电压比较器设计

合集下载

电压比较器工作原理及电路图分析

电压比较器工作原理及电路图分析
工博士商城

02
电压比较器工作
原理
二. 电压比较器工作原理
电压比较器可以看作是放大倍数接近“无穷大”的运算放大器。可 用来比较两个电压的大小(用输出电压的高或低电平,表示两个输入电压 的大小关系):当”+”输入端电压高于”-”输入端时,电压比较器输 出为高电平;当”+”输入端电压低于”-”输入端时,电压比较器输出 为低电平;可工作在线性工作区和非线性工作区。工作在线性工作区时 特点是虚短,虚断;工作在非线性工作区时特点是跳变,虚断; 由于比较器的输出只有低电平和高电平两种状态,所以其中的集成 运放常工作在非线性区。从电路结构上看,运放常处于开环状态,又是 为了使比较器输出状态的转换更加快速,以提高响应速度,一般在电路 中接入正反馈。下面让我们来看看详细的电压比较器原理分析。
工博士商城

二. 电压比较器工作原理
图1(a)是比较器,它有两个输入端:同相输入端(“+” 端) 及反相 输入端(“-”端),有一个输出端Vout(输出电平信号)。另外有电源V+及 地(这是个单电源比较器),同相端输入电压VA,反相端输入VB。VA和 VB的变化如图1(b)所示。在时间0~t1时,VA>VB;在t1~t2时,VB>V A;在t2~t3时,VA>VB。在这种情况下,Vout的输出如图1(c)所示:V A>VB时,Vout输出高电平(饱和输出);VB>VA时,Vout输出低电平。 根据输出电平的高低便可知道哪个电压大。如果把VA输入到反相端,V B输入到同相端,VA及VB的电压变化仍然如图1(b)所示,则Vout输出如 图1(d)所示。与图1(c)比较,其输出电平倒了一下。输出电平变化与VA、 VB的输入端有关。
电路比较器

