物理电磁学论文

合集下载

电磁学原理的应用论文

电磁学原理的应用论文

电磁学原理的应用论文1. 引言电磁学是物理学的一个重要分支,研究电场和磁场以及它们之间的相互作用。

电磁学原理在各个领域得到广泛应用,包括通信、能源、医学等。

本论文将探讨电磁学原理在不同领域的应用案例,并分析其原理和效果。

2. 通信领域应用2.1 电磁波传输•无线通信中常用的调制技术有频率调制、相位调制和幅度调制。

•调制技术基于电磁波的传播原理,通过改变电磁波的频率、相位或幅度来传输信息。

2.2 电磁波天线•通信系统中常用的天线类型有单极天线、双极天线、饼形天线等。

•这些天线通过辐射电磁波来实现无线通信,天线的设计和调整基于电磁学原理。

2.3 频率选择性表面•频率选择性表面(FSS)通过设计和布局特定形状和尺寸的导电元件,选择特定的频率波段进行传输。

•FSS在通信领域中被广泛应用于天线设计、电磁波隔离等。

3. 能源领域应用3.1 电磁感应发电•电磁感应发电是将磁场相对于导线产生感应电动势,并通过导线形成电流,实现能量转换的原理。

•应用电磁学原理设计的电磁感应发电装置广泛应用于各种发电系统,例如风力发电、水力发电等。

3.2 电磁辐射加热•电磁辐射加热利用电磁场对材料的吸收和转化,实现物体加热的原理。

•该原理应用于工业加热、医疗设备等领域,具有高效、环保等优势。

4. 医学领域应用4.1 磁共振成像(MRI)•磁共振成像利用人体组织对强磁场和射频信号的响应来获得影像。

•MRI是一种无创性的检查方法,应用于医学诊断、病理学研究等领域。

4.2 细胞电生理实验•细胞电生理实验通过记录和分析细胞膜上的电流、电势变化,研究细胞的电生理特性。

•应用电磁学原理的电生理研究在解析生物系统的工作原理、疾病治疗等方面具有重要意义。

5. 结论电磁学原理是现代科学和技术的核心基础,其应用涉及到多个领域。

本论文简要介绍了电磁学原理在通信、能源和医学领域的应用案例。

通过对这些案例的分析,可以看出电磁学原理在实际应用中的重要性和价值。

高中物理电磁学教学方法研究论文五篇

高中物理电磁学教学方法研究论文五篇

高中物理电磁学教学方法研究论文五篇第一篇:高中物理电磁学教学方法研究论文高中物理电磁学是将磁场与电场结合在一起,整体突出场与路的关系。

物理教师在教学过程中需要帮助学生深入了解电磁学的特点,运用针对性的教学方法,理论结合实践对学生进行教学,帮助学生掌握电磁学知识。

1、了解高中物理电磁学的特点与注意事项高中物理主要思路就是力与运动、功与能的转换,所以对于高中物理的电磁学教学也需要充分把准这一命脉,将其作为教学的基本思路。

电磁学在高中物理课程的设置中由场和路两方面构成,所以在电磁学教学过程中也应该从这2方面进行教学,帮助学生理解和掌握其基本概念,找出电磁学的基本规律,最终更好地解决电磁场综合问题,完成对电磁学的学习。

