坐标系和参数方程(知识点 选题)
坐标系与参数方程知识点

坐标系与参数方程知识点在数学中,坐标系与参数方程是两个重要且密切相关的概念。
坐标系是我们描述点的位置和相互关系的工具,而参数方程则是一种表示曲线或曲面的常用方法。
让我们来深入了解这两个知识点,它们的应用领域和一些实际问题的解决方法。
一、坐标系在平面几何学和空间几何学中,坐标系用于表示点的位置。
常用的坐标系有直角坐标系和极坐标系。
1. 直角坐标系直角坐标系是最常见的坐标系之一,由两条相互垂直的直线组成。
通常,水平直线被称为x轴,垂直直线被称为y轴。
任何点P都可以通过其与这两条轴的交点来表示,用一个有序数对(x, y)表示。
其中,x 称为横坐标,y称为纵坐标。
这种表示方法可以简化许多几何问题的求解,如计算两点之间的距离、判断点是否在某一区域内等。
2. 极坐标系极坐标系是另一种常用的坐标系,用于描述平面上的点。
与直角坐标系不同,它使用极径和极角来表示点的位置。
极径表示点到坐标原点的距离,极角则表示点与正半轴的夹角。
在极坐标系下,点的坐标用一个有序数对(r, θ)表示。
这种坐标系在描述圆形运动、天文学等领域具有重要应用。
二、参数方程参数方程是一种常用的表示曲线或曲面的方法,它使用一个或多个参数来描述点的位置。
通常,参数方程将x和y(或x、y、z)用一个或多个参数t表示。
1. 二维参数方程对于二维参数方程,曲线上的点可以用参数t与x、y的关系表示。
例如,对于抛物线y = x^2,我们可以使用参数方程x = t和y = t^2来表示。
通过改变参数t的值,我们可以得到这条曲线上的各个点。
参数方程的优势在于它可以描述一些传统的直角坐标系难以表示的曲线,如椭圆、双曲线等。
此外,参数方程还可以用于描述运动轨迹、弹道轨迹等。
2. 三维参数方程三维参数方程与二维参数方程类似,不同之处在于曲面上的点需要用参数t与x、y、z的关系表示。
例如,对于球体的参数方程x = r *sinθ * cosφ,y = r * sinθ * sinφ,z = r * cosθ,其中r、θ和φ是参数,描述了点与球心的关系。
2023年高考数学二轮复习重点基础练习:专题十八 考点48 坐标系与参数方程(A卷)

专题十八 考点48 坐标系与参数方程(A 卷)1.已知曲线C 的参数方程为2cos ,22sin x y ϕϕ=⎧⎨=+⎩(φ为参数),以坐标原点O 为极点,x轴的非负半轴为极轴建立极坐标系,曲线E 的极坐标方程为(1cos2)8cos ρθθ-=. (I)求曲线C 的极坐标方程,曲线E 的直角坐标方程;(Ⅱ)若曲线π3θ=与曲线C 在第一象限的交点为A ,与曲线E 在第一象限的交点为B ,求||AB .2.在直角坐标系xOy 中,曲线1C的参数方程为4cos ,,x y ϕϕ=⎧⎪⎨=⎪⎩(其中φ为参数),以O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为2cos 4cos 0ρθθρ+-=.(I)求曲线1C 的普通方程和曲线2C 的直角坐标方程;(Ⅱ)射线:l θα=与曲线1C ,2C 分别交于点,A B (均异于极点),当ππ64α≤≤时,求||||OB OA 的最小值. 3.在平面直角坐标系xOy 中,曲线1C 的参数方程为2224tan ,1tan 1tan 1tan x y αααα⎧=⎪⎪+⎨-⎪=⎪+⎩(α为参数,且ππ,2k k α≠+∈Z ,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系. (I)求曲线1C 的极坐标方程;(Ⅱ)设,M N 为曲线1C 上的两点,且π2MON ∠=,求MON △面积的最小值. 4.以坐标原点为极点,x 轴的正半轴为极轴且取相同的单位长度建立极坐标系,圆1C的极坐标方程为22πsin()804a ρθ+++-=(a 是大于0的常数).在平面直角坐标系xOy 中,圆2C的参数方程为1,1x y θθ⎧=+⎪⎨=+⎪⎩(θ为参数).(I)求圆1C 的直角坐标方程和圆2C 的极坐标方程;(Ⅱ)已知直线π:,12l θρ=∈R 与圆1C ,圆2C 交于,A B 两点(异于原点),且两圆外切,试求实数a 的值及||AB .5.在平面直角坐标系xOy 中,曲线C 的方程为229x y +=.以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系,直线l 经过点π(2,)3P ,且与极轴所成的角为α.(I)求曲线C 与直线l 的参数方程; (Ⅱ)设直线l 与曲线C 交于,D E两点,若11||||PD PE +=,求直线l 的普通方程.6.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为6cos ρθ=,[0,2π)θ∈. (I )求曲线C 的直角坐标方程;(Ⅱ)若经过点P 的直线l:,x m y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),与曲线C 交于A ,B两点,若||||40PA PB ⋅≥,求26m m -的取值范围.7.在极坐标系中,曲线1C的极坐标方程为πsin 4ρθ⎛⎫+= ⎪⎝⎭2C 的极坐标方程为2cos ρθ=-.(I )求曲线1C 和2C 的直角坐标方程;(Ⅱ)若点P 是曲线1C 上的一点,点Q 是曲线2C 上的一点,求||PQ 最小值及||PQ 最小时点P 的直角坐标.8.已知曲线1,:1x C y αα⎧=⎪⎨=+⎪⎩(a 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为sin )10ρθθ+--=. (I )求曲线C 的普通方程、直线l 的直角坐标方程;(Ⅱ)已知点(2,1)P ,若直线l 与曲线C 交于A ,B 两点,求11||||PA PB -的值. 9.直角坐标系xOy 中,直线l的参数方程是3,422x y ⎧=⎪⎪⎨⎪=-+⎪⎩(t 是参数).以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程是4cos ρθ=. (1)求直线l 的极坐标方程和曲线C 的直角坐标方程;(2)在极坐标系中,已知射线:(0)l θαρ'=≥与10x y +-=相交于点A ,与圆C 相交于点B (异于坐标原点O ),当π02α<<时,求||||OB OA 的最大值. 10.在直角坐标系xOy 中,曲线C 的参数方程为2cos ,2sin x y θθ=⎧⎨=⎩(θ为参数),把曲线C,得到曲线1C .曲线2C的参数方程为,sin x y ϕϕ⎧⎪⎨=⎪⎩(ϕ为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线1C 与2C 的极坐标方程;(2)设点P 是曲线2C 上的一点,此时参数π4ϕ=,记曲线1C 与y 轴正半轴的交点为T ,求OTP △的面积.答案以及解析1.答案:(I)4sin ρθ=;24y x =(Ⅱ)83-解析:(I)由曲线C 的参数方程为2cos ,22sin x y ϕϕ=⎧⎨=+⎩(φ为参数)得22(2)4x y +-=,即2240x y y +-=,故曲线C 的极坐标方程为4sin ρθ=. 由(1cos2)8cos ρθθ-=,得22sin 4cos ρθρθ=, 所以曲线E 的直角坐标方程为24y x =.(Ⅱ)联立曲线π3θ=与曲线C 的极坐标方程得π4sin 3A ρ==联立曲线π3θ=与曲线E 的极坐标方程得π8cos832π31cos 3B ρ==-,所以8||3A B AB ρρ=-=-.2.答案:(I)221168x y +=;24y x =(Ⅱ)解析:(I)由题可得曲线1C 的普通方程为221168x y +=,曲线2C 的直角坐标方程为24y x =. (Ⅱ)曲线1C 的极坐标方程为22161sin ρθ=+,所以||OA =. 又因为24cos ||sin OB αα=,所以||||OB OA ===因为ππ,64α⎡⎤∈⎢⎥⎣⎦,所以1sin 2α⎡∈⎢⎣⎦,所以当sin 2α=时,||||OB OA3.答案:(I)2243π(2π,)13sin 2k k ρθθ=≠+∈+Z(Ⅱ)45解析:(I)化简曲线1C 的参数方程得2222tan ,21tan 1tan 1tan x y αααα⎧=⎪⎪+⎨-⎪=⎪+⎩(α为参数,且ππ,2k k α≠+∈Z ),平方相加消去参数α得2214x y +=.221tan 1tan y αα-=+22π1(π,)1tan 2k k αα=-+≠+∈+Z , 11y ∴-<≤,∴曲线1C 的普通方程为221(1)4x y y +=≠-.将222cos sin ,,x y x y ρθρθρ=⎧⎪=⎨⎪+=⎩代入得22(cos )(sin )14ρθρθ+=.1y ≠-,∴曲线1C 的极坐标方程2243π(2π,)13sin 2k k ρθθ=≠+∈+Z .(Ⅱ)依题意设点,M N 的极坐标分别为(12π,),(,)2ρθρθ+, 代入曲线1C 的极坐标方程得212413sin ρθ=+,222244π13cos 13sin ()2ρθθ==+++,1212MON S ρρ∴=△12====,∴当2sin 21θ=时,即ππ,24k k θ=+∈Z 时,MON △面积有最小值45.4.答案:(I)222(2)(2)x y a +++=;π4ρθ⎛⎫=+ ⎪⎝⎭(Ⅱ)解析:(I)由22πsin()804a ρθ+++-=得224cos 4sin 80a ρρθρθ+++-=, 将222cos ,sin ,x y x y ρθρθρ===+代入上式,得圆1C 的直角坐标方程是222(2)(2)x y a +++=.由1,1x y θθ⎧=+⎪⎨=+⎪⎩(θ为参数)得1,1x y θθ⎧-⎪⎨-⎪⎩(θ为参数), 两式两边平方并相加可得圆2C 的普通方程是22(1)(1)2x y -+-=, 即2222x y x y +=+.