,我们需要回顾波粒二象性的基本概念和原理。

量子力学认为微观粒子既具有波动性又具有粒子性,这一观点颠覆了经典物理学的观念。

我们需要了解波粒二象性对物质和能量的描述,以及波函数和概率密度等概念。

其次,我们可以深入学习量子力学的基本原理和数学表达。

量子力学的基本原理包括叠加原理、不确定性原理和量子力学的统计解释等。

我们需要掌握薛定谔方程和波函数的求解方法,以及量子力学中的算符和测量等概念。

最后,我们需要学习量子力学在原子物理和固体物理中的应用。

量子力学在原子物理中解释了原子的结构和性质,如玻尔模型和量子力学模型等。

大学物理下复习题(附答案)

大学物理下复习题(附答案)

大学物理下复习题(附答案)第一章填空题自然界中只存在正负两种电荷,同种电荷相互排斥,异种电荷相互吸引。

()对自然界中只存在正负两种电荷,同种电荷相互吸引,异种电荷相互排斥。

()错电荷电量是量子化的。

()对物体所带电量可以连续地取任意值。

()错物体所带电量只能是电子电量的整数倍。

()对库仑定律只适用于真空中的点电荷。

()对电场线稀疏处的电场强度小。

()对电场线稀疏处的电场强度大。

()错静电场是有源场。

()对静电场是无源场。

()错静电场力是保守力。

()对静电场力是非保守力。

()错静电场是保守力场。

()对静电场是非保守力场。

()错电势是矢量。

()错电势是标量。

()对等势面上的电势一定相等。

()对沿着电场线的方向电势降落。

()对沿着电场线的方向电势升高。

()错电场中某点场强方向就是将点电荷放在该点处所受电场力的方向。

()错电场中某点场强方向就是将正点电荷放在该点处所受电场力的方向。

()对电场中某点场强方向就是将负点电荷放在该点处所受电场力的方向。

()错电荷在电场中某点受到电场力很大,该点场强E一定很大。

()错电荷在电场中某点受到电场力很大,该点场强E不一定很大。

()对在以点电荷为中心,r为半径的球面上,场强E处处相等。

()错在以点电荷为中心,r为半径的球面上,场强E大小处处相等。

()对如果在高斯面上的E处处为零,肯定此高斯面内一定没有净电荷。

()对根据场强与电势梯度的关系可知,在电势不变的空间电场强度为零。

()对如果高斯面内没有净电荷,肯定高斯面上的E处处为零。

()错正电荷由A移到B时,外力克服电场力做正功,则B点电势高。

对导体达到静电平衡时,导体内部的场强处处为零。

()对第一章填空题已一个电子所带的电量的绝对值e= C。

1.602*10-19或1.6*10-19真空中介电常数值为=0ε C 2.N -1.m -2。

8.85*10-12 真空中有一无限长带电直棒,电荷线密度为λ,其附近一点P 与棒的距离为a ,则P 点电场强度E 的大小为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2 2
1)在波动的传播过程中,任意时刻的动能和势能不仅大小 相等而且相位相同,同时达到最大,同时等于零。 2)在波传动过程中,任意质元的能量不守恒,所以波动过
程实质上是能量的传递过程。
惠更斯原理:在波的传播过程中,波面(波前)上的各点,
都可以看作是发射子波的波源,在其后的任一时刻,这些子波 的包迹就成为新的波面。
即:
ab k n a
(a+b)sin =k
k=0,±1, ±2, · · ·
k 就是所缺的级次
偏振
I I 0 cos
2
自然光透过偏振片
1 I I0 2
起偏角
n2 tgi0 n1 i
0
2
B dB
0 Idl sin dB 2 4 r
载流直导线的磁场:
0 I B (cos1 cos 2 ) 4a
无限长载流直导线:
0 I B 2a
B0
直导线延长线上:
载流圆环
载流圆弧
2R 0 I B 2 R 2
B
0 I
B

R
I
无限长直螺线管内部的磁场 磁通量
O
f
mg
复摆:绕不过质心的水平固定轴转动的刚体 当 sin 时
d 2 mgh I 2 dt
O
h
C

mgh J
d 2 2 0 dt 2
mg
结论:复摆的小角度摆动振动是简谐振动。
T 2 2 J mgh

波的周期 T 、频率 v 和波长 之间的关系
T
2


1

T u
u

平面简谐波的波动式
x y A cos (t ) u
x o
振动图
y
t
O
u
x
x
波动图
p
波中各质点的总机械能为:
x E Ek E p A sin (t ) V u Ek E p
波的相干条件
1.具有相同的频率 2.振动方向相同 3.具有恒定的相位差
A2 A12 A22 2 A1 A2 cos
(20 10 ) 2
2k
(2k 1)
k 2 k
k 0,1, 2,3,...
k 0,1, 2,3,...
f m qv B
dF Idl B
安培定律
F
均匀磁场对载流线圈
dF
均匀磁场对载流线圈做功
M pm B pm ISn
W Md I
2、电磁感应定律
导体回路中产生的感应电动势的大小,与穿过 导体回路的磁通量对时间的变化率成正比。
M
L1L2
自感磁能 磁场能量
磁场能量密度
1 2 W LI 2
1 W BHV 2
W 1 B2 1 1 2 w H BH V 2 2 2
任意磁场总能量
1 W V wdV V BHdV 2
机械振动和机械波知识点总结
简谐振动微分方程
其通解为: x
d x 2 x 0 2 dt
简谐振动的运动学方程
2
A cos(t )
A, ,
v0
利用初始条件确定
A
x0 2 (

