初中数学-春季班-人教版-初一(学生版) 第4讲 平方根与立方根--提高班

合集下载

新课标人教版初中数学七年级上册《平方根课件》

新课标人教版初中数学七年级上册《平方根课件》

平方根的加法运算
总结词
理解平方根加法运算的规则和步骤
详细描述
平方根的加法运算是指将两个平方根的数值相加,即 $sqrt{a} + sqrt{b}$。在进行加法运 算时,需要注意根号内的数必须相同,即 $a = b$。如果 $a neq b$,则无法进行加法运 算。
例子
$sqrt{4} + sqrt{4} = 2 + 2 = 4$
03
平方根的应用
平方根在几何学中的应用
勾股定理
在直角三角形中,直角边的平方 和等于斜边的平方,即$a^2 + b^2 = c^2$,其中$c$为斜边。
圆的面积计算
圆的面积公式为$S = pi r^2$, 其中$r$为圆的半径。
平方根在日常生活中的应用
建筑测量
在建筑行业中,经常需要测量长度、 宽度和高度,这些测量结果往往需要 开平方根来计算。
物品重量
在称重时,有时需要将重量转换为质 量,这时就需要用到平方根。
平方根在科学计算中的应用
物理计算
在物理学中,很多公式涉及到平方根运算,例如速度、加速 度、力的计算等。
化学计算
在化学中,物质的量、摩尔质量、气体常数等都需要用到平 方根运算。
04
平方根的近似值求解
平方根的近似值求解方法
牛顿迭代法
平方根的乘法运算
总结词
理解平方根乘法运算的规则和步 骤
详细描述
平方根的乘法运算是指将两个平 方根相乘,即 $sqrt{a} times sqrt{b}$。在进行乘法运算时, 需要注意根号内的数相乘等于被 开方数的乘积,即 $a times b$ 。
例子
$sqrt{4} times sqrt{9} = 2 times 3 = 6$

人教版七年级下册数学公开课《平方根》PPT课件(精)

人教版七年级下册数学公开课《平方根》PPT课件(精)

二次方程在实际问题中的应用
01
02
03
04
面积问题
通过二次方程可以求解一些与 面积相关的问题,例如求解矩 形、三角形、梯形等的面积。
利润问题
在商业活动中,经常需要计算 利润和成本等问题,这些问题 可以通过建立二次方程进行求 解。
行程问题
在物理和数学问题中,经常涉 及到速度、时间和距离等概念 ,这些问题可以通过建立二次 方程进行求解。
其他问题
除了以上几种类型的问题外, 二次方程还可以应用于其他领 域的问题求解,例如金融、工 程、科学计算等。
06
课程总结与拓展
课程重点与难点回顾
1 2
平方根的定义和性质
回顾平方根的定义,强调正数有两个平方根,它 们互为相反数;0的平方根是0;负数没有平方根 。
平方根的运算
总结平方根的运算法则,包括平方根与乘除、加 减运算的结合,以及分母有理化的方法。
计算圆的面积
已知圆的半径,利用平方 根和π计算面积。
勾股定理的应用
求解直角三角形
已知直角三角形两条边, 利用勾股定理和平方根求 解第三条边。
计算两点间距离
在平面直角坐标系中,已 知两点坐标,利用勾股定 理和平方根计算两点间距 离。
判断三角形形状
已知三角形三边长度,利 用勾股定理和平方根判断 三角形是否为直角三角形 。
平方根的性质
正实数的平方根有两个,它们互为相反数;0的平方根是0;负数 没有平方根。
平方根在数学中的应用
解方程
平方根在解一元二次方程时起到关键作用,通过开 平方可以求得方程的解。
几何应用
在几何学中,平方根用于计算长度、面积和体积等 ,如勾股定理中的边长计算。
数学建模

2021年人教版七年级数学下册第六章《平方根(4)》精品课件

2021年人教版七年级数学下册第六章《平方根(4)》精品课件

(1) 3 6
(2) 0.81
(3) 49
解:(1)∵ 6 2 36 ∴ 3 6 6 9
(2)∵0.92 0.81 ∴ 0.81 -0.9
(3)∵ 73Fra bibliotek2 49
9