由222cos ,sin ,x y x y ρθρθρ==+=,得圆2C 的极坐标方程是π224ρθθθ⎫⎛⎫=+=+⎪ ⎪⎪⎝⎭⎭.(Ⅱ)圆1C 的圆心(2,2)--,半径1r a =,圆2C 的圆心()1,1,半径2r =, 若圆1C 与圆2C 外切, 则1212C C r r =+,可得a =+a =,则圆1C 的极坐标方程为24cos 4sin 0ρρθρθ++=,即π4(cos sin )4ρθθθ⎛⎫=-+=-+ ⎪⎝⎭.设,A B 两点对应的极径分别为12,ρρ,联立π,12π,4θρθ⎧=⎪⎪⎨⎛⎫⎪=-+ ⎪⎪⎝⎭⎩可得1ππ124ρ⎛⎫=-+=-=-⎪⎝⎭联立π,12π,4θρθ⎧=⎪⎪⎨⎛⎫⎪=+ ⎪⎪⎝⎭⎩可得2ππ124ρ⎛⎫=+==⎪⎝⎭则||(AB =-=.5.答案:(I)1cos ,sin x t y t αα=+⎧⎪⎨=⎪⎩(t 为参数)(Ⅱ)y0y +-=.解析::(I)由曲线C 的普通方程229x y +=可知曲线C 是一个圆心为(0,0),半径为3的圆,所以圆C 的参数方程为3cos ,3sin x y θθ=⎧⎨=⎩(θ为参数).依题意知点P的直角坐标为,故直线l的参数方程为1cos ,sin x t y t αα=+⎧⎪⎨=⎪⎩(t 为参数).(Ⅱ)将直线l的参数方程1cos ,sin x t y t αα=+⎧⎪⎨=⎪⎩(t 为参数)代入229x y +=,得22cos )50t t αα++-=. 设点,D E 对应的参数分别为12,t t ,则12122cos ),5t t t t αα+=-+=-,则121211||||||||||||t t PE PD PD PE PE PD t t -++===, 所以12t t -==所以28sin cos 8sin (sin ααααα+=+)0α=, 所以sin 0α=或sin 0αα=,所以tan 0α=或tan α=,所以直线l的普通方程为y1)y x =-,即y0y +-. 6.答案:(I)226x y x += (II)[40,)+∞解析:(I)根据222cos ,sin ,,x y x y ρθρθρ=⎧⎪=⎨⎪+=⎩曲线C 的极坐标方程为6cos ρθ=,[0,2π)θ∈,整理得26cos ρρθ=. 故曲线C 的直角坐标方程为226x y x +=.(II)将直线l:,x m y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数)代入226x y x +=,可得223)60t m t m m -+-=. 设A ,B 两点对应的参数分别为1t ,2t ,由韦达定理得123)t t m +=-,2126t t m m =-, 则()2216(3)4605m m m ∆=--->, 故可得2636m m ->.因为212||||640PA PB t t m m ⋅==-≥, 所以2640m m -≤-或2640m m -≥, 故26m m -的取值范围为[40,)+∞.7.答案:(I )曲线1C 的直角坐标方程为20x y +-=;曲线2C 的直角坐标方程为22(1)1x y ++=(Ⅱ)1⎛-+⎝⎭解析:(I )由方程πsin 4ρθ⎛⎫+= ⎪⎝⎭sin cos 20ρθρθ+-=,故曲线1C 的直角坐标方程为20x y +-=. 由曲线2C 的极坐标方程可22cos ρρθ=-, 化为直角坐标方程得2220x y x ++=, 即曲线2C 的直角坐标方程为22(1)1x y ++=.(Ⅱ)易知2C 是以2(1,0)C -为圆心,1为半径的圆,则圆心2(1,0)C -到直线1C 的距离d =所以||PQ 的最小值为圆心2C 到直线1C 的距离减去圆2C 的半径,即min (||)1PQ =-, 此时直线PQ 与直线1C 垂直,且经过圆心2C , 所以直线PQ 的方程为10x y -+=,与22(1)1x y ++=联立,解得1x =-+或1x =-(舍),所以点P 的直角坐标为122⎛-+ ⎝⎭.8.答案:(I )曲线C 的普通方程22220x y x y +--=;直线l 的直角坐标方程为10y +--=(Ⅱ)1解析:(I )将曲线C 的参数方程1,1x y αα⎧=+⎪⎨=+⎪⎩(α为参数)消去参数α,得曲线C 的普通方程为22(1)(1)2x y -+-=,即22220x y x y +--=.由sin )10ρθθ+--=得cos sin 10θρθ+--,将cos x ρθ=,sin y ρθ=代入得直线l10y +--=. (Ⅱ)由题意得点(2,1)P 在直线l 上,设直线l的参数方程为12,21x t y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数), 代入22220x y x y +--=, 得210t t --=,2(1)41(1)50∆=--⨯⨯-=>,所以121t t +=,121t t =-, 由参数t 的几何意义得121211||||1||||||||t t PB PA PA PB PA PB t t +--===. 9.答案:(1)直线l 的极坐标方程为4cos 4sin 110ρθρθ--=,曲线C 的直角坐标方程为2240x y x +-= (2)2+解析:(1)将直线l的参数方程3,42x y ⎧=+⎪⎪⎨⎪=-+⎪⎩(t 是参数)消去参数得44110x y --=.将cos x ρθ=,sin y ρθ=代入得4cos 4sin 110ρθρθ--=.将cos x ρθ=,sin y ρθ=代入曲线C 的极坐标方程4cos ρθ=得2240x y x +-=.11(2)因为10x y +-=的极坐标方程为cos sin 10x x ρρ+-=,则1||sin cos A OA ραα==+,||4cos B OB ρα==,所以||π2(1sin 2cos 2)22||4OB OA ααα⎛⎫=++=++ ⎪⎝⎭. 因为π02α<<, 所以ππ5π2444α<+<, 所以当ππ242α+=, 即π8α=时,||||OB OA有最大值,最大值为2+10.答案:(1)1:C ρ=()222:1sin 2C ρθ+=;. 解析:(1)曲线C 的参数方程为2cos 2sin x y θθ=⎧⎨=⎩(θ为参数),把曲线C 上各点的横、, 则曲线1C的参数方程为x y θθ⎧=⎪⎨=⎪⎩(θ为参数),则曲线1C 的普通方程为222x y +=, 故曲线1C的极坐标方程为ρ=.曲线2C的参数方程为sin x y ϕϕ⎧=⎪⎨=⎪⎩(ϕ为参数),所以,2222cos sin 12x y ϕϕ+=+=, 所以,曲线2C 的普通方程为2212x y +=,即2222x y +=, 因此,曲线2C 的极坐标方程为()221sin 2ρθ+=;(2)将π4ϕ=代入曲线2C的参数方程可得点P ⎛ ⎝⎭, 曲线1C 与y轴正半轴的交点为(T , 故OTP △的面积为11122OTP P S OT x =⋅==△.。
选修4-4坐标系与参数方程知识点总结和同步练习(附答案)

数方程为
x y
x0 y0
t cos t sin
(t为参数) ,其中 t 表示直线 l 上以定点 M 0 为起点,任一点
uuuuuur M (x, y) 为终点的有向线段 M 0M 的数量,当点 M 在 M 0 上方时, t >0;当点 M 在
M 0 下方时, t <0;当点 M 与 M 0 重合时, t =0。我们也可以把参数 t 理解为以 M 0 为原 点,直线 l 向上的方向为正方向的数轴上的点 M 的坐标,其单位长度与原直角坐标系中的
x2 a2
y2 b2
1(a
0,
b
0),
其参数方程为
x y
a b
sec tan
(为参数)
,其中
[0, 2 )且 , 3 . 22
焦点在
y
轴上的双曲线的标准方程是
y2 a2
x2 b2
1(a
0,b
0), 其参数方 y 的取值范围;
(2)若 x y a 0 恒成立,求实数 a 的取值范围。
2.求直线
l1
:
x y
1 5
t
3t (t为参数) 和直线 l2 : x y 2
3 0 的交点 P 的坐标,及点
P
与 Q(1, 5) 的距离。
3.在椭圆 x2 y2 1上找一点,使这一点到直线 x 2 y 12 0 的距离的最小值。 16 12
点M
直角坐标 (x, y)
极坐标 (, )
互化公式
x cos
坐标系与参数方程高考知识点 2024数学

坐标系与参数方程高考知识点 2024数学2024年的高考数学考试中,坐标系与参数方程是一个重要的知识点。
本文将对坐标系和参数方程的概念、性质以及应用进行详细的论述。
一、坐标系的概念与性质坐标系是一种用来确定平面或空间中点位置的方法。
在平面上,常用的坐标系有直角坐标系和极坐标系;在空间中,常用的坐标系有直角坐标系和球坐标系。
1. 直角坐标系:直角坐标系是平面上最常用的一种坐标系,使用两个数值来确定平面上的点的位置。
我们用横坐标x和纵坐标y来表示一个点的位置,记作P(x, y)。
直角坐标系具有以下性质:- 原点:坐标系的交叉点称为原点,表示为O(0, 0)。
- 坐标轴:直角坐标系由两条相互垂直的直线组成,分别称为x轴和y轴。
- 单位长度:直角坐标系中x轴和y轴的单位长度相等。
2. 极坐标系:极坐标系是另一种表示点位置的方法,它使用距离和角度来确定点的位置。
对于平面上的点P,极坐标系表示为(r, θ),其中r为点P到原点的距离,θ为点P与正半轴的夹角。
极坐标系具有以下性质:- 极轴:极坐标系有一条特殊的直线称为极轴,通常与x轴重合。
- 极角:极坐标系中,与极轴正向的夹角称为极角,通常用θ表示。
- 极径:点P到原点的距离称为极径,用r表示。
二、参数方程的概念与性质参数方程是用参数的变化规律来确定点的位置的方法。