例如,在电磁学问题的解答过程中,首先根据粒子在不同的运动情况或者物理现象下都是以力与运动的联系进行组合,将电磁学的问题转换为力与运动或者是功与能的问题。

这样,解题思路得以显现,再对电磁学问题进行力学分析,将粒子运动状态所体现的受力情况完全显露出来,再应用牛顿定律,最终完成电磁学中力学的讨论部分。

同时,对于电磁学中功与能的问题就需要应用能量守恒与转化的观点,列出能量方程式,让电磁学问题迎刃而解。

对于电磁学的教学就是抓住电磁学特点,将抽象的电磁运动转化为宏观的力学与能量问题,利于学生运用已知的知识解决未知的问题。

在电磁学教学过程中,还需要注意尽量帮助学生理解抽象的物理现象,帮助学生运用丰富的想象掌握电磁学运动问题,总结解题的一般思路。

2、高中物理电磁学教学方法分类既然电磁学主要包括了场与路,那么在教学方法的选择上就可采用将这二者分开研究的方式进行。

物质与物质相互作用形成电磁学的场,例如匀强电场、匀强磁场等可以从场入手,对学生进行电磁学的讨论与研究。

而对于电磁学中的路,包括磁感线、电路等,例如匀强磁场与电路的关系就可以反映出它们存在某种特殊的联系。

在电磁学教学过程中可以以场为研究对象,以路为研究方法:1)对于“电生磁”与“磁生电”的讨论中,会运用逆向教学的方法,让学生去思考和探索未知的问题。

电磁的原理和应用论文

电磁的原理和应用论文

电磁的原理和应用论文引言在现代科技和工程领域中,电磁力在各种应用中起着至关重要的作用。

从基础的电磁理论到应用于通信、能源转换和医学设备等领域的电磁应用,电磁技术已经成为我们生活中不可或缺的一部分。

本文将探讨电磁的原理和应用,并介绍其中一些重要的应用领域。

电磁的基本原理电磁是一种既有电场又有磁场的物理现象。

电场是由带电粒子产生的,磁场是由电流产生的。

电磁力是由电场和磁场之间的相互作用产生的。

根据安培定律和法拉第电磁感应定律,电流和电磁感应都与电磁场的强度和方向有关。

电磁的应用通信电磁波在通信领域中起着重要的作用。

通过调制和解调技术,电磁波可以用于无线通信、卫星通信和光纤通信等。

电磁波可以传输信息,并被接收器接收和解码。

这种技术在无线电、电视和手机通信等领域得到了广泛应用。

能源转换电磁力可以通过发电机将机械能转化为电能。

根据法拉第电磁感应定律,当通过一个线圈的磁场发生变化时,会在线圈中产生电流。

这种原理被应用于发电机,如水力发电机、风力发电机和汽车发电机等,将机械能转化为电能。

同时,电磁感应也被应用于变压器,将电能从一个电路转移到另一个电路。

医学设备电磁在医学设备中的应用主要包括核磁共振成像(MRI)和放射治疗。

MRI使用强大的磁场和无线电波来生成人体内部的图像。

磁场通过激发人体中的氢原子核来生成图像。

放射治疗利用电磁波来杀死体内的癌细胞。

这些应用使得医生能够对患者进行更准确的诊断和治疗。

电动机和电磁铁电磁铁是一种利用电流产生的磁场的装置。

电磁铁可以生成强大的磁场,这使得它们被广泛应用于电动机、铁矿石的分离和磁悬浮列车等。

电动机利用电磁力将电能转化为机械能。

这些应用使得电动机在工业和交通领域中发挥了重要作用。

物质分析电磁波谱学是一种通过观察物质与电磁波的相互作用来分析物质的化学和物理性质的方法。

通过测量物质与特定波长的电磁波的吸收、散射或发射行为,可以确定物质的化学成分和结构。

这种方法被广泛应用于光谱分析、核磁共振和质谱等领域。

大学物理论文3000字(精选5篇)

大学物理论文3000字(精选5篇)

⼤学物理论⽂3000字(精选5篇) ⽆论是在学习还是在⼯作中,⼤家都尝试过写论⽂吧,借助论⽂可以达到探讨问题进⾏学术研究的⽬的。

你知道论⽂怎样写才规范吗?下⾯是⼩编收集整理的⼤学物理论⽂3000字(精选5篇),希望能够帮助到⼤家。

⼤学物理论⽂篇1 摘要: 电磁运动是物质的⼜⼀种基本运动形式,电磁相互作⽤是⾃然界已知的四种基本相互作⽤之⼀,也是⼈们认识得较深⼊的⼀种相互作⽤。

在⽇常⽣活和⽣产活动中,在对物质结构的深⼊认识过程中,都要涉及电磁运动。

因此,理解和掌握电磁运动的基本规律,在理论上和实际上都有及其重要的意义,这也就是我们所说的电磁学。

关键词: 电磁学,电磁运动 1.库伦定律 17xx年法国物理学家库伦⽤扭秤实验测定了两个带电球体之间的相互作⽤的电⼒。

库伦在实验的基础上提出了两个点电荷之间的相互作⽤的规律,即库仑定律: 在真空中,两个静⽌的点电荷之间的相互作⽤⼒,其⼤⼩和他们电荷的乘积成正⽐,与他们之间距离的⼆次⽅成反⽐;作⽤的⽅向沿着亮点电荷的连线,同号电荷相斥,异号电荷相吸。