49 9
7 3
知识点二 平方根的性质
练一练 1、判断下列各数是否有平方根?说明理由.
(1)( 3) 2 ( 2 ) 0 (3) 0.01 ( 4 ) a 2
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
解:(1)有,因为 (3)2 9 ;
(2)有,因为0的平方根是0; (3)没有,因为负数没有平方根;
(4)当a 0 时,有平方根,当 a 0 时,没有平
方根,因为负数没有平方根.
知识点二 平方根的性质
练一练 2、计算下列各式的值:
(1 ) 9 (2) 0.49
解: (1) 9 3
(3) 64 81
引导学生读懂数学书课题研究成果 配套课件
第三课时 6.1平方根(3)
一、新课引入
1、若一个正数 x 的平方等于 a ,
即x 2 = a 则 x 叫 a 的算术平方根 ,

人教版七年级数学课件《平方根》

人教版七年级数学课件《平方根》
1.包含关系:平方根包含算术平方根,算术平方根是平方根的一种.
联系
2.只有非负数才有平方根和算术平方根.
3.0的平方根是0,算术平方根也是0.
区别
1.个数不同:一个正数有两个平方根,但只有一个算术平方根.
2.表示法不同:平方根表示为± ,而算术平方根表示为 .
达标检测
人教版数学七年级下册
1.下列各数中没有平方根的数是( D)
∴2 − 1 = 9, − 1 = 16,
∴ = 5, = 17.
∵是 13的整数部分,3 < 13 < 4,
∴ = 3.
∴ + 2 − = 5 + 17 × 2 − 3 = 36.
∵36的平方根是±6.
∴ + 2 − 的平方根为±6.
总结提升
人教版数学七年级下册
平方根与算术平方根的联系与区别:
∴原来正方形的边长为16.
小结梳理
人教版数学七年级下册
一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或
二次方根. 这就是说,如果x2=a,那么x叫做a的平方根.
求一个数a的平方根的运算,叫做开平方.
1.正数有两个平方根,它们互为相反数;
2.0的平方根是0;
3.负数没有平方根.
正数a的算术平方根可以表示为 ,正数a的负的平方根,可以表
则有2a+1+a-4=0,即3a-3=0,
解得a=1.
所以这个数为(2a+1)2=(2+1)2=9.
典例解析
人教版数学七年级下册
例4.已知2 − 1的算术平方根是3, − 1的平方根是±4,
是 13的整数部分,求 + 2 − 的平方根.
解:∵2 − 1的算术平方根是3; − 1的平方根是±4,

人教版初一数学 6.2 立方根PPT课件

人教版初一数学 6.2 立方根PPT课件
习题6.2第1,2,3,5,6,9题.
2.七彩作业.
第六章
实数
6.2 立方根
学习目标
1.了解立方根的概念,初步学会用根号表示一个数的立方
根,建立符号意识.
2.理解开立方与立方互为逆运算,会用立方运算求某些数
的立方根,提升运算能力.
3.经历用计算器探索数学规律的过程,发展推理能力.
学习重难点
学习重点:立方根的概念及求法.
学习难点:立方根与平方根的区别与联系.
有一个,是正数
0
负数
0

0
有一个,是负数
探究新知
学生活动四【一起探究】
完成下面的填空:
3
(1)因为 −8=
3
(2)因为 −27=
(3)因为
3
-2
3
,- 8=
-3
3
-2
,- 27=
3
,所以 −8
-3
3
=
,所以 −27
3
- 8.
=
3
- 27.
1
1 3
3
1
1
1 = 3 1

= 5 ,= 5 ,所以 −
.
125
125
125
125
探究新知
思考: 3 −a与- 3 a有何关系?
解: 3 −a=- 3 a.
探究新知
学生活动五【一起探究】
利用计算器探究被开方数的小数点与立方根的小数点之间的变
化规律.
(1)利用计算器计算,并将计算结果填在表中,你发现了什么规律?
你能说说其中的道理吗?