它通常由一组含有参数的方程组成,通过给参数赋值,可以确定出点的坐标。
在坐标系中,参数方程可以用来表示一条曲线或曲面。
常见的参数方程有平面曲线的参数方程和空间曲线的参数方程。
1. 平面曲线的参数方程:平面曲线的参数方程通常用两个参数t、u来表示。
例如,曲线C可以由参数方程表示为:x = f(t)y = g(t)其中t的取值范围确定了曲线上点的位置。
平面曲线的参数方程具有以下性质:- 曲线上的点的坐标是参数t的函数,参数t的值域决定了曲线的范围。
- 在参数方程中,可以通过改变参数的取值来绘制不同部分的曲线。
选修坐标系与参数方程知识点及经典例题

坐标系与参数方程*选考内容《坐标系与参数方程》高考考试大纲要求:1.坐标系:① 理解坐标系的作用.② 了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.③ 能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.④ 能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义.2.参数方程:① 了解参数方程,了解参数的意义. ② 能选择适当的参数写出直线、圆和圆锥曲线的参数方程.第一讲一、平面直角坐标系伸缩变换:设点),(y x P 是平面直角坐标系中的任意一点,在变换⎩⎨⎧>⋅='>⋅=').0(,y y 0),(x,x :μμλλϕ的作用下,点),(y x P 对应到点),(y x P ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。
方法1:求伸缩变换后的图形。
由伸缩变换公式解出x、y,代入已知曲线方程就可求得伸缩变换后的曲线方程。
例::在一个平面直角坐标系中,求下列方程所对应的图形经过伸缩变换后的图形。
方法2:待定系数法求伸缩变换。
求伸缩变换时,先设出变换,再代入原方程或变换后的方程,求出其中系数即可。
例:在同一平面直角坐标系中,求下列图形变换的伸缩变换:二、极坐标1.极坐标系的概念:在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox 叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。
2.点M 的极坐标:设M 是平面内一点,极点O 与点M 的距离||OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的xOM ∠叫做点M 的极角,记为θ。
有序数对),(θρ叫做点M 的极坐标,记为),(θρM .极坐标),(θρ与)Z )(2,(∈+k k πθρ表示同一个点。
(整理)坐标系与参数方程

坐标系与参数方程[基础训练A 组]一、选择题1.若直线的参数方程为12()23x t t y t =+⎧⎨=-⎩为参数,则直线的斜率为( ) A .23 B .23- C .32 D .32- 2.下列在曲线sin 2()cos sin x y θθθθ=⎧⎨=+⎩为参数上的点是( )A .1(,2)2- B .31(,)42- C .(2,3) D .(1,3)3.将参数方程222sin ()sin x y θθθ⎧=+⎪⎨=⎪⎩为参数化为普通方程为( ) A .2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤4.化极坐标方程2cos 0ρθρ-=为直角坐标方程为( )A .201y y +==2x 或B .1x =C .201y +==2x 或xD .1y =5.点M 的直角坐标是(1,3)-,则点M 的极坐标为( )A .(2,)3πB .(2,)3π-C .2(2,)3πD .(2,2),()3k k Z ππ+∈ 6.极坐标方程cos 2sin 2ρθθ=表示的曲线为( )A .一条射线和一个圆B .两条直线C .一条直线和一个圆D .一个圆二、填空题1.直线34()45x t t y t =+⎧⎨=-⎩为参数的斜率为______________________。
2.参数方程()2()t t t t x e e t y e e --⎧=+⎪⎨=-⎪⎩为参数的普通方程为__________________。
3.已知直线113:()24x t l t y t =+⎧⎨=-⎩为参数与直线2:245l x y -=相交于点B ,又点(1,2)A ,则AB =_____。
4.直线122()112x t t y t ⎧=-⎪⎪⎨⎪=-+⎪⎩为参数被圆224x y +=截得的弦长为______________。
5.直线cos sin 0x y αα+=的极坐标方程为____________________。
极坐标系与参数方程知识点和解题类型最全总结(附详细答案)

第19讲 极坐标系与参数方程(后附详解答案)一、平面直角坐标系中的伸缩变换1.在同一平面直角坐标系中,直线2x -y =4变成x ′-y ′=2的伸缩变换是( )A .⎩⎪⎨⎪⎧x ′=x ,y ′=2y B .⎩⎪⎨⎪⎧x ′=12x ,y ′=yC .⎩⎪⎨⎪⎧ x ′=x ,y ′=12y D .⎩⎪⎨⎪⎧x ′=12x ,y ′=4y2.求椭圆x 24+y 2=1经过伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=y后的曲线方程 .二、极坐标与直角坐标的互化1.在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是( )A .(1,π2)B .(1,-π2) C .(1,0) D .(1,π)2.已知点P 的极坐标为(1,π),那么过点P 且垂直于极轴的直线的极坐标方程为( )A .ρ=1B .ρ=cos θC .ρ=-1cos θD .ρ=1cos θ3.在极坐标系中,直线ρ(3cos θ-sin θ)=2与圆ρ=4sin θ的交点的极坐标为( )A .(2,π6)B .(2,π3)C .(4,π6)D .(4,π3)4.曲线C 的直角坐标方程为x 2+y 2-2x =0,以原点为极点、x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为5.在极坐标系中,直线ρcos θ+ρsin θ=a (a >0)与圆ρ=2cos θ相切,则a =____.6.已知直线l 的极坐标方程为2ρsin(θ-π4)=2,点A 的极坐标为A (22,7π4),则点A 到直线l 的距离为_____.1θθ=-||AB |21ρρ=7.圆ρ=5cos θ-53sin θ的圆心的极坐标为________.8.在极坐标系中,圆ρ=4sin θ的圆心到直线θ=π3(θ∈R )的距离是________.9.在极坐标系中A ⎝⎛⎭⎫2,-π3,B ⎝⎛⎭⎫4,2π3两点间的距离为________.10.曲线C 1:θ=π6与曲线C 2:ρsin ⎝⎛⎭⎫θ+π6=32的交点坐标为________.三、极坐标方程的综合应用1.在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝⎛⎭⎫θ-π4=22. (1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标.2.已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =1+sin θ(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=4sin ⎝⎛⎭⎫θ+π3,直线l 的直角坐标方程为y =33x . (1)求曲线C 1和直线l 的极坐标方程;(2)已知直线l 分别与曲线C 1,曲线C 2相交于异于极点的A ,B 两点,若A ,B 的极径分别为ρ1,ρ2,求|ρ2-ρ1|的值.3.以直角坐标系中的原点O 为极点,x 轴正半轴为极轴的极坐标系中,已知曲线C的极坐标方程为ρ=21-sin θ.(1)将曲线C 的极坐标方程化为直角坐标方程;(2)过极点O 作直线l 交曲线C 于点P ,Q ,若|OP |=3|OQ |,求直线l 的极坐标方程.4.已知曲线C 的参数方程为⎩⎨⎧x =2+5cos α,y =1+5sin α(α为参数),以直角坐标系的原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)设l 1:θ=π6,l 2:θ=π3,若l 1,l 2与曲线C 相交于异于原点的两点A ,B ,求△AOB 的面积.5.在直角坐标系xOy 中,已知圆C :⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数),点P 在直线l :x +y -4=0上,以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系.(1)求圆C 和直线l 的极坐标方程;(2)射线OP 交圆C 于点R ,点Q 在射线OP 上,且满足|OP |2=|OR |·|OQ |,求点Q 的轨迹的极坐标方程.6.在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t (t 为参数,a >0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .7.在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2cos φ,y =sin φ(φ为参数),曲线C 2:x 2+y 2-2y =0.以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,射线l :θ=α(ρ≥0)与曲线C 1,C 2分别交于点A ,B (均异于原点O ).