这是电学以数学描述的第⼀步。

此定律⽤到了⽜顿之⼒的观念。

这成为了⽜顿⼒学中⼀种新的⼒。

与驽钝万有引⼒有相同之处。

此定律成了电磁学的基础,如今所有电磁学,第⼀必须学它。

这也是电荷单位的来源。

因此,虽然库伦定律描述电荷静⽌时的状态⼗分精准,单独的库伦定律却不容易,以静电效应为主的复印机,静电除尘、静电喇叭等,发明年代也在1960以后,距库伦定律之发现⼏乎近两百年。

我们现在⽤的电器,绝⼤部份都靠电流,⽽没有电荷(甚⾄接地以免产⽣多余电荷)。

也就是说,正负电仍是抵消,但相互移动。

──河中没⽔,不可能有⽔流;但电线中电荷为零,却仍然可以有电流! 2.安培定律 法国物理学家安培(Andre Marie Ampere, 1775-1836)提出:所有磁性的来源,或许就是电流。

他在18xx年,听到奥斯特实验结果之后,两个星期之内,便开始实验。

电磁学的原理及其应用论文

电磁学的原理及其应用论文

电磁学的原理及其应用论文电磁学是自然界一项重要的物理学分支,研究电荷之间的相互作用及其与磁场之间的关系。

其原理是基于麦克斯韦方程组,描述了电磁场的行为与相互作用,其中包括库仑定律、安培定律、法拉第电磁感应定律和麦克斯韦-安培定律等。

电磁学的原理在实际应用中有着广泛的应用,可以用于电路分析、电磁波传播、电磁传感器等方面。

首先,电磁学原理可以用于电路分析。

在电路中,通过应用欧姆定律和基尔霍夫定律等电磁学原理,我们可以分析电路中各个元件之间的电流和电压关系,帮助我们理解电路的工作原理,研究电路中的功率、电阻、电容和电感等参数。

例如,在设计电子设备时,我们需要通过电磁学原理计算电路中的电流和电压分布,确保电路的正常工作。

其次,电磁学原理在电磁波传播中有着重要的应用。

根据麦克斯韦方程组,我们可以推导出电磁波的传播方程,进一步研究电磁波的传播特性。

在通信系统中,例如无线电与光纤通信中,我们可以利用电磁学原理,研究电磁波在不同介质中的传播速度、传播损耗和反射折射等现象,从而优化通信系统的设计和性能。

此外,电磁学原理也有着广泛的应用于电磁传感器中。

根据法拉第电磁感应定律,当一个导体相对于磁场发生运动时会产生感应电动势。

这一原理被广泛应用于感应电机、发电机和变压器等电磁传感器中,将机械能转化为电能或者电能转化为机械能。

例如,在电能供应方面,我们利用电磁感应原理,通过转动磁铁和线圈的相对运动,产生变化的磁场,从而产生交流电,实现电能的传输和分配。

综上所述,电磁学的原理可以广泛应用于电路分析、电磁波传播和电磁传感器等方面。

通过运用电磁学原理,我们能够深入研究电磁场的特性,提高电路和通信系统的设计与性能。

在实际应用中,电磁学原理为我们解决电磁场及其相互作用的问题提供了重要的理论基础,推动了电子技术的发展和应用。

谈高中物理电磁学相关教学方法论文

谈高中物理电磁学相关教学方法论文

谈高中物理电磁学相关教学方法论文谈高中物理电磁学相关教学方法论文前言:在高中物理学科授课中,电磁学是该学科较为重要的授课内容,由于该内容具有较强的复杂性,学生对该内容的掌控度较低,学生对该授课内内容的兴趣度较低。