)2
v0 tan x0
T 2
2 2 T

1 T 2
简谐振动的旋转矢量表示法
t=t A
t+0
0
A t=0
x X
o
x A cos(t 0 )
R
r
d k
衍射

2
o
e
用菲涅耳半波带法解释单缝衍射现象
a sin k 明 a sin (2k 1) / 2

k 1,2
x sin f
中央两侧第一暗条纹之间的区域,称做零极 (或中央)明条纹 中央明条纹线宽度
x 2

a
f
中央明条纹半角宽度
其他各级明条纹线宽度
(r2 r1 )
称为波程差:

2
,
r2 r1
2k 1 , 2

k 0,1, 2,3,...
驻波方程
相邻波腹或相邻波节间的距离都为:
x 2
波节两侧的点振动相位相反,波节之间的点其振动相位相同。
半波损失
当波从波疏媒质入射到波密媒质界面上反射时,有半波损失; 当波从波密媒质入射到波疏媒质界面上反射时,无半波损失。
根据具体 情况而定
厚度均匀( 恒定) 对应等倾干涉 e
劈尖干涉 牛顿环
Δ反 2n2 d / 2
相邻明纹(暗纹)间的厚度差
d 2n
条纹间距(明纹或暗纹)
明 暗 纹 纹
L d
L 2 n

n
ek+1
ek
r 2eR
2
Δ反 2n2 e / 2
迈克耳逊干涉仪
d i k dt
dl 上的动生电动势 d i (v B ) dl
整个导线L上的动生电动势
i d i ( v B ) dl
L
均匀磁场
转动
例 如图,长为L的铜棒在磁感应强度为 B
求:棒中感应电动势的大小 和方向。
的均匀磁场中,以角速度 绕O轴转动。
x x1 x2 , x A cos(t )
A A A 2 A1 A2 cos(2 1 )
2 1 2 2

x x1 x2
A1 sin 1 A2 sin 2 tg A1 cos 1 A2 cos 2
二、微振动的简谐近似 单摆
C
T
B 0 nI
磁场中的高斯定理 m B dS B cos dS
B dS 0
L
安培环路定理
B dl 0 I
L
磁介质中安培 环路定理
H dl I
L
B H 0 r H
L
洛仑兹力
摆球对C点的力矩 M mgl sin 当 sin 时
M mgl
g 令 l
2
d 2 0 2 dt 结论:单摆的小角度摆动振动是简谐振动。 角频率,振动的周期分别为: g 2 l 0 T 2 l 0 g
d 2 ml 2 2 mgl dt 2
v A B O l dl
感生电动势
B E 涡 dl t dS L S
一、自感
LI
dI L L dt
长直螺线管的自感
L n V
2
二. 互感
MI
dI M M dt
线圈1的磁通全部通过线圈2,称为无漏磁。
可见光波长范围 3900 ~ 7600 A 干涉
0
nr为介质中与路程 r
位相差与光程差:
相应的光程。

2


a b n · · 介质 r
两相干光源同位相,干涉条件
k ,
( 2k 1) 2
杨氏干涉
k 0 ,1,2 …加强(明) k 0 ,1,2 …减弱(暗)

A B

O
解:方法一
取微元 d ( v B ) dl
Bvdl Bl dl
i d i Bl dl
0 L

B v
1 2 BL 2
方向 A O


栅衍射
光栅衍射明条纹位置满足: 光栅公式 (a+b)sin =k
k=0,±1, ±2, ±3 · · ·
(a+b)(sin sin0 )=k
缺级
k=0,±1, ±2, ±3 · · ·
单缝衍射 极小条件
光栅主极大
a sin =n
n=0,±1, ±2,· · ·
分波阵面法 分振幅法
等倾干涉、等厚干涉
杨氏干涉

x nd sin nd D D x xk 1 xk dn
S1
r1 r2
p
d
S2

x o
D
D >> d
洛埃镜验证了反射时有半波损失存在
薄膜干涉
增透膜 增反膜 反射光干涉相消 反射光干涉相长
Δ反 2n2 d cos / 2
简谐振动系统机械能守恒
1 2 1 2 1 2 机械能 E E p Ek kx mv kA 2 2 2 同方向、同频率的两个简谐振动的合成 A A x1 (t ) A1 cos(t 1 ) 2 x2 (t ) A2 cos(t 2 ) A1 2 1 x1 x2 合振动 :
稳恒磁场习题课
内容:
•描述磁场的基本物理量——磁感应强度 •电流磁场的基本方程——Biot-savart定律 •磁场性质的基本方程——高斯定理与安培环路定理 •磁场对运动电荷与电流的作用——Lorentz力、Ampere力
毕奥---沙伐尔定律
0 Idl er dB 4 r 2
相关文档
最新文档