(1)求曲线C 1,C 2的极坐标方程;(2)当0<α<π2时,求|OA |2+|OB |2的取值范围.8.在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.四、直角坐标方程与参数方程的互化1.在平面直角坐标系中,若曲线C 的参数方程为⎩⎨⎧x =2+22t ,y =1+22t (t 为参数),则其普通方程为________.2.椭圆⎩⎪⎨⎪⎧x =5cos θ,y =3sin θ(θ为参数)的离心率为________.3.曲线C 的参数方程为⎩⎪⎨⎪⎧x =sin θ,y =cos2θ+1(θ为参数),则曲线C 的普通方程为________.4.求直线⎩⎪⎨⎪⎧ x =2+t ,y =-1-t (t 为参数)与曲线⎩⎪⎨⎪⎧x =3cos α,y =3sin α(α为参数)的交点个数.条件探究 把举例说明1中“曲线⎩⎪⎨⎪⎧ x =3cos α,y =3sin α(α为参数)”改为“⎩⎪⎨⎪⎧x =1-sin2θ,y =sin θ+cos θ.”其他条件不变,求两条曲线交点的坐标.5.在平面直角坐标系xOy 中,直线l :⎩⎨⎧x =1+35t ,y =45t(t 为参数),与曲线C :⎩⎪⎨⎪⎧x =4k 2,y =4k(k 为参数)交于A ,B 两点,求线段AB 的长.6.已知椭圆C :x 24+y 23=1,直线l :⎩⎨⎧x =-3+3t ,y =23+t(t 为参数).写出椭圆C 的参数方程及直线l 的普通方程和直线的标准参数方程.五、直线参数方程的应用1.在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,点A 的极坐标为⎝⎛⎭⎫2,π4,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π4=a ,且l 过点A ,曲线C 1的参数方程为⎩⎨⎧x =2cos α,y =3sin α(α为参数).(1)求曲线C 1上的点到直线l 的距离的最大值;(2)过点B (-1,1)且与直线l 平行的直线l 1与曲线C 1交于M ,N 两点,求|BM |·|BN |的值.2.在直角坐标系xOy 中,设倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =3+t cosα,y =t sinα(t 为参数),直线l 与曲线C :⎩⎪⎨⎪⎧x =1cos θ,y =tan θ(θ为参数)相交于不同的两点A ,B .(1)若α=π3,求线段AB 的中点的直角坐标;(2)若直线l 的斜率为2,且过已知点P (3,0),求|P A |·|PB |的值.3.在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =3-22t ,y =5+22t (t 为参数).在以原点O 为极点,x轴正半轴为极轴的极坐标中,圆C 的方程为ρ=25s inθ.(1)写出直线l 的普通方程和圆C 的直角坐标方程;(2)若点P 坐标为(3,5),圆C 与直线l 交于A ,B 两点,求|P A|+|P B|的值.4.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t cos α,y =1+t sin α(t 为参数,a ∈[0,π)).以原点O 为极点,以x 轴的正半轴为极轴,建立极坐标系.设曲线C 的极坐标方程为ρcos 2θ=4sin θ.(1)设M (x ,y )为曲线C 上任意一点,求x +y 的取值范围; (2)若直线l 与曲线C 交于不同的两点A ,B ,求|AB |的最小值.5.在平面直角坐标系xOy 中,已知过点P (0,-1)的直线l 的参数方程为⎩⎨⎧x =12t ,y =-1+32t (t 为参数),在以坐标原点O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的方程为2a sin θ-ρcos 2θ=0(a >0).(1)求曲线C 的直角坐标方程;(2)若直线l 与曲线C 分别交于点M ,N ,且|PM |,|MN |,|PN |成等比数列,求a 的值.六、极坐标与参数方程的综合应用1.坐标系与参数方程]在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.已知曲线M的参数方程为⎩⎪⎨⎪⎧x =1+cos φ,y =1+sin φ(φ为参数),l 1,l 2为过点O 的两条直线,l 1交M 于A ,B 两点,l 2交M 于C ,D 两点,且l 1的倾斜角为α,∠AOC =π6.(1)求l 1和M 的极坐标方程;(2)当α∈(0,π6]时,求点O 到A ,B ,C ,D 四点的距离之和的最大值.2.已知曲线C 1的参数方程为⎩⎨⎧x =-t ,y =3t(t 为参数),A 为当t =1时曲线C 1上的点;B 为当t =-1时曲线C 1上的点.以原点O 为极点,以x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=64+5sin 2θ.(1)求A ,B 的极坐标;(2)设M 是曲线C 2上的动点,求|MA |2+|MB |2的最大值.3.在平面直角坐标系xOy 中,已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =cos t ,y =1+sin t (t 为参数),曲线C 2的直角坐标方程为x 2+(y -2)2=4.以平面直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,射线l 的极坐标方程为θ=α,0<α<π.(1)求曲线C 1,C 2的极坐标方程;(2)设A ,B 分别为射线l 与曲线C 1,C 2除原点之外的交点,求|AB |的最大值.4.在以原点O 为极点,x 轴的非负半轴为极轴的极坐标系中,曲线C 1的极坐标方程为ρ=4cos θ,曲线C 2的极坐标方程为ρcos 2θ=sin θ.(1)求曲线C 2的直角坐标方程;(2)过原点且倾斜角为α⎝⎛⎭⎫π6<α≤π4的射线l 与曲线C 1,C 2分别相交于A ,B 两点(A ,B 异于原点),求|OA |·|OB |的取值范围.5.在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =1+12t ,y =32t(t 为参数).在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρ=22cos ⎝⎛⎭⎫π4+θ.(1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)设直线l 与曲线C 相交于M ,N 两点,求|MN |的值.6.在平面直角坐标系xOy 中,直线l 过点(1,0),倾斜角为α,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程是ρ=8cos θ1-cos 2θ.(1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)若α=π4,设直线l 与曲线C 交于A ,B 两点,求△AOB 的面积.7.在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧x =-5+2cos t ,y =3+2sin t(t 为参数),在以原点O 为极点,x轴的非负半轴为极轴建立的极坐标系中,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ+π4=- 2. (1)求圆C 的普通方程和直线l 的直角坐标方程;(2)设直线l 与x 轴,y 轴分别交于A ,B 两点,点P 是圆C 上任意一点,求A ,B 两点的极坐标和△P AB 面积的最小值.8.在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =1+2cos β,y =2sin β(β为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C 2和C 3的极坐标方程分别为θ=α(ρ∈R )和θ=π2+α(ρ∈R ),其中0≤α<π2.(1)求曲线C 1的普通方程和曲线C 2的参数方程;(2)设曲线C 2与曲线C 1交于A ,B 两点,曲线C 3与曲线C 1交于C ,D 两点,求四边形ACBD 的面积的最大值和最小值.9.已知直线L 的参数方程为⎩⎪⎨⎪⎧x =2+ty =2-2t (t 为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=21+3cos 2θ.(1)直接写出直线L 的极坐标方程和曲线C 的直角坐标方程;(2)过曲线C 上任意一点P 作与直线L 夹角为π3的直线l ,设直线l 与直线L 的交点为A ,求|P A |的最大值.10.在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t si nα,(t 为参数),l 与C 交于A ,B 两点,|AB|=10,求l 的斜率.详解答案极坐标系与参数方程一、平面直角坐标系中的伸缩变换1.[解析] (1)设其伸缩变换为φ:⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0),则λx -μy =2,2λx -2μy =4,于是⎩⎪⎨⎪⎧2λ=2,-2μ=-1,解得⎩⎪⎨⎪⎧ λ=1,μ=12.所以φ:⎩⎪⎨⎪⎧x ′=x ,y ′=12y .故选C . 2.解:由⎩⎪⎨⎪⎧x ′=12x ,y ′=y得到⎩⎪⎨⎪⎧x =2x ′,y =y ′.