因此,高中物理授课人员应当采用科学性路径增加学生对该学科授课内容的兴趣度,从而使学生对该授课内容的掌控度增加。

在该内容的授课中,教师应当还原学生的主体性,增加对学生的尊重度,引导学生对相关内容进行自主性知识获取,教师也应当采用科学性路径对自身素质进行优化。

笔者在下文对提升该内容授课有效性的科学性路径进行阐述,望能够将对该内容的授课效能最大化。

一、电磁学授课内容结构在众多物质运动中,电磁运动是其中的一种,该运动在自然界较多现象中存在。

在电磁现象的探究中,电磁学是较为重要的学科,在高中物理中对电磁学的基础内容进行授课。

因此,教师应当增加对该授课内容授课的着重度[1]。

电磁学的授课内容包括电磁现象、电磁辐射等内容。

由于该授课内容的复杂性较强,学生对该内容的掌控度不足。

(一)电磁学的探究方式在高中物理电磁学授课中,教师应当采用科学性路径对该授课内容进行探究,电磁学中主要存有两个重点:一个是电场,一个是磁场。

因此在授课中教师应当采用科学性路径引导学生区分二者,从而使学生对授课内容的兴趣度增加,也使学生能够进行自主性知识探究。

(二)物理授课规律在高中物理电磁学授课中,教师在对学生进行某定理授课时,首先可以引导学生对相关物理现象进行观察。

然后进行实验,通过实验对相关结论进行总结[2]。

在该环节中,教师应当引导学生对实验对象中的关系进行分析,并通过规范的语言对其进行总结,从而使学生对相关知识的掌控度增加。

教师在授课中应当知晓,一个物理理论的形成需要对较多物理概念进行积累。

因此,教师应当引导学生增加知识累积量。

(三)通过电磁学授课向学生传递电磁场是物质的理念高中物理授课人员应当将该内容分为电现象和磁现象两部分进行授课,但在授课中,教师还应当增加二者的关联性,从而增加学生对相关知识的掌控度。

电磁学论文

磁单极子摘要:关键词:引言:记得念高中时,物理课本中提到电荷可单独存在正电荷与负电荷,又由于电和磁的联系非常密切人们就设想存在单个的磁荷,即存在单个N极和单个S极的磁荷也就是科学家所预言的磁单极子后来在工大学习电磁学时,又对电和磁的相关知识作了进一步的学习,发现了磁和电的惊人相似性,而且很多磁的概念基本上就是跟电的概念一样的,于是就对磁单极子产生了浓厚的兴趣,便由此开始了自己的“探索”了。

正文:一、磁单极子的理论磁棒截成两段,可得到两根新磁棒,它们都有南极和北极,不管你怎样切割,新得到的每一段小磁铁总有两个磁极,这种现象一直持续到亚原子水平。

看上去,南极和北极似乎永远不分家,或者说,磁性粒子通常总是以偶极子(南北两极)的形式成对出现。

这与电有着明显的区别,因为正负两种电荷是可以单独存在的。

这样就造成了磁和电的不对称,使描述电磁现象的麦克斯韦方程组也显得不对称,例如电位移矢量的散度为电荷密度,而磁感强度的散度却为零。

磁和电有很多相似之处。

同种电荷互相推斥,异种电荷互相吸引;同名磁极也互相推斥,异名磁极也互相吸引。

摩擦能使物体带电;如果用磁铁的一极在一根钢棒上沿同一方向摩擦几次,也能使钢棒磁化。

但是,为什么正、负电荷能够单独存在,而单个磁极却不能单独存在呢?多年来,人们百思而不得其解。

在1931年英国物理学家保罗·狄拉克首先提出了磁单极子理论,从理论上预言了磁单极子的存在。

他认为既然宇宙中存在着带基本电荷的电子,那么理应有带有基本“磁荷”的粒子存在。

简单而言,磁单极子是一种在物理界尚未发现的基本粒子。

磁单极子是理论物理学弦理论中指一些仅带有北极或南极单一磁极的磁性物质,它们的磁感线分布类似于点电荷的电场线分布。

从而启发了许多物理学家开始了他们寻找磁单极子的工作。

磁单极子这种粒子听起来虚无缥缈,让人难以置信,因为它们完全来自于纸上计算。

但是,既然电荷能够被分为独立的正电荷和负电荷,那么磁似乎也应该能被独立出南极和北极。

物理中电磁感应论文

物理中电磁感应论文摘要:在研究平衡类问题时,首先要确定研究对象,对其进行受力分析,然后根据平衡条件建立方程,最后结合电磁感应规律求解具体问题。

对于能量类问题,要注意电磁感应过程中的能力守恒及转换,寻找关系,列出方程。

电量计算也是电磁感应中应该注意的问题之一,可以由交流电中的平均电流求电量,也可以用动量定理求电磁感应中的电量,还可以利用表达式q=δφ/r计算电量。

关键字:物理;电磁感应;教与学物理学是人们在实验与长期生活实践的基础上总结出来的科学,它具有很强的实验性。

物理学教学就是培养学生的观察能力、实验能力、分析问题与解决问题能力。

物理学习过程中,电磁感性涉及的知识面较广,是知识的重点,是高考物理命题的热点,且比较晦涩难懂。

电磁感应现象与磁场、直流电路、力和运动、动量和能量等知识点联系密切,与这些知识点密切相关的综合性问题在考试中也时常出现,因此,要注意培养学生运用这些知识解决实际问题的能力。