如何设计简单的比较器电路

如何设计简单的比较器电路

如何设计简单的比较器电路比较器电路是一种用于将两个电压信号进行比较,并产生输出信号的电路。

在电子领域中,比较器电路被广泛应用于模拟信号处理、数字电路和自动控制系统等领域。

本文将介绍如何设计一种简单的比较器电路。

比较器电路的基本原理是将两个输入电压进行大小比较,并输出相应的电平信号。

比较器电路通常由一个差动放大器和一个输出级组成。

差动放大器负责将输入信号放大,而输出级则根据放大后的结果产生输出信号。

简单的比较器电路可以通过使用运算放大器来实现。

运算放大器是一种具有高增益、高输入阻抗和低输出阻抗的放大器。

在比较器电路中,将运算放大器的非反相输入端连接到一个参考电压源,将反相输入端连接到一个待比较的信号源。

当待比较信号的电压高于参考电压时,运算放大器输出高电平;反之,输出低电平。

设计简单的比较器电路需要考虑以下几个要点:1. 选择合适的运算放大器:根据实际需求选择适合的运算放大器。

常用的运算放大器有LM741、TL082等。

需要考虑供电电压范围、增益、带宽等参数。

2. 设置参考电压:参考电压确定了比较器的阈值。

可以使用电位器或分压电路来设置参考电压,使其可以根据需要进行调节。

3. 输入信号处理:待比较信号需要经过一定的预处理,以适应比较器的输入范围。

例如,使用电阻分压将待比较信号的幅值缩小,以确保输入电压不会超过运算放大器的工作范围。

4. 输出信号驱动:比较器的输出信号通常需要驱动其他电路或设备。

在设计中,需要确定输出信号的逻辑电平(高电平或低电平),并选择合适的输出级来实现电平转换和放大。

5. 考虑噪声和漂移:比较器电路在实际应用中需要考虑噪声和漂移的影响。

可以通过添加滤波电路和使用稳定性较好的元件来减小这些影响。

总结起来,设计简单的比较器电路需要选择合适的运算放大器、设置参考电压、预处理输入信号、考虑输出信号驱动和处理噪声漂移等因素。

合理地设计比较器电路可以使其在各种应用场合中正常工作,并满足特定的电压比较需求。

基于集成运算放大器的窗口电压比较器的设计

基于集成运算放大器的窗口电压比较器的设计

图1 内窗口特性的窗口电压比较器三要素图示图2 外窗口特性的窗口电压比较器三要素图示10..|..电子制作....2017年4月
(a)仿真电路
(b)输出幅度测试
(c)阈值测试
3 内窗口特性的电压比较器仿真测试
..|..
其阈值为U TH ;运放U2构成一个反相输入型单限电压比较器,其阈值为U TL 。

在比较结果输出端,用两个二极管
D2共阴接法构成“或逻辑”结构;用R3和R4个稳压管D3和D4反向串联构成双向稳压电路。

下拉电阻的选择,应该使得两个二极管D1和D2都截止时,稳D3处于反向击穿稳压区,而D4处于正向导通区,窗
口比较器输出稳定的低电平u o =U OL =-5.5V.。

电阻选择,应该保证当二极管的共阴端(u o ′)输出正限幅值(a)仿真电路(b)输出幅度测试(c)阈值测试4 外窗口特性的电压比较器仿真测试..|..电子制作....2017年4月。

《电压比较器的应用》课件

《电压比较器的应用》课件
检查版图规则
在绘制完版图后,检查版图是否符合设计规则, 确保版图的正确性和可制造性。
电压比较器的仿真与测试
建立仿真模型
根据电路设计和版图布局,建立电压比较器的仿真模 型。
进行仿真测试
使用仿真软件对电压比较器进行仿真测试,观察电路 的性能指标是否满足设计要求。
进行实际测试
在实际环境中,搭建测试平台对电压比较器进行实际 测试,验证其性能和可靠性。
研究方向二
研究电压比较器的数字化控制技术,实现智能化 和自适应调节。通过引入数字信号处理技术,对 电压比较器的输出信号进行数字化处理,提高其 抗干扰能力和稳定性。
研究方向四
研究电压比较器的可靠性技术,以提高其在复杂 环境下的稳定性和可靠性。通过加强器件可靠性 设计、优化电路布局和布线等措施,提高电压比 较器的抗干扰能力和稳定性。
选择合适的比较器芯片
根据输入信号范围、精度要求和功耗等因素,选择合适的比较器芯 片。
设计比较器电路
根据比较器芯片的规格书,设计比较器电路,包括输入级、放大器 和输出级等部分。
电压比较器的版图设计
设计版图布局
根据电路设计,合理规划版图布局,确保电路元 件之间的连接关系正确、紧凑。
绘制版图
使用EDA工具,按照电路元件的连接关系,逐一 绘制每个元件的版图。
详细描述
功耗是指电压比较器在工作过程中所消耗 的能源量,通常以功率或能量消耗来表示 。功耗的大小直接影响到比较器的发热、 效率以及电源的负载能力。在节能减排和 绿色环保的背景下,功耗已经成为评价电 子设备性能的重要指标之一。
04
电压比较器的设计与实现
电压比较器的电路设计
确定输入信号范围
根据应用需求,确定电压比较器的输入信号范围,以便选择合适 的比较器芯片或自行设计电路。

电压比较器的分析与设计实验报告

电压比较器的分析与设计实验报告

电压比较器的分析与设计实验报告篇一:东南大学模电实验报告_比较器东南大学电工电子实验中心实验报告课程名称:第 6 次实验实验名称:比较器电路院(系):专业:姓名:学号:实验室:实验组别:同组人员:实验时间:评定成绩:审阅教师:实验六比较器电路一、实验目的1、熟悉常用的单门限比较器、迟滞比较器、窗口比较器的基本工作原理、电路特性和主要使用场合;2、掌握利用运算放大器构成单门限比较器、迟滞比较器和窗口比较器电路各元件参数的计算方法,研究参考电压和正反馈对电压比较器的传输特性的影响;3、了解集成电压比较器LM311的使用方法,及其与由运放构成的比较器的差别;4、进一步熟悉传输特性曲线的测量方法和技巧。