①将①代入x 24+y 2=1,得4x ′24+y ′2=1,即x ′2+y ′2=1.因此椭圆x 24+y 2=1经伸缩变换后得到的曲线方程是x 2+y 2=1.二、极坐标与直角坐标的互化1.[解析] 由ρ=-2sin θ,得ρ2=-2ρsin θ,化为普通方程x 2+(y +1)2=1,其圆心坐标为(0,-1),所以其极坐标为(1,-π2),故应选B .2.[解析] 如图,设直线l 上任意一点为C (ρ,θ),由图可知OP OC =cos(π-θ)=1ρ,ρ=-1cos θ,故选C .3.[解析] ρ(3cos θ-sin θ)=2可化为直角坐标方程3x -y =2,即y =3x -2.ρ=4sin θ可化为x 2+y 2=4y ,把y =3x -2代入x 2+y 2=4y ,得4x 2-83x +12=0,即x 2-23x +3=0,所以x =3,y =1,所以直线与圆的交点坐标为(3,1),化为极坐标为(2,π6).故选A .4.[解析] 因为x 2+y 2=ρ2,x =ρcos θ,所以代入直角坐标方程并整理,得ρ2-2ρcos θ=0,所以ρ-2cos θ=0,即极坐标方程为ρ=2cos θ.5.[解析] 本题主要考查极坐标方程与直角坐标方程的互化. 由⎩⎪⎨⎪⎧ρcos θ=x ,ρsin θ=y ,ρ2=x 2+y2可将直线ρcos θ+ρsin θ=a 化为x +y -a =0,将ρ=2cos θ,即ρ2=2ρcos θ化为x 2+y 2=2x ,整理成标准方程为(x -1)2+y 2=1.又∵直线与圆相切,∴圆心(1,0)到直线x +y -a =0的距离d =|1-a |2=1,解得a =1±2,∵a >0,∴a =1+ 2.6.[解析] 由2ρsin(θ-π4)=2⇒y -x =1⇒x -y +1=0,而点A 对应的直角坐标为A (2,-2),故点A (2,-2)到直线x -y +1=0距离为|2+2+1|2=522.7.解析:将方程ρ=5cos θ-53sin θ两边都乘以ρ, 得ρ2=5ρcos θ-53ρsin θ,化成直角坐标方程为x 2+y 2-5x +53y =0. 圆心坐标为⎝⎛⎭⎫52,-532,化成极坐标为⎝⎛⎭⎫5,5π3. 答案:⎝⎛⎭⎫5,5π3(答案不唯一) 8.解析:设圆心到直线θ=π3(θ∈R )的距离为d ,因为圆的半径为2,d =2·sin π6=1.答案:19.答案 6解析 解法一:(数形结合)在极坐标系中,A ,B 两点如图所示, |AB |=|OA |+|OB |=6.解法二:∵A ⎝⎛⎭⎫2,-π3,B ⎝⎛⎭⎫4,2π3的直角坐标为A (1,-3), B (-2,23),∴|AB |=(-2-1)2+(23+3)2=6.10.答案 ⎝⎛⎭⎫1,π6 解析 将θ=π6代入ρsin ⎝⎛⎭⎫θ+π6=32,得ρsin π3=32,所以ρ=1,所以曲线C 1与曲线C 2的交点坐标为⎝⎛⎭⎫1,π6.三、极坐标方程的综合应用1.解:(1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ, 圆O 的直角坐标方程为x 2+y 2=x +y , 即x 2+y 2-x -y =0, 直线l :ρsin ⎝⎛⎭⎫θ-π4=22, 即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为y -x =1,即x -y +1=0.(2)由⎩⎪⎨⎪⎧ x 2+y 2-x -y =0,x -y +1=0,得⎩⎪⎨⎪⎧x =0,y =1,故直线l 与圆O 公共点的一个极坐标为⎝⎛⎭⎫1,π2. 2.解 (1)曲线C 1的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =1+sin θ(θ为参数),其普通方程为x 2+(y -1)2=1,极坐标方程为ρ=2sin θ.因为直线l 的直角坐标方程为y =33x , 故直线l 的极坐标方程为θ=π6(ρ∈R ).(2)曲线C 1的极坐标方程为ρ=2sin θ, 直线l 的极坐标方程为θ=π6,将θ=π6代入C 1的极坐标方程得ρ1=1,将θ=π6代入C 2的极坐标方程得ρ2=4,∴|ρ2-ρ1|=3. 3.解 (1)∵ρ=x 2+y 2,ρsin θ=y ,∴ρ=21-sin θ化为ρ-ρsin θ=2,∴曲线的直角坐标方程为x 2=4y +4. (2)设直线l 的极坐标方程为θ=θ0(ρ∈R ), 根据题意21-sin θ0=3·21-sin (θ0+π),解得θ0=π6或θ0=5π6,∴直线l 的极坐标方程为θ=π6(ρ∈R )或θ=5π6(ρ∈R ).4.[解析] (1)∵曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+5cos α,y =1+5sin α(α为参数),∴曲线C 的普通方程为(x -2)2+(y-1)2=5.将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入并化简得ρ=4cos θ+2sin θ, ∴曲线C 的极坐标方程为ρ=4cos θ+2sin θ. (2)在极坐标系中,曲线C :ρ=4cos θ+2sin θ, ∴由⎩⎪⎨⎪⎧θ=π6,ρ=4cos θ+2sin θ,得|OA |=23+1. 同理可得|OB |=2+ 3. 又∠AOB =π6,∴S △AOB =12|OA |·|OB |sin ∠AOB =8+534.∴△AOB 的面积为8+534.5.[解析] (1)圆C :⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数)的直角坐标方程为x 2+y 2=4,∴圆C 的极坐标方程为ρ=2.直线l 的极坐标方程ρ=4sin θ+cos θ.(2)设点P ,Q ,R 的极坐标分别为(ρ1,θ),(ρ,θ),(ρ2,θ), ∵ρ1=4sin θ+cos θ,ρ2=2,又|OP |2=|OR |·|OQ |,即ρ21=ρ·ρ2, ∴ρ=ρ21ρ2=16(sin θ+cos θ)2×12,∴ρ=81+sin2θ.∴点Q 的轨迹的极坐标方程为ρ=81+sin2θ.6.解:(1)消去参数t 得到C 1的普通方程:x 2+(y -1)2=a 2.C 1是以(0,1)为圆心,a 为半径的圆. 将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ.若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0, 解得a =-1(舍去)或a =1.a =1时,极点也为C 1,C 2的公共点,在C 3上.所以a =1. 7.解:(1)C 1的普通方程为x 22+y 2=1,C 1的极坐标方程为ρ2cos 2θ+2ρ2sin 2θ-2=0, C 2的极坐标方程为ρ=2sin θ.(2)联立θ=α(ρ≥0)与C 1的极坐标方程得|OA |2=21+sin 2α,联立θ=α(ρ≥0)与C 2的极坐标方程得|OB |2=4sin 2α, 则|OA |2+|OB |2=21+sin 2α+4sin 2α =21+sin 2α+4(1+sin 2α)-4. 令t =1+sin 2α,则|OA |2+|OB |2=2t +4t -4,当0<α<π2时,t ∈(1,2).设f (t )=2t +4t -4,易得f (t )在(1,2)上单调递增,∴2<|OA |2+|OB |2<5,故|OA |2+|OB |2的取值范围是(2,5).8.解:(1)曲线C 2的直角坐标方程为x 2+y 2-2y =0,曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎨⎧x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎨⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝⎛⎭⎫32,32.(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α).所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪sin ⎝⎛⎭⎫α-π3. 当α=5π6时,|AB |取得最大值,最大值为4.四、直角坐标方程与参数方程的互化1.解析:依题意,消去参数可得x -2=y -1,即x -y -1=0. 答案:x -y -1=02.答案 45解析 将⎩⎪⎨⎪⎧x =5cos θ,y =3sin θ消去参数θ,得椭圆x 225+y 29=1.3.答案 y =2-2x 2(-1≤x ≤1)解析 由⎩⎪⎨⎪⎧x =sin θ,y =cos2θ+1(θ为参数)消去参数θ,得y =2-2x 2(-1≤x ≤1).4.解 将⎩⎪⎨⎪⎧x =2+t ,y =-1-t 消去参数t 得直线x +y -1=0;将⎩⎪⎨⎪⎧x =3cos α,y =3sin α消去参数α,得圆x 2+y 2=9. 又圆心(0,0)到直线x +y -1=0的距离d =22<3. 因此直线与圆相交,故直线与曲线有2个交点.条件探究 解 由(sin θ+cos θ)2=1+sin2θ=2-(1-sin2θ),得 y 2=2-x .又因为x =1-sin2θ∈[0,2],所以所求普通方程为y 2=2-x ,x ∈[0,2].解方程组⎩⎪⎨⎪⎧x +y -1=0,y 2=2-x ,得⎩⎪⎨⎪⎧x =1+52,y =1-52或⎩⎪⎨⎪⎧x =1-52,y =1+52,又因为x ∈[0,2],所以交点坐标为⎝⎛⎭⎪⎫1+52,1-52.5.解 将直线l 的参数方程化为普通方程,得4x -3y =4,将曲线C 的参数方程化为普通方程,得y 2=4x ,联立方程⎩⎪⎨⎪⎧ 4x -3y =4,y 2=4x ,解得⎩⎪⎨⎪⎧x =4,y =4或⎩⎪⎨⎪⎧x =14,y =-1.