3
0.000 216
3
(4) −8=-2;(5)

人教版初一数学下册第二课时(算数平方根 平方根 立方根 实数提高部分)教案

人教版初一数学下册第二课时(算数平方根 平方根 立方根 实数提高部分)教案

【检测题5】0。

36的算术平方根是( )A、±0。

6B、±C、0、6 D、【检测题6】当m≥0时,表示( )A、m的平方根 B、一个有理数C、一个无理数 D、m的算术平方根【检测题7】下列运算正确的是( )A、=±2 B、—(x—1)=—x-1 C、-32=9 D、-|-2|=-2【检测题8】下列说法正确的是( )A。

—6是(-6)2的算术平方根B。

±6是36的算术平方根C。

5是25的算术平方根 D、-5不是25的平方根【检测题9】 (x2+1)2的算术平方根是( )A、x2+1B、(x2+1)2 C。

(x2+1)4 D、±(x2+1)【检测题10】已知一个正方形的边长为a,面积为S,则( )A。

S= B、S的平方根是a C、a是S的算术平方根 D、a=±【检测题11】若8k(k为大于0的自然数)的算术平方根是整数,则正整数k的最小值为( )A、1B、2 C。

4D、8【检测题12】假如一个数的算术平方根等于它本身,那么这个数是( )A。

0B。

1 C、0或1 D、-1或0或1【检测题13】一个数a的算术平方根比本身大,那么这个数一定( )A、a>0 B。

a〉1C。

0<a<1D、不能确定【检测题14】假如a-3是一个数的算术平方根,那么( )A、a≥0 B。

a〉0C、a>3 D、a≥3【检测题15】算术平方根等于它相反数的数是( )A。

0 B、1 C。

0或1 D、—1或0或1【检测题16】假如=0。

25,那么y的值是( )A、0、0625 B、-0。

5 C、0、5 D、±0。

5【检测题17】已知=7、35,则0。

005403的算术平方根是( )A、0、735B、0、0735C、0、00735 D。

0、000735【检测题18】恰有35个连续自然数的算术平方根的整数部分相同,那么这个相同整数是( ) A。

17 B、18 C、35 D、36【检测题19】小明不小心把一块橡皮掉入一个带刻度的圆柱形水杯中,小明发现水杯中的水面上升了1cm,小明二、同步题型分析【例1】下列说法不正确的是( )A、-1的立方根是-1 B、-1的平方是1 C。

6.4 立方根 人教版数学七年级下册知识讲解

6.4 立方根 人教版数学七年级下册知识讲解

专题6.4 立方根(知识讲解)【学习目标】1. 了解立方根的含义;2. 会表示、计算一个数的立方根,会用计算器求立方根.【要点梳理】要点一、立方根的定义如果一个数的立方等于,那么这个数叫做的立方根或三次方根.这就是说,如果,那么叫做的立方根.求一个数的立方根的运算,叫做开立方.特别说明:一个数的立方根,用表示,其中是被开方数,3是根指数. 开立方和立方互为逆运算.要点二、立方根的特征立方根的特征:正数的立方根是正数,负数的立方根是负数,0的立方根是0.特别说明:任何数都有立方根,一个数的立方根有且只有一个,并且它的符号与这个非零数的符号相同. 两个互为相反数的数的立方根也互为相反数.要点三、立方根的性质特别说明:第一个公式可以将求负数的立方根的问题转化为求正数的立方根的问题.要点四、立方根小数点位数移动规律被开方数的小数点向右或者向左移动3位,它的立方根的小数点就相应地向右或者向左移动1位.例如,,,,.【典型例题】类型一、立方根➽➼概念的理解➻➸平方根✬✬立方根1.已知的算术平方根是,的立方根是,的平方根是,的立方根是,则和分别是()A.B.C.D.【答案】C【分析】利用算术平方根和平方根,立方根的性质,可得到的值,由此可得到与和与的关系解:∵的算术平方根是,的立方根是,的平方根是,的立方根是,∴,∴.故选:C.【点拨】本题考查了算术平方根和平方根,立方根的性质,得出与和与的关系是解题的关键.举一反三:【变式1】下列说法正确的是()A.的立方根是B.的平方根是C.一定有平方根D.表示的算术平方根【答案】C【分析】根据平方根,立方根,算术平方根的概念解答即可解:A、64的立方根是,故本选项不合题意;B、的平方根是,故本选项不合题意;C、因为,所以一定有平方根,故本选项符合题意;D、的算术平方根是,故本选项不合题意;故选:C【点拨】本题考查了平方根,立方根以及算术平方根,熟记相关定义是解答本题的关键.