二、实验原理三、预习思考1、用运算放大器LM741设计一个单门限比较器,将正弦波变换成方波,运放采用双电源供电,电源电压为±12V,要求方波前后沿的上升、下降时间不大于半个周期的1/10,请根据LM741数据手册提供的参数,计算输入正弦波的最高频率可为多少。

答:查询LM74的数据手册,可得转换速率为0.5V/us,电源电压为?10V左右,计算可得输出方波的最大上升时间为40us,根据设计要求,方波前后沿的上升下降时间不大于半个周期的1/10,计算可得信号的最大周期为800us,即输入正弦波得到最高频率为1.25KHZ. 2、画出迟滞比较器的输入输出波形示意图,并在图上解释怎样才能在示波器上正确读出上限阈值电平和下限阈值电平。

答:Ch1接输入信号,ch2接输出信号,两通道接地,分别调整将两个通道的零基准线,使其重合。

用示波器的游标功能,通道选择ch1,功能选择电压,测出交点位置处电压即对应上限和下限阈值。

4、完成必做实验和选做实验的电路设计和理论计算。

答:1)LM741构成单门限电压比较器:2)LM311构成单门限电压比较器: 3)迟滞电压比较器:四、实验内容1、单门限电压比较器:(I) 用LM741构成一个单门限电压比较器,基准电平为0V,要求输出高低电平为±6V,供电电压为±12V,输入频率为1KHZ的正弦波,用示波器观察输入、输出信号波形,并用坐标纸定量记录(提示:可以使用稳压管)。

电压比较器的设计

电压比较器的设计
➢ 电压比较器简介 ➢ 设计需求 ➢ 设计中遇到的几个问题和解
决办法 ➢ 设计结果
设计需求
➢ 输入参考电压:-1.0V to 1.0V ➢ 待比较电压:2 Vp-p的正弦波 ➢ 允许的输入带宽:100kHz ➢ 输出高电平为3~3.3V,输出低电平为0V ➢ 输出电平能够驱动50欧姆的负载 ➢ 正弦波电压大于参考电压时,有时需要
输出高电平,有时则需要低电平。
报告内容
➢ 电压比较器简介 ➢ 设计需计结果
遇到的问题
问题1:LM393的输出电平不满足要求
IN+ < IN- 时,橙色框图 内的三极管进入放大区, OUT被下拉到VEE IN+ > IN 时, 此三极管进入截止区, OUT悬空,需要通过一 个电阻上拉到VCC
期内完成,则周期最小为20μs,频
率最大50kHz,不满足我们的需求
遇到的问题
问题2的解决方案的具体实现:
换用压摆率较大的运放TL082进行电压跟随,TL082在电源为±15V 时的压摆率是13V/μs,电源为±5V时的压摆率手册没有给出,但 实际的测试结果显示,当输入信号达到200kHz时,输出仍然可以很 好地跟随,满足要求
如此,OUT输出的 高电平是VCC, 低电平是VEE
遇到的问题
问题1:LM393的输出电平不满足要求
由于参考电压可能出现负电压,故比较器的VEE应该是负电压,且应 该小于参考电压的最小值(dadasheet没有给出VEE 为负的测试结果, 需要实测)
问题1的解决方案:
遇到的问题
问题1的解决方案的具体实现:
从IN+ < IN-到输出 电平开始变化,延 时420ns,由比较器 决定
结果
CH1(+): Freq:200KHz Ampli:2V Offset:0V

利用LM393LM339比较器实现蓄电池单电压比较电路设计

利用LM393LM339比较器实现蓄电池单电压比较电路设计

利用LM393/LM339比较器实现蓄电池单电压比较电路设计【任务引领】对于一个标称电压为12V 的铅酸蓄电池,在常温下,当蓄电池充电电压达到14.5V 时,认为充满;当蓄电池放电,电压降低到10.8V 时,放电截止。