所以A (4,4),B ⎝⎛⎭⎫14,-1或A ⎝⎛⎭⎫14,-1,B (4,4). 所以AB =⎝⎛⎭⎫4-142+(4+1)2=254. 6.解:(1)椭圆C 的参数方程为⎩⎨⎧x =2cos θ,y =3sin θ(θ为参数),直线l 的普通方程为x -3y +9=0.直线l 的标准参数方程为)(2132233为参数t ty t x ⎪⎪⎩⎪⎪⎨⎧+=+-= 五、直线参数方程的应用1.解:(1)由直线l 过点A 可得2cos ⎝⎛⎭⎫π4-π4=a ,故a = 2. 则易得直线l 的直角坐标方程为x +y -2=0,根据点到直线的距离公式可得曲线C 1上的点到直线l 的距离 d =|2cos α+3sin α-2|2=|7sin (α+φ)-2|2,其中sin φ=277,cos φ=217,∴d max =7+22=14+222.即曲线C 1上的点到直线l 的距离的最大值为14+222. (2)由(1)知直线l 的倾斜角为3π4, 则直线l 1的参数方程为⎩⎨⎧x =-1+t cos 3π4,y =1+t sin 3π4(t 为参数),又易知曲线C 1的普通方程为x 24+y 23=1,把直线l 1的参数方程代入曲线C 1的普通方程可得72t 2+72t -5=0,∴t 1t 2=-107,根据参数t 的几何意义可知|BM |·|BN |=|t 1t 2|=107. 2.[解] (1)由曲线C :⎩⎪⎨⎪⎧x =1cos θ,y =tan θ(θ为参数),可得曲线C 的普通方程是x 2-y 2=1.当α=π3时,直线l 的参数方程为⎩⎨⎧x =3+12t ,y =32t (t 为参数),代入曲线C 的普通方程,得t 2-6t -16=0,得t 1+t 2=6,所以线段AB 的中点对应的t =t 1+t 22=3,故线段AB 的中点的直角坐标为⎝⎛⎭⎫92,332.(2)将直线l 的参数方程代入曲线C 的普通方程,化简得(cos 2α-sin 2α)t 2+6cosαt +8=0, 则|P A |·|PB |=|t 1t 2|=⎪⎪⎪⎪8cos 2α-sin 2α=⎪⎪⎪⎪⎪⎪8(1+tan 2α)1-tan 2α,由已知得tanα=2,故|P A |·|PB |=403. 3.[解](1)由⎩⎨⎧x =3-22t ,y =5+22t ,两式相加得直线l 的普通方程为x +y -3-5=0.又由ρ=25s inθ,得ρ2=25ρs inθ,所以圆C 的直角坐标方程为x 2+y 2-25y =0,即x 2+(y -5)2=5.(2)把直线l 的参数方程代入圆C 的直角坐标方程,得⎝⎛⎭⎫3-22t 2+⎝⎛⎭⎫22t 2=5,即t 2-32t +4=0.由于Δ=(32)2-4×4=2>0,故可设t 1,t 2是上述方程的两实数根,所以t 1+t 2=32,t 1·t 2=4.又直线l 过点P (3,5),A ,B 两点对应的参数分别为t 1,t 2,所以|P A|+|P B|=|t 1|+|t 2|=t 1+t 2=3 2.4.[解析] (1)将曲线C 的极坐标方程ρcos 2θ=4sin θ,化为直角坐标方程,得x 2=4y . ∵M (x ,y )为曲线C 上任意一点,∴x +y =x +14x 2=14(x +2)2-1,∴x +y 的取值范围是[-1,+∞).(2)将⎩⎪⎨⎪⎧x =t cos α,y =1+t sin α代入x 2=4y ,得t 2cos 2α-4t sin α-4=0.∴Δ=16sin 2α+16cos 2α=16>0,设方程t 2cos 2α-4t sin α-4=0的两个根为t 1,t 2,则t 1+t 2=4sin αcos 2α,t 1t 2=-4cos 2α,∴|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4cos 2α≥4,当且仅当α=0时,取等号.故当α=0时,|AB |取得最小值4.5.解:(1)∵曲线C 的方程为2a sin θ-ρcos 2θ=0(a >0), ∴2aρsin θ-ρ2cos 2θ=0,即x 2=2ay (a >0).(2)将⎩⎨⎧x =12t ,y =-1+32t 代入x 2=2ay ,得t 2-43at +8a =0,得⎩⎨⎧Δ=(-43a )2-4×8a >0,①t 1+t 2=43a ,t 1t 2=8a .∵a >0,∴解①得a >23.∵|PM |,|MN |,|PN |成等比数列, ∴|MN |2=|PM |·|PN |,即|t 1-t 2|2=t 1t 2, ∴(t 1+t 2)2-4t 1t 2=t 1t 2,即(43a )2-40a =0, 解得a =0或a =56.∵a >23,∴a =56.六、极坐标与参数方程的综合应用1.[解析] (1)依题意,直线l 1的极坐标方程为θ=α(ρ∈R ).由⎩⎪⎨⎪⎧x =1+cos φ,y =1+sin φ消去φ,得(x -1)2+(y -1)2=1. 将x =ρcos θ,y =ρsin θ代入上式,得ρ2-2ρcos θ-2ρsin θ+1=0. 故M 的极坐标方程为ρ2-2ρcos θ-2ρsin θ+1=0.(2)依题意可设A (ρ1,α),B (ρ2,α),C (ρ3,α+π6),D (ρ4,α+π6),且ρ1,ρ2,ρ3,ρ4均为正数.将θ=α代入ρ2-2ρcos θ-2ρsin θ+1=0,得ρ2-2(cos α+sin α)ρ+1=0, 所以ρ1+ρ2=2(cos α+sin α),同理可得,ρ3+ρ4=2[cos(α+π6)+sin(α+π6)],所以点O 到A ,B ,C ,D 四点的距离之和为ρ1+ρ2+ρ3+ρ4=2(cos α+sin α)+2[cos(α+π6)+sin(α+π6)]=(1+3)sin α+(3+3)cos α=2(1+3)sin(α+π3).因为α∈(0,π6], 所以当sin(α+π3)=1,即α=π6时,ρ1+ρ2+ρ3+ρ4取得最大值2+2 3. 所以点O 到A ,B ,C ,D 四点距离之和的最大值为2+2 3.2.[解] (1)当t =1时,⎩⎨⎧x =-1,y =3, 即点A 的直角坐标为(-1,3); 当t =-1时,⎩⎨⎧x =1,y =-3,即点B 的直角坐标为(1,-3). ∴点A 的极坐标为⎝⎛⎭⎫2,2π3,点B 的极坐标为⎝⎛⎭⎫2,5π3. (2)由ρ=64+5sin 2θ,得ρ2(4+5sin 2θ)=36, ∴曲线C 2的直角坐标方程为x 29+y 24=1. 设曲线C 2上的动点M 的坐标为(3cosα,2sinα),则|MA |2+|MB |2=10cos 2α+16≤26,当且仅当cosα=±1时等号成立,∴|MA |2+|MB |2的最大值为26.3.解:(1)由曲线C 1的参数方程⎩⎪⎨⎪⎧x =cos t ,y =1+sin t (t 为参数),消去参数t 得,x 2+(y -1)2=1,即 x 2+y 2-2y =0,∴曲线C 1的极坐标方程为ρ=2sin θ.由曲线C 2的直角坐标方程x 2+(y -2)2=4,得x 2+y 2-4y =0,∴曲线C 2的极坐标方程为ρ=4sin θ.(2)联立⎩⎪⎨⎪⎧ θ=α,ρ=2sin θ,得A (2sin α,α),∴|OA |=2sin α, 联立⎩⎪⎨⎪⎧θ=α,ρ=4sin θ,得B (4sin α,α),∴|OB |=4sin α, ∴|AB |=|OB |-|OA |=2sin α, ∵0<α<π,∴当α=π2时,|AB |有最大值,最大值为2. 4.解:(1)由曲线C 2的极坐标方程为ρcos 2θ=sin θ,两边同乘以ρ,得ρ2cos 2θ=ρsin θ,故曲线C 2的直角坐标方程为x 2=y .(2)射线l 的极坐标方程为θ=α,π6<α≤π4, 把射线l 的极坐标方程代入曲线C 1的极坐标方程得|OA |=ρ=4cos α,把射线l 的极坐标方程代入曲线C 2的极坐标方程得|OB |=ρ=sin αcos 2α, ∴|OA |·|OB |=4cos α·sin αcos 2α=4tan α. ∵π6<α≤π4,∴|OA |·|OB |的取值范围是⎝⎛⎦⎤433,4. 5.解:(1)易得直线l 的普通方程为3x -y -3=0.∵ρ=22cos ⎝⎛⎭⎫π4+θ=2(cos θ-sin θ),∴ρ2=2(ρcos θ-ρsin θ), ∴x 2+y 2=2(x -y ),即(x -1)2+(y +1)2=2,∴曲线C 的直角坐标方程为(x -1)2+(y +1)2=2.(2)将直线l 的参数方程代入曲线C 的直角坐标方程,得t 2+3t -1=0,此方程的两根分别为直线l 与曲线C 的交点M ,N 对应的参数t M ,t N .∵t M +t N =-3,t M t N =-1,∴|MN |=|t M -t N |=(t M +t N )2-4t M t N =7.6.解:(1)直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数). ∵ρ=8cos θ1-cos 2θ,∴ρsin 2θ=8cos θ,∴ρ2sin 2θ=8ρcos θ, 即曲线C 的直角坐标方程为y 2=8x .(2)解法一:当α=π4时,直线l 的参数方程为⎩⎨⎧ x =1+22t ,y =22t(t 为参数),代入y 2=8x , 可得t 2-82t -16=0,设A ,B 两点对应的参数分别为t 1,t 2,则t 1+t 2=82,t 1t 2=-16,∴|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=8 3.又点O 到直线AB 的距离d =1×sin π4=22, ∴S △AOB =12|AB |×d =12×83×22=2 6. 