【变式2】下列说法中,不正确的是( )A.是的平方根B.的平方根和立方根都是C.负数没有立方根D.的算术平方根和立方根都是它本身【答案】C【分析】根据平方根、算术平方根、立方根的定义,即可一一判定.解:A. ,是的平方根,故该选项正确,不符合题意;B.的平方根和立方根都是,故该选项正确,不符合题意;C. 负数有立方根,故该选项不正确,符合题意;D.的算术平方根和立方根都是它本身,故该选项正确,不符合题意;故选:C.【点拨】本题考查了平方根、算术平方根、立方根的定义,若一个数的平方等于,则这个数叫做a的平方根,其中正的平方根叫做a的算术平方根,0的算术平方根为0;若一个数的立方等于,则这个数叫做a的立方根.类型二、立方根➽➼求一个数的立(平)方根✬✬已知立(平)方根求原数2.求下列各式中x的值:(1) ;(2) .【答案】(1)或5 (2)【分析】(1)利用平方根的性质解答,即可求解;(2)利用立方根的性质解答,即可求解.(1)解:∴,即,解得:或5;(2)解:,∴,解得:.【点拨】本题主要考查了利用平方根和立方根解方程,熟练掌握平方根和立方根的性质是解题的关键.举一反三:【变式1】求下列各式中的x的值.(1) (2)【答案】(1)或(2)【分析】(1)利用平方根解方程;(2)利用立方根解方程.(1)解:∵,∴,∵,∴,解得:或;(2)解:∵,∴,∵,∴,解得:.【点拨】本题考查利用平方根和立方根解方程.熟练掌握平方根和立方根的概念,是解题的关键.【变式2】求下列各式中的值:【答案】(1)x=4;(2)【分析】(1)根据立方根的定义解答;(2)根据平方根定义解答.解:(1)x+2=6,x=4;(2).【点拨】此题考查了利用立方根定义及平方根定义解方程,正确求一个数的立方根及平方根是解题的关键.类型三、立方根➽➼平方根✬✬立方根➽➼综合应用3.已知a是2的平方根,b是(﹣13)2的平方根,c的立方根是﹣3,d的算术平方根是,回答下列问题.(1) 分别求出a,b,c,d的值;(2) d的另外一个平方根落在图中的 .(填“段①”“段②”“段③”“段④”)【答案】(1) a=±,b=±13;c=-27,d=2 (2)段②【分析】(1)根据平方根和立方根的知识可求得此题结果;(2)先求得d的另外一个平方根为,再比较出它在数轴中所在的位置.解:(1)∵(±)2==,(±13)2=(13)2,(3)3=27,()2=2,∴±是的平方根,±13是(13)2的平方根,27的立方根是3,2的算术平方根是,∴,b=±13,c=27,d=2;(2)解:∵2的平方根是±,而,∴d的另外一个平方根落在图中的“段②”,故答案为:“段②”.【点拨】此题考查了运用平方根和立方根解决问题的能力,关键是能准确理解并运用以上知识.举一反三:【变式1】已知正数的两个平方根分别是和,的立方根为-2.(1) 计算:_________;_________;_________;(2) 求的算术平方根.【答案】(1)1;-1;25 (2)1【分析】(1)根据一个正数的两个平方根互为相反数以及立方根的定义进行求解即可;(2)先求出,然后根据算术平方根的定义求解即可.(1)解:∵正数的两个平方根分别是和,的立方根为-2,∴,∴,∴,故答案为:1;-1;25;(2)解:∵,∴,∴的算术平方根为1.【点拨】本题主要考查了平方根,立方根,算术平方根,熟知三者的定义是解题的关键.【变式2】己知的立方根是4,的算术平方根是5,c是9的算术平方根,(1) 求a,b,c的值(2) 求的平方根.【答案】(1)(2)【分析】(1)根据立方根的概念和算术平方根的概念进行求解即可;(2)先代值计算,再根据平方根的定义进行求解即可.(1)解:∵,∴,∴;∵,∴,∵,∴;∵,∴;(2)把:代入得:,∵,∴的平方根是:.【点拨】本题考查平方根,算术平方根和立方根,熟练掌握平方根:一个数的平方是,叫做的平方根;算术平方根:一个非负数的平方是,叫做的算术平方根;立方根:一个数的立方是,叫做的立方根,是解题的关键.类型四、立方根➽➼生产生活中的应用4.在一个长、宽、高分别为8,4,2的长方体容器中装满水,将容器中的水全部倒入一个正方体容器中,恰好倒满(两容器的厚度忽略不计),求此正方体容器的棱长.【答案】4cm【分析】根据长方体的体积计算可得结论;根据正方体的体积等于棱长的立方进行开立方计算可得结论.