将蓄电池电压小于12V 时的状态认为是缺电状态,大于12V 认为不缺电状态,当蓄电池处于缺电状态时应及时给于充电,否则将会影响蓄电池的使用寿命。

本项目利用比较器实现蓄电池缺电状态的的识别与判断,电路如下图5.15所示,当蓄电池电压小于12V 时,报警指示点亮。

VCC D15 VD35 V图5.15 蓄电池缺电报警电路【知识目标】1.掌握比较器电路的组成及特点;2.掌握单限电压比较器、双限电压比较器的分析方法;【能力目标】1.能分析设计单限、双限比较电路;2.能利用比较器进行蓄电池缺电状态识别与报警。

【任务准备】1.集成运算放大器;2.集成运算放大电路分析方法;1.单限电压比较器电压比较器简称比较器。

它是一种把输入电压(被测信号)与另一电压信号(参考电压)进行比较的电路。

比较器输入的是连续的模拟信号,输出的是以高、低电平为特征的数字信号,即“1”或“0”。

因此,比较器可以作为模拟电路与数字电路的接口。

1.单限电压比较器电路构成开环工作的运算放大器是最基本的单限电压比较器。

根据输入方式不同,分为反相输入和同相输入两种。

反相输入单限电压比较器电路如图7.15(a)所示,输入信号u i从反相端加入,同相端加参考电压U R,输出电压为u o。

图5.16 单限电压比较器2.工作原理在电路中,输入信号u i 与参考电压U R 进行比较,根据集成运放非线性区工作的特点,运放的开环放大倍数很大,只要有一微小的输入电压(u i –U R ),输出电压u o 便可达到正向饱和值+U om 或负向饱和值–U om ,即当i R u U >时,o om u U =-; 当i R u U <时,o om u U =+; 当i R u U =时,o u 发生跳变。

模电自主设计实验—同相滞回电压比较器的研究 - 副本

模电自主设计实验—同相滞回电压比较器的研究 - 副本

姓名班级学号实验日期节次教师签字成绩实验名称同相滞回电压比较器的研究1.实验目的1.掌握同相滞回电压比较器的电路构成及特点。

2.掌握测试同相滞回电压比较器的方法。

3.掌握同相滞回电压比较器的设计方法。

4.掌握同相滞回电压比较器的仿真方法。

2.总体设计方案或技术路线1.应用背景电压比较器是集成运算放大器非线性应用电路,它是对输入信号鉴幅和比较的电路,是组成非正弦波发生电路的基本单元电路,在测量和控制中有着相当广乏的应用。

所以本次试验以研究同相滞回电压比较器为基础来了解电压比较器的特性和功能。

2.同相滞回电压比较器滞回比较器有两个阈值电压,输入电压ui从小变大过程中使输出电压uo产生跃变的阈值电压U T1,不等于从大变小过程中是输出电压产生跃变的阈值电压U T2,电路具有回滞特性。

同相滞回电压比较器的电路如图1所示,根据电压传输特性可知,输入电压作用于同相输入端,uo=U Z−+。

求解阈值的电压表达式为u p=R FR1+R Fu I+R1R1+R Fu O=u N=0±U T=±R1R FU Z3.实验电路图图中R F为100 KΩ,R1为10 KΩ,R2为5.1 KΩ4.仪器设备名称、型号1.示波器 1台2.直流稳压电源 1台3.低频信号发生器 1台4.交流毫伏表 1台5.万用表 1块6.模电实验箱 1台5.理论分析或仿真分析结果理论的传输特性曲线为R FR26.详细实验步骤及实验结果数据记录一.基础实验运放选择LM324芯片,按图1正确连接好电路,并进行如下操作:1.u I接±5V可调直流电源,调输入电压测出u O由+U OM→−U OM时的u I临界值。

并记录U T1到表格1中2. u I接±5V可调直流电源,调输入电压测出u O由−U OM→+U OM时的u I临界值。

并记录U T2到表格1中。

表格1并且根据以上结果绘制出传输特性曲线:3.输入幅值u I=1.5V、频率f=500H z的正弦波,观察u I−u O波形并记录如下。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电压比较器基本原理及设计应用
时间:2010-01-04 12:31:26 来源:作者:方佩敏
本文主要介绍电压比较器基本概念、工作原理及典型工作电路,并介绍一些常用的电压比较器。