解法二:当α=π4时,直线l :y =x -1, 设A (x 1,y 1),B (x 2,y 2),M (1,0),由⎩⎪⎨⎪⎧y 2=8x ,y =x -1得,y 2-8y -8=0. 由根与系数的关系,得⎩⎪⎨⎪⎧y 1+y 2=8,y 1y 2=-8, 所以S △AOB =12|OM ||y 1-y 2|=12×1×(y 1+y 2)2-4y 1y 2 =12×82-4×(-8) =2 6.7.解:(1)由⎩⎨⎧x =-5+2cos t ,y =3+2sin t ,消去参数t , 得(x +5)2+(y -3)2=2,所以圆C 的普通方程为(x +5)2+(y -3)2=2.由ρcos ⎝⎛⎭⎫θ+π4=-2,得ρcos θ-ρsin θ=-2, 所以直线l 的直角坐标方程为x -y +2=0.(2)直线l 与x 轴,y 轴的交点分别为A (-2,0),B (0,2),化为极坐标为A (2,π),B ⎝⎛⎭⎫2,π2, 设点P 的坐标为(-5+2cos t,3+2sin t ),则点P 到直线l 的距离为d =|-5+2cos t -3-2sin t +2|2= ⎪⎪⎪⎪-6+2cos ⎝⎛⎭⎫t +π42. 所以d min =42=22,又|AB |=2 2. 所以△P AB 面积的最小值是S =12×22×22=4. 8.解:(1)曲线C 1的普通方程为(x -1)2+y 2=4,由曲线C 2的极坐标方程为θ=α(ρ∈R )可知,曲线C 2是经过原点且倾斜角为α的直线,所以曲线C 2的参数方程为⎩⎪⎨⎪⎧ x =t cos α,y =t sin α(t 为参数). (2)解法一 把⎩⎪⎨⎪⎧x =t cos α,y =t sin α代入(x -1)2+y 2=4, 得t 2-2t cos α-3=0,设方程t 2-2t cos α-3=0的两根分别为t 1,t 2,则t 1+t 2=2cos α,t 1t 2=-3,|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=2cos 2α+3,同理,由曲线C 3的极坐标方程为θ=π2+α(ρ∈R ), 可得|CD |=2 cos 2⎝⎛⎭⎫π2+α+3=2 sin 2α+3,又易知AB ⊥CD ,所以四边形ACBD 的面积S =12|AB ||CD |=2cos 2α+3sin 2α+3=212+14sin 22α,∵0≤α<π2, ∴当2α=π2,即α=π4时,四边形ACBD 的面积取得最大值,最大值为7; 当2α=0,即α=0时,四边形ACBD 的面积取得最小值,最小值为4 3.解法二 将x =ρcos θ,y =ρsin θ代入(x -1)2+y 2=4,整理得曲线C 1的极坐标方程为ρ2-2ρcos θ-3=0,把θ=α代入,得ρ2-2ρcos α-3=0,ρ1+ρ2=2cos α,ρ1ρ2=-3,|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=2cos 2α+3,同理,把θ=π2+α代入, 得|CD |=2cos 2⎝⎛⎭⎫π2+α+3=2sin 2α+3, 由曲线C 2和C 3的极坐标方程可知AB ⊥CD , 所以四边形ACBD 的面积S =12|AB ||CD |=2cos 2α+3·sin 2α+3=2 12+14sin 22α, ∵0≤α<π2,∴当2α=π2, 即α=π4时,四边形ACBD 的面积取得最大值,最大值为7; 当2α=0,即α=0时,四边形ACBD 的面积取得最小值,最小值为4 3.9.[解析] (1)由⎩⎪⎨⎪⎧x =2+t y =2-2t(t 为参数),得l 1的普通方程为2x +y -6=0,令x =ρcos θ,y =ρsin θ,得直线l 1的极坐标方程为2ρcos θ+ρsin θ-6=0,由曲线C 的极坐标方程,知ρ2+3ρ2cos 2θ=4,所以曲线C的直角坐标方程为x 2+y 24=1. (2)由(1)知直线l 1的普通方程为2x +y -6=0,设曲线C 上任意一点P (cos α,2sin α),点P 到直线l 1的距离d =|2cos α+2sin α-6|5. 由题意得|P A |=d sin60°=415⎪⎪⎪⎪2sin (α+π4)-315, ∴当sin(α+π4)=-1时,|P A |取得最大值,最大值为415(3+2)15. 10.[解] (1)由x =ρcos θ,y =ρs inθ可得圆C 的极坐标方程ρ2+12ρcos θ+11=0.(2)解法一:由直线l 的参数方程⎩⎪⎨⎪⎧ x =t cos α,y =t si nα(t 为参数) 可知直线l 的普通方程为y =kx ,其中k 为直线l 的斜率,则点C(-6,0)与直线l 的距离d =|-6k |k 2+1. 因为|AB|=10,所以⎝⎛⎭⎫1022+36k 2k 2+1=25,故直线l 的斜率为153或-153. 解法二:在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ). 设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0. 于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB|=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44.由|AB|=10得cos 2α=38,t anα=±153. 所以l 的斜率为153或-153.。
坐标系与参数方程_知识点总结

坐标系与参数方程_知识点总结一、坐标系1.直角坐标系直角坐标系是最常见的坐标系,在平面上由两个垂直的坐标轴组成,分别为x轴和y轴。
一个点在直角坐标系中的位置可以用坐标(x,y)来表示,其中x为横坐标,y为纵坐标。
2.极坐标系3.球坐标系球坐标系是一种用于描述空间点位置的坐标系统,它由径向距离、极角和方位角组成。
一个点的位置可以用有序数组(r,θ,φ)来表示,其中r为点到原点的距离,θ为点与一些固定轴的夹角,φ为点的方位角。
二、参数方程1.一维参数方程一维参数方程是指由一个参数确定的直线或曲线的方程。
例如,一个点在直线上的一维参数方程可以表示为x=f(t),其中x为点在直线上的位置,t为参数,f(t)为关于参数t的函数。
2.二维参数方程二维参数方程是指由两个参数确定的平面曲线的方程。
一个点在平面上的位置可以表示为(x(t),y(t)),其中x(t)和y(t)分别为关于参数t的函数。
二维参数方程常用于描述曲线、圆、椭圆等几何图形。
3.三维参数方程三维参数方程是指由三个参数确定的空间曲线的方程。
一个点在空间中的位置可以表示为(x(t),y(t),z(t)),其中x(t)、y(t)和z(t)分别为关于参数t的函数。
三维参数方程常用于描述空间曲线、曲面等几何图形。
三、坐标系与参数方程的关系坐标系和参数方程之间存在着密切的关系。
在直角坐标系中,一个函数的参数方程可以通过将x和y用参数表示来得到,即将x=f(t)和y=g(t)的参数方程转化为直角坐标系中的函数y=f(x)的形式。
反之,一个函数的直角坐标系方程也可以通过将x和y用参数表示来得到参数方程。
参数方程在极坐标系和球坐标系中也可以通过类似的方式转化。
总结:坐标系是描述点的位置的系统,常见的坐标系有直角坐标系、极坐标系和球坐标系。
参数方程是用参数表示的函数方程,常用于描述直线、曲线、曲面等几何图形。
坐标系和参数方程之间存在密切的关系,可以通过转化将一个方程从坐标系表示转化为参数方程,反之亦然。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节 坐标系1.平面直角坐标系中的坐标伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎨⎧x ′=λx ,λ>0,y ′=μy ,μ>0的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换.2.极坐标系与点的极坐标(1)极坐标系:如图1所示,在平面内取一个定点O (极点),自极点O 引一条射线Ox (极轴);再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.图1(2)极坐标:平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ来刻画,这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.其中ρ称为点M 的极径,θ称为点M 的极角.3.极坐标与直角坐标的互化4.(1)直线l 过极点,且极轴到此直线的角为α,则直线l 的极坐标方程是θ=α(ρ∈R ).(2)直线l 过点M (a,0)且垂直于极轴,则直线l 的极坐标方程为ρcos θ=a ⎝ ⎛⎭⎪⎫-π2<θ<π2. (3)直线过M ⎝ ⎛⎭⎪⎫b ,π2且平行于极轴,则直线l 的极坐标方程为ρsin_θ=b (0<θ<π).第二节 参数方程1.曲线的参数方程一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数⎩⎨⎧x =f (t ),y =g (t )并且对于t 的每一个允许值,由这个方程组所确定的点M (x ,y )都在这条曲线上,那么这个方程组就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.2.参数方程与普通方程的互化通过消去参数从参数方程得到普通方程,如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎨⎧x =f (t ),y =g (t )就是曲线的参数方程.在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.3.