一、物理中电磁感应教与学首先,重视预习,从阅读中发现问题。

学生通过教材复习,了解课程要讲授的问题。

教师根据教学大纲的要求及学生的实际水平,做好备课,准备好思考题,让学生在复习过程中发现问题,寻找有关答案,培养学生的自学能力与解决问题的能力。

例如,在讲授“电磁感应现象”这节之前,教师提出“产生感应电流的条件是什么?如何判定感应电流的方向?”之类的问题,让学生通过阅读教材找到答案,在学习过程中有的放矢,主动寻求知识。

通过预习这种方式,学生通过完成思考题,掌握教材中简单的理论知识,有利于教师集中时间讲解重点、难点。

其次,重视实验教学,培养学生的动手能力。

实验教学将物理知识化抽象为具体,使学生直观地观察实验,进而培养学生的观察能力、动手能力和形象思维能力。

学生通过具体实验操作,掌握了实验原理及技巧,提高了学习效率。

例如,学生通过“电磁感应”实验,学生通过实验,从实验中学习到利用磁场可以产生电流,并且可以判断感应电流的方向与产生条件,这样学生不仅掌握了实验技巧,还通过实验验证教材中的理论知识,丰富了学生的知识,使学生成为学习的主人,为掌握本节重点奠定基础。

电磁学小论文-物理

静电加速器的研究与探讨班级物理101 姓名教师姓名摘要:本论文通过分析原理的方法对静电加速器进行研究,得出静电加速器是以静电型高压发生器作为高压电源的加速器的结论。

它主要是通过针尖在气体中的电晕放电,使周围与针尖极性相同的离子在电场作用下从针尖喷向输电带,使输电带充电。

静电加速器属于低能加速器,主要作各种技术应用。

关键词:静电加速器高压电荷绝缘引言静电加速器的发明,为人类文明发展作出了巨大贡献。

使核物理学、粒子物理学得到了迅速发展。

加速器的发明和发展的过程,也就是人类认识物质结构、特别是认识亚原子结构的过程,通过研究能进一步明确人类认识物质结构的发展方向。

正文:图一为动带型静电高压发生器的工作原理图。

把高压电极近似看做闭合金属壳,则壳的内壁只能具有与壳内空间的电荷异号的电荷,即负电荷,故针尖得到的正电荷不断传到电极外壁,并使电极与地之间的电压不断升高。

这是从内部向导体壳输送电荷的一个实例。

随着输电带的运动,带上的电荷进入高压电极。

极内刮电针排同高压电极相连和输电带之间所形成的电场,同样使气体电晕放电,从而使电荷转移到高压电极上去。

随着不停传送电荷,高压电极的电压很快地升高。

假设高压电极对地的电容是C,当它上面积累的电荷是Q 时,它对地的电压可由公式1 来决定。

公式1有了高压发生器再配上离子源、加速管、分析器、电压稳定和控制系统以及真空系统等必要的部件就构成了一台完整的质子静电加速器。

图2为质子静电加速器典型的结构简图。

为了提高静电加速器的工作电压(即离子束能量)和束流强度,近代静电加速器都是安放在钢筒内。

钢筒内充有绝缘性能良好的高压气体,以提高静电高压发生器的耐压强度;绝缘支柱上均装有分压环及分压电阻(或电晕针组件)等部件,以使电场沿绝缘支柱、加速管和输电带(链)尽可能地均匀分布。