电压比较器(以下简称比较器)是一种常用的集成电路。

它可用于报警器电路、自动控制电路、测量技术,也可用于V/F变换电路、A/D变换电路、高速采样电路、电源电压监测电路、振荡器及压控振荡器电路、过零检测电路等。

什么是电压比较器
简单地说,电压比较器是对两个模拟电压比较其大小(也有两个数字电压比较的,这里不介绍),并判断出其中哪一个电压高,如图1所示。

图1(a)是比较器,它有两个输入端:同相输入端(“+”端)及反相输入端(“-”端),有一个输出端Vout(输出电平信号)。

另外有电源V+及地(这是个单电源比较器),同相端输入电压VA,反相端输入VB。

VA和VB 的变化如图1(b)所示。

在时间0~t1时,VA>VB;在t1~t2时,VB>VA;在t2~t3时,VA>VB。

在这种情况下,Vout的输出如图1(c)所示:VA>VB时,Vout输出高电平(饱和输出);VB>VA时,Vout输出低电平。

根据输出电平的高低便可知道哪个电压大。

如果把VA输入到反相端,VB输入到同相端,VA及VB的电压变化仍然如图1(b)所示,则Vout输出如图1(d)所示。

与图1(c)比较,其输出电平倒了一下。

输出电平变化与VA、VB的输入端有关。

图2(a)是双电源(正负电源)供电的比较器。

如果它的VA、VB输入电压如图1(b)那样,它的输出特性如图2(b)所示。

VB>VA时,Vout输出饱和负电压。

如果输入电压VA与某一个固定不变的电压VB相比较,如图3(a)所示。

此VB称为参考电压、基准电压或阈值电压。

如果这参考电压是0V(地电平),如图3(b)所示,它一般用作过零检测。

比较器的工作原理
比较器是由运算放大器发展而来的,比较器电路可以看作是运算放大器的一种应用电路。

由于比较器电路应用较为广泛,所以开发出了专门的比较器集成电路。

图4(a)由运算放大器组成的差分放大器电路,输入电压VA经分压器R2、R3分压后接在同相端,VB通过输入电阻R1接在反相端,RF为反馈电阻,若不考虑输入失调电压,则其输出电压Vout与VA、VB及4个电阻的关系式为:
Vout=(1+RF/R1)·R3/(R2+R3)VA-(RF/R1)VB。

若R1=R2,R3=RF,则
Vout=RF/R1(VA-VB),RF/R1为放大器的增益。

当R1=R2=0(相当于R1、R2短路),
R3=RF=∞(相当于R3、RF开路)时,Vout=∞。

增益成为无穷大,其电路图就形成图4(b)的样子,差分放大器处于开环状态,它就是比较器电路。

实际上,运放处于开环状态时,其增益并非无穷大,而Vout输出是饱和电压,它小于正负电源电压,也不可能是无穷大。

时间:2010-01-04 12:31:26 来源:作者:方佩敏
从图4中可以看出,比较器电路就是一个运算放大器电路处于开环状态的差分放大器电路。

同相放大器电路如图5所示。

如果图5中RF=∞,R1=0时,它就变成与图3(b)一样的比较器电路了。

图5中的Vin相当于图3(b)中的VA。

比较器与运放的差别
运放可以做比较器电路,但性能较好的比较器比通用运放的开环增益更高,输入失调电压更小,共模输入电压范围更大,压摆率较高(使比较器响应速度更快)。