常见曲线的参数方程和普通方程温馨提示:在直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义且几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离. 重点1 坐标系与参数方程1.极坐标和直角坐标互化的前提条件是: (1)极点与直角坐标系的原点重合;(2)极轴与直角坐标系的x 轴正半轴重合;(3)两种坐标系取相同的长度单位.设点P 的直角坐标为(,)x y ,它的极坐标为(,)ρθ,则互化公式是cos sin x y ρθρθ=⎧⎨=⎩或222tan x y y x ρθ⎧=+⎪⎨=⎪⎩;若把直角坐标化为极坐标,求极角θ时,应注意判断点P 所在的象限(即角θ的终边的位置),以便正确地求出角θ,在转化过程中注意不要漏解,特别是在填空题和解答题中,则更要谨防漏解.2.消去参数是参数方程化为普通方程的根本途径,常用方法有代入消元法(包括集团代人法)、加减消元法、参数转化法和三角代换法等,转化的过程中要注意参数方程中,x y 含有的限制条件,在普通方程中应加上这种限制条件才能保持其等价性. 3.参数方程的用途主要有以下几个方面:(1)求动点(,)x y 的轨迹,如果,x y 的关系不好找,我们引入参变量t 后,很容易找到x 与t 和y 与t 的等量关系式,消去参变量后即得动点轨迹方程.此时参数方程在求动点轨迹方程中起桥梁作用.(2)可以用曲线的参数方程表示曲线上一点的坐标,这样把二元问题化为一元问题来解决,这也是圆锥曲线的参数方程的主要功能.(3)有些曲线参数方程的参变量t 有几何意义.若能利用参变量的几何意义解题,常会取得意想不到的效果.如利用直线标准参数方程中t 的几何意义解题,会使难题化易、繁题化简.[高考常考角度]角度1 若曲线的极坐标方程为θθρcos 4sin 2+=,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为.解读:关键是记住两点:1、cos ,sin x y ρθρθ==,2、222y x +=ρ即可.由已知22sin 4cos 2sin 4cos ρθθρρθρθ=+=>=+2224,x y y x =>+=+22420x y x y ∴+--=为所求.角度2在极坐标系中,点 (,)π23到圆2cos ρθ=的圆心的距离为( )解读:极坐标(,)π23化为直角坐标为(2cos,2sin )33ππ,即.圆的极坐标方程2cos ρθ=可化为22cos ρρθ=,化为直角坐标方程为222x y x +=,即22(1)1x y -+=,所以圆心坐标为(1,0),则由两点间距离公式d ==故选D.角度3已知两曲线参数方程分别为(0)sin x y θθπθ⎧=⎪⎨=⎪⎩≤<和25()4x t t R y t⎧=⎪∈⎨⎪=⎩,它们的交点坐标为 .解:sin x y θθ⎧=⎪⎨=⎪⎩表示椭圆2215x y +=(0)y ≥,254x t y t ⎧=⎪⎨⎪=⎩表示抛物线245y x =联立得222215450145x y x x x y x ⎧+=⎪⎪=>+-==>=⎨⎪=⎪⎩或5x =-(舍去), 又因为0y ≥,所以它们的交点坐标为角度4 直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,设点,A B 分别在曲线1C :3cos 4sin x y θθ=+⎧⎨=+⎩(θ为参数)和曲线2C :1ρ=上,则||AB 的最小值为.点评:利用化归思想和数形结合法,把两条曲线转化为直角坐标系下的方程.解读:曲线1C 的方程是22(3)(4)1x y -+-=,曲线2C 的方程是221x y +=,两圆外离,所以||AB113-=.角度 5 在平面直角坐标系xOy 中,曲线1C 的参数方程为⎩⎨⎧==ϕϕsin cos y x (ϕ为参数),曲线2C 的参数方程为⎩⎨⎧==ϕϕsin cos b y a x (0>>b a ,ϕ为参数),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线l :θα=与1C ,2C 各有一个交点.当0α=时,这两个交点间的距离为2,当α=2π时,这两个交点重合.(Ⅰ)分别说明12,C C 是什么曲线,并求出a 与b 的值; (Ⅱ)设当α=4π时,l 与12,C C 的交点分别为11,A B ,当α=4π-时,l 与12,C C 的交点为22,A B ,求四边形1221A A B B 的面积.解读:(Ⅰ)12,C C 的普通方程分别为221x y +=和22221x y a b+=,故1C 是圆,2C 是椭圆.当0α=时,射线l 与12,C C 交点的直角坐标分别为(1,0),(,0)a ,因为这两点间的距离为2,所以3a =. 当2πα=时,射线l 与12,C C 交点的直角坐标分别为(0,1),(0,)b ,因为这两点重合,所以1b =.(Ⅱ)12,C C 的普通方程分别为221x y +=和22 1.9x y += 当4πα=时,射线l 与1C 交点A 1的横坐标为x =,与2C 交点B 1的横坐标为x '=当4πα=-时,射线l 与12,C C 的两个交点22,A B 分别与11,A B 关于x 轴对称,因此,四边形1221A A B B 为梯形.故四边形1221A A B B 的面积为(22)()2.25x x x x ''+-=易失分点1 参数的几何意义不明典例 已知直线l 的参数方程为12x t y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),若以平面直角坐标系xOy中的O 点为极点,Ox 方向为极轴,选择相同的长度单位建立极坐标系,得曲线C 的极坐标方程为2cos().4πρθ=-(1)求直线l 的倾斜角;(2)若直线l 与曲线C 交于,A B 两点,求||AB .易失分提示:对直线参数方程中参数的几何意义不明确导致错误.解读:(1)直线的参数方程可以化为cos 3sin 3x t y t ππ⎧=⎪⎪⎨⎪=+⎪⎩,根据直线参数方程的意义,直线l经过点(0,2,倾斜角为3π.(2)l的直角坐标方程为2y =+20y -= 曲线C 2cos()4πρθ=-的直角坐标方程为22((122x y -+-=,所以圆心到直线l的距离|2d -⨯+== 所以||2AB ==易失分点2 极坐标表达不准典例 已知曲线12,C C 的极坐标方程分别为cos 3,4cos ,0,ρθρθρ==≥则曲线1C 与2C 交点的极坐标为_________________易失分提示: 本题考查曲线交点的求法,易错解为:由方程组cos 34cos cos 66ρρρθππρθθθ⎧⎧===⎧⎪⎪=>=>⎨⎨⎨==-⎩=⎪⎪⎩⎩或即两曲线的交点为6π()或6π-()正解解读:由方程组cos 34cos 2cos 6k ρρρθπρθθπθ⎧⎧===⎧⎪⎪=>=>⎨⎨⎨==-⎩=⎪⎪⎩⎩或26k ρπθπ⎧=⎪⎨=+⎪⎩即两曲线的交点为2)6k ππ-或2),6k k Z ππ+∈在极坐标系中,有序实数对的集合{(,)|,}R ρθρθ∈与平面内的点集不是一一对应的.给出一个有序数对(,)ρθ,在极坐标系中可以唯一确定一个点,但极坐标系中的一点,它的极坐标不是唯一的,若点M 不是极点,(,)ρθ是它的一个掇坐标,那么M 有无穷多个极坐标(,2)k ρθπ+与(,(21)),k k Z ρθπ-++∈各类题型展现:1. (本小题满分10分)在平面直角坐标系xOy 中,椭圆C 方程为5cos (3sin x y ϕϕϕ=⎧⎨=⎩为参数)(1)求过椭圆的右焦点,且与直线42(3x tt y t=-⎧⎨=-⎩为参数)平行的直线l 的普通方程.(2)求椭圆C 的内接矩形ABCD 面积的最大值。
解读:(1)由已知得椭圆的普通方程为221,4259x y c +=∴=,右焦点为(4,0),直线的普通方程为220x y -+=,所以12k =,于是所求直线方程为1(4)2y x =-即240x y --=. (2)4||60sin cos 30sin S xy ϕϕ===2ϕ, 当22πϕ=时,面积最大为30.2. (本小题满分10分)在极坐标系中,已知圆C 的圆心)4C π,半径3=r .(Ⅰ)求圆C 的极坐标方程; (Ⅱ)若[0,)4πα∈,直线l 的参数方程为⎩⎨⎧+=+=ααsin 2cos 2t y t x (t 为参数),直线l 交圆C 于A B 、两点,求弦长AB 的取值范围.解读:(Ⅰ)方法一:∵圆心)4C π的直角坐标为(1,1),∴圆C 的直角坐标方程为()()31122=-+-y x .化为极坐标方程是()01sin cos 22=-+-θθρρ.方法二:如图,设圆C上任意一点()θρ,M ,则2222c o s C M O M O CO M O C C O M=+-⋅∠2222)4πρρθ=+--化简得()01sin cos 22=-+-θθρρ.........4分(Ⅱ)将⎩⎨⎧+=+=ααsin 2cos 2t y t x 代入圆C 的直角坐标方程()()1122-+-y x 得()()3sin 1cos 122=+++ααt t 即()01cos sin 22=-++ααt t所以 ()1,cos sin 22121-=⋅+-=+t t t t αα. 故()()ααα2sin 224cos sin 4422122121+=++=-+=-=t t t t t t AB ,∵[0,)2[0,)42ππαα∈=>∈,∴3222<≤AB , 即弦长AB 的取值范围是..................10分 3. (本小题满分10分)已知直线l 的参数方程是x y ⎧=⎪⎪⎨⎪=+⎪⎩(t 是参数),圆C 的极坐标方程为2cos()4πρθ=+.(Ⅰ)求圆心C 的直角坐标;(Ⅱ)由直线l 上的点向圆C 引切线,求切线长的最小值。