解:由于装满水的长方体容器中的水,全部倒入正方体容器中,恰好倒满,所以它们的体积相等,而长方体容器的体积,所以正方体容器的体积为64,所以此正方体容器的棱长为.【点拨】本题主要考查了立方根的概念的运用以及应用,解决本题的关键是熟练掌握立方根的应用.举一反三:【变式1】一个正方体的体积是,另一正方体的体积是这个正方体体积的4倍,求另一个正方体的边长及其表面积.【答案】边长,表面积【分析】根据题意知大正方体的体积为,则其边长为体积的立方根,可求得表面积.解:正方体的体积为:,即正方体的边长为:,则正方体的表面积为:,答:边长,体积.【点拨】本题主要考查了有理数的乘法运算以及立方根的知识,掌握正方体的体积公式和表面积公式是解答本题的关键.【变式2】李叔叔将8个正方体魔方,放入到一个容积为的正方体纸箱中,恰好填满.求这个魔方的棱长.【答案】【分析】先算出1个魔方的体积,然后根据体积公式算出魔方的棱长即可.解:1个魔方的体积为:.则这个魔方的棱长为.答:这个魔方的棱长为.【点拨】本题主要考查了立方根的实际应用,解题的关键是熟练掌握正方体的体积公式,准确进行计算.类型五、立方根➽➼能力拓展5.小明在学完立方根后研究了如下问题:如何求出的立方根?他进行了如下步骤:①首先进行了估算:因为,,所以是两位数;②其次观察了立方数:;猜想的个位数字是7;③接着将往前移动3位小数点后约为50,因为,,所以的十位数字应为3,于是猜想,验证得:的立方根是;④最后再依据“负数的立方根是负数”得到,同时发现结论:若两个数互为相反数,则这两个数的立方根也互为相反数;反之也成立.请你根据小明的方法和结论,完成下列问题:(1) = ;(2) 若,则;(3) 已知,且与互为相反数,求的值.【答案】(1)(2)3 (3),;,;,【分析】(1)根据题目中给定的方法进行求解即可;(2)根据两个数互为相反数,则这两个数的立方根也互为相反数,进行计算即可;(3)根据立方根的性质,立方根是本身的数为,进行分类讨论,再根据两个数互为相反数,则这两个数的立方根也互为相反数,进行计算即可.(1)解:因为,,所以是两位数,因为;猜想的个位数字是9,接着将往前移动3位小数点后约为117,因为,所以的十位数字应为4,于是猜想,验证得:的立方根是;最后再依据“负数的立方根是负数”得到;(2)解:∵,∴和互为相反数,∴,∴;故答案为:3.(3)解:,即,∴或1或解得:或3或1∵与互为相反数,即,∴,即,∴时,;当时,;当时,.【点拨】本题考查求一个负数的立方根,以及互为相反数的两个数的立方根也互为相反数.熟练掌握题目中给定的立方根的计算方法是解题的关键.举一反三:【变式1】观察求算术平方根的规律,并利用这个规律解决下列问题:,,,,,(1) 已知,求的值;(2) 已知,,求的值;(3) 根据上述探究方法,尝试解决问题:已知,,用含的代数式表示.【答案】(1) (2) (3)【分析】(1)根据算术平方根的规律,根号内扩大100倍,结果扩大10倍,将式子变形即可求解;(2)根据算术平方根规律,根号内扩大100倍,结果扩大10倍,将式子变形即可求解;(3)根据立方根的规律,根号内扩大1000倍,结果扩大10倍,将式子变形即可求解;解:(1),.(2),..(3),..,即.【点拨】本题主要考查算术平方根、立方根、二次根式的乘法运算,熟练掌握算术平方根、平方根的定义以及二次根式的乘法运算法则是解决本题的关键.【变式2】类比平方根(二次方根)、立方根(三次方根)的定义可给出四次方根、五次方根的定义:①如果,那么x叫做a的四次方根;②如果,那么x叫做a的五次方根;请根据以上两个定义并结合有关数学知识回答问题:(1) 81的四次方根为____________;-32的五次方根为____________;(2) 若有意义,则a的取值范围是____________;(3) 解方程:①;②.【答案】(1);(2)(3)①;②【分析】(1)利用题中四次方根的定义、五次方根的定义求解;(2)根据四次方根的意义求解;(3)分别利用四次方根和五次方根的定义求解.(1)解:81的四次方根为;的五次方根为;故答案为:;;(2)解:若有意义,则,解得.故的取值范围为;故答案为:;(3)解:①,所以;②,,所以.【点拨】本题考查了方根的定义,关键是求四次方根时,注意正数的四次方根有2个.。