钢筒外的分析器(磁或静电分析器)是为了对经过加速的带电粒子进行质量和能量选择而设置的。

带电粒子流通过分析器后再经过一段束流输运管道,最后打到靶上,提供物理实验使用。

电磁学的应用及原理论文

电磁学的应用及原理论文引言电磁学是物理学的重要分支,研究电荷之间的相互作用以及电场和磁场对物体的影响。

电磁学的应用十分广泛,涵盖了许多领域,包括工业、通信、医学等。

本论文将介绍电磁学的应用及其原理,探讨其在各个领域中的重要性和影响。

电磁学的基本原理电磁学的研究基于两个基本方程:电场的高斯定律和磁场的法拉第定律。

根据这些基本方程,我们可以推导出许多电磁学的定律和理论。

以下是一些电磁学的基本原理:•库仑定律:描述了两个电荷之间的力和它们之间的相互作用。

电磁力的大小与电荷之间的距离成反比,与它们的电荷量的乘积成正比。

•安培定律:描述了电流通过导线时产生的磁场。

根据安培定律,电流的大小和方向决定了所产生磁场的强度和方向。

•法拉第定律:描述了磁场对电流产生的感应力。

根据法拉第定律,当一个导体在磁场中运动时,磁场会对导体中的电荷产生力,从而产生感应电流。

电磁学的应用电磁学在工业领域中的应用电磁学在工业领域中有着广泛的应用。

以下是一些示例:1.电动机:电动机是将电能转化为机械能的设备,它利用电磁场中的相互作用来产生转矩。

电动机广泛应用于各种机械设备中,如风力发电机、电动汽车等。

2.发电机:发电机是将机械能转化为电能的设备,它利用电磁学原理来产生电流。

发电机广泛应用于电力系统中,为我们提供稳定的电力供应。

3.变压器:变压器是将交流电的电压变换为不同电压的装置,它利用电磁学原理来实现电压的转换。

变压器在电力系统中起到重要的作用,帮助实现电能的传输和分配。

电磁学在通信领域中的应用电磁学在通信领域中起着至关重要的作用。

以下是一些示例:1.电磁波传输:无线电、电视、手机等通信设备都是利用电磁波进行信息传输的。

电磁学原理帮助我们理解电磁波的传播和调制技术,从而实现高效的通信。

2.天线技术:天线是接收和发送无线电波的设备,它利用电磁学原理来实现无线通信。

不同类型的天线可以接收和发射不同频率的电磁波,如Wifi、蓝牙等。

3.电磁兼容性:电磁兼容性是指设备在电磁环境中能够正常工作,而不会相互干扰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。








姓名:xx 院系:计算机通信工程学院
班级:计算机科学与技术
学号:1401542044
电磁运动是物质的又一种基本运动形式,电磁相互作用是自然界已知的四种基本相互作用之一,也是人们认识得较深入的一种相互作用。

在日常生活和生产活动中,在对物质结构的深入认识过程中,都要涉及电磁运动。

因此,理解和掌握电磁运动的基本规律,在理论上和实际上都有及其重要的意义,这也就是我们所说的电磁学。

库伦定律
1785 年法国物理学家库伦用扭秤实验测定了两个带电球体之间的相互作用的电力。

库伦在实验的基础上提出了两个点电荷之间的相互作用的规律,即库仑定律:在真空中,两个静止的点电荷之间的相互作用力,其大小和他们电荷的乘积成正比,与他们之间距离的二次方成反比;作用的方向沿着亮点电荷的连线,同号电荷相斥,异号电荷相吸。