另外,比较器的输出级常用集电极开路结构,如图6所示,它外部需要接一个上拉电阻或者直接驱动不同电源电压的负载,应用上更加灵活。

但也有一些比较器为互补输出,无需上拉电阻。

这里顺便要指出的是,比较器电路本身也有技术指标要求,如精度、响应速度、传播延迟时间、灵敏度等,大部分参数与运放的参数相同。

在要求不高时可采用通用运放来作比较器电路。

如在A/D变换器电路中要求采用精密比较器电路。

由于比较器与运放的内部结构基本相同,其大部分参数(电特性参数)与运放的参数项基本一样(如输入失调电压、输入失调电流、输入偏置电流等)。

比较器典型应用电路
这里举两个简单的比较器电路为例来说明其应用。

1.散热风扇自动控制电路
一些大功率器件或模块在工作时会产生较多热量使温度升高,一般采用散热片并用风扇来冷却以保证正常工作。

这里介绍一种极简单的温度控制电路,如图7所示。

负温度系数(NTC)热敏电阻RT粘贴在散热片上检测功率器件的温度(散热片上的温度要比器件的温度
略低一些),当5V电压加在RT及R1电阻上时,在A点有一个电压VA。

当散热片上的温度上升时,则热敏电阻RT的阻值下降,使VA上升。

RT的温度特性如图8所示。

它的电阻与温度变化曲线虽然线性度并不好,但是它是单值函数(即温度一定时,其阻值也是一定的单值)。

如果我们设定在80℃时应接通散热风扇,这80℃即设定的阈值温度TTH,在特性曲线上可找到在80℃时对应的RT的阻值。

R1的阻值是不变的(它安装在电路板上,在环境温度变化不大时可认为R1值不变),则可以计算出在80℃时的VA值。

R2与RP组成分压器,当5V电源电压是稳定电压时(电压稳定性较好),调节RP可以改变VB的电压(电位器中心头的电压值)。

VB值为比较器设定的阈值电压,称为VTH。

设计时希望散热片上的温度一旦超过80℃时接通散热风扇实现散热,则VTH的值应等于80℃时的K值。

一旦VA>VTH,则比较器输出低电平,继电器K吸合,散热风扇(直流电机)得电工作,使大功率器件降温。

VA、VTH电压变化及比较器输出电压Vout的特性如图9所示。

这里要说清楚的是在VA开始大于VTH时,风扇工作,但散热体有较大的热量,要经过一定时问才能把温度降到80℃以下。

从图7可看出,要改变阈值温度TTH十分方便,只要相应地改变VTH值即可。

VTH值增大,TTH增大;反之亦然,调整十分方便。

只要RT确定,RT的温度特性确定,则R1、R2、RP可方便求出(设流过RT、R1及R2、RP的电流各为0.1~0.5mA)。

2.窗口比较器
窗口比较器常用两个比较器组成(双比较器),它有两个阈值电压VTHH(高阈值电压)及VTHL(低阈值电压),与VTHH及VTHL比较的电压VA输入两个比较器。


VTHL≤VA≤VTHH,Vout输出高电平;若VA<VTHL,VA>VTHH,则Vout输出低电平,如图10所示。

图10是一个冰箱报警器电路。

冰箱正常工作温度设为0~5℃,(0℃到5℃是一个“窗口”),在此温度范围时比较器输出高电平(表示温度正常);若冰箱温度低于0V或高于5℃,则比较器输出低电平,此低电平信号电压输入微控制器(μC)作报警信号。

温度传感器采用NTC热敏电阻RT,已知RT在0℃时阻值为333.1kΩ;5℃时阻值为258.3kΩ,则按1.5V工作电压及流过R1、RT的电流约1.5uA,可求出R1的值。

R1的值确定后,可计算出0℃时的VA值为0.5V(按图10中R1=665kΩ时),5℃时的VA 值为0.42V,则VTHL=0.42V,VTHH=0.5V。

若设R2=665kΩ,则按图11,可求出流过R2、R3、R4电阻的电流I=(1.5V-0.5V)/665kΩ=0.0015mA,按R4×I/=0.42V,可求出
R4=280kΩ再按0.5V=(R3+R4)0.0015mA,则可求出R3=53.3kΩ。

本例中两个比较器采用低工作电压、低功耗、互补输出双比较器LT1017,无需外接上拉电阻。

相关文档
最新文档