这是电学以数学描述的第一步。

我们现在用的电器,绝大部分都靠电流,而没有电荷(甚至接地以免产生多余电荷)。

也就是说,正负电仍是抵消,但相互移动。

电线中电荷为零,却仍然可以有电流。

安培定律
法国物理学家安培提出:所有磁性的来源,或许就是电流。

他在1820 年,听到奥斯特实验结果之后,两个星期之内,便开始实验。

五个月内,便证明了两根通电的导线之间也有吸力或斥力。

这就是电磁学中第二个最重要的定理“安培定律”:两根平行的长直导线中皆有电流,若电流方向相同,则相吸引。

反之,则相斥。

力之大小与两线之间距离成反比,与电流之大小成正比。

以后,安培又证实了通了电流的筒状线圈之磁性,与磁铁棒完全一样。

所以他提出假说:物质
的磁性,都是由物质内的电流而引起的。

这也就是所说的磁生电现象——他后来被誉为“电磁学”的始祖(电与磁从此在物理中是分不开的)。

他的名字,也成了电流的单位。

安培这个发现,在应用上极为重要。

它提出了用电流而发出动力,使物体动起来的方法,准确而可靠。

因此,它是电流计(以及各种电表)、电马达、电报、电话的原理。

安培定律之后,电磁学理论与应用之发展可以说是风起云涌。

法拉第定律
法拉第早年是达维的助手,他对电解有很周密的研究。

他发现了通电量与分解量有一定的关系,并且与被分解的元素之原子量有一定的关系。

由此,可以大致导致两个结论:
(1)每个原子中有一定的电含量。

(2)原子在化合时,这些电量起了作用,而通电可使化合物分解。

因此,牛顿寻求的分子中的化合之力,必与电有关。

此想法在 1807 年由达维提出,法拉第进一步加以验证,至今尚是正确的。

法拉第则较牛顿更进一步,提出了场的概念:空中任意一点,虽然空无一物,但有电场或磁场之存在,这种场可使带电或带磁之物质受力。

而‘力线’则是表现‘场’的一种方式。

但是,法拉第的‘场’观念,当时也受到强烈的质疑与反对。

把‘场’观念精确化,数学化的是后来的麦克斯韦。

法拉第发现,一个移动的磁铁或通了电流的筒状线圈,也可以使附近的线圈中,产生感应电流──这就是电磁学中第三个最重要的法拉第定律。

这个定律与库伦、安培都不同;它是动态的。

第一线圈中的电流变化越快,第二线圈中的电流越大。

或磁铁、有电
流的筒状线圈,移动得越快,第二线圈中的电流也越大。

这就是发电机的原理。

麦克斯韦电磁理论
与法拉第之实验天才对比,麦克斯韦则是长于数学的理论物理学家的典型。

他生于苏格兰的一个小康之家。

自幼便充分显示了数学之才能。

他先在阿伯丁大学任教,以后转往剑桥。

在物理中,今日麦克斯韦之重要性,几乎可以与牛顿、爱因斯坦等量齐观。

但生前,麦克斯韦并不受其故乡苏格兰的欢迎。

他在剑桥大学则受到重用。

他1855年,发表了《法拉第之力线》一文,受到将退休的法拉第的鼓励。

1862年,他由理论推导出:电场变化时,也会感应出磁场。

这与法拉第的电感定律相对而相成,合称电磁交感。

此后他出版了《电磁场的动态理论》,《电磁论》,其重要性可以与牛顿的《自然哲学的数学原理》相提并论。

通过了数学中的向量分析,麦克斯韦写下了著名的麦克斯韦方程式,不但完整而精确地描述了所有的已知电磁场的现象,而且有新的预言。

其中最重要的是:
(1)由于电磁交感,故电磁场可以在真空中以波的形式传递。

(2)计算的结果,这波的速度与光速一致,故光是一种可见的电磁波。

(3)这种波也携带能量、动量等,并且遵从守恒律。

“光是一种电磁波”。

这句话现在是常识,在当年则骇人听闻。

麦克斯韦只靠纸上谈兵,就做大胆宣言,也难怪当年根本不信有电磁波的人居多。

但他自己却信心满满。

有人告诉他有关的实验结果,不完全成功,他毫不在意。

他有信心他的理论一定是对的。

麦克斯韦的电磁理论,成为现在理工科的学生都要修的电磁学。

简单的说来,电磁学核心只有四个部分:库伦定律,安培定律,法拉第定律与麦克斯韦方程式。

并且顺序也一定如此。

这可以说与电磁学的历史发展平行。

其原因也不难想象;没有库仑定律对电荷的观念,安培定律中的电流就不容易说清楚。

不理解法拉第的磁感生电,也很难了解麦克斯韦的电磁交感。

这套电磁理论,在物理学中,是与牛顿力学分庭抗礼的古典理论之一。

如果以应用之广,经济价值之大而言,犹在牛顿力学之上。

但也不能忘记,如果没有牛顿力学中力的概念,电磁学也发生不了。

电磁学中的各定律,也无法理解。

回顾电磁学的历史,是很有趣的。

电磁到了后来,其产生的结果,竟然改造了世界。

当然,并不是所有科学工作都有这样大的威力。

然而,科学有这样的可能,却是我们不得不重视科学研究的终极原因。

在我们在大二没有物理课的情况下,在您的课堂上,我巩固了我的物理知识,同时更深层次的理解了物理常识,知道了物理和现实是息息相关的,虽然快要结课了,但我会在课余时间去了解我感兴趣的物理知识,同时也谢谢老师给我们上课。

姓名:xx
院系:计算机与通信工程学院
班级:计算机科学与技术
学号:10100410554。

相关文档
最新文档