新课标人教版初中数学七年级上册《平方根课件》

新课标人教版初中数学七年级上册《平方根课件》

平方根在数学问题中的应用
平方根的定义和性质
平方根在代数式中的应用
添加标题
添加标题
平方根的运算规则
添加标题
添加标题
平方根在几何图形中的应用
平方根在科学计算中的应用
平方根的定义和性质
平方根的运算规则
平方根在科学计算中的应用实 例
平方根在实际问题中的应用
课件特色
第六章
丰富的实例和案例分析
丰富的实例: 通过具体实例 帮助学生理解 平方根的概念
互动式学习:提供互动式练习和思考题,激发学生的学习兴趣和参与度
多样化的教学方法:采用多种教学方法,如讲解、演示、讨论等,提高 教学效果
互动式学习体验和评估机制
实时互动:学生可以通过课件进行实时互动,提 高学习效果 单击此处输入你的正文,请阐述观点
个性化学习:学生可以根据自己的学习进度和兴 趣选择适合自己的学习内容 单击此处输入你的正文,请阐述观点
案例分析:对 典型案例进行 深入剖析,提 Байду номын сангаас学生的解题
能力
互动环节:设 置互动环节, 激发学生的学 习兴趣和参与

图文并茂:采 用图文并茂的 方式,使课件 更加生动形象,
易于理解
生动形象的动画和图表展示
生动形象的动画展示:通过动画演示,帮助学生更好地理解数学概念和 公式
丰富的图表展示:采用图表、表格等形式,直观展示数学知识和数据
成绩评估:课件对学生的答题成绩进行评估,帮 助学生了解自己的学习成果
单击此处输入你的正文,请阐述观点
总结评估:课件对学生的整体学习情况进行 总结评估,帮助学生了解自己的学习状况 单击此处输入你的正文,请阐述观点
针对不同层次学生的教学设计和练习题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4讲平方根、立方根
知识点1 算术平方根
1.如果一个正数x的平方等于a,即a
x=2,那么这个正数x叫做a的算术平方根. ()0≥a a的算术平方根记为a,读作“根号a”,a叫做被开方数.
规定:0的算术平方根是0 ,即0
0=.
2.规律小结
算术平方根具有双重非负数:
(1)被开方数具有非负性,即0≥a;
(2)本身具有非负性:即.0≥
a
注:具有非负数才有算术平方根,而负数没有算术平方根.
【典例】
例1 (2020秋•辉县市校级期中)如果a是2021的算术平方根,
则2021
100
的算术平方根是()
A.
10
a
B.
100
a
C.
10
a
±D.
2
10
a
【方法总结】
本题主要考查算术平方根,解题的关键是掌握算术平方根的定义.
例2(2020春•威县期末)小辰想用一块面积为2
100cm的正方形纸片,沿着边的方向裁出一块面积为2
90cm的长方形纸片,使它的长宽之比为5:3.小辰能否用这张正方形纸片裁出符合要求的纸片?若能请写出具体栽法;若不能,请说明理由.
【方法总结】
本题考查了一元二次方程的应用以及算术平方根,解题的关键是先求出所裁出的长方形纸片的长.
【随堂练习】
1.(2020 1.421267
≈⋯
≈⋯ 4.494441
确到0.1)≈___________.
2.(2020秋•滨湖区期中)已知21
+-的算术平方根为4.
a b
a-的平方根为3±,31
(1)求a、b的值;
(2)求2
+的算术平方根.
a b
知识点2 平方根开平方
1.平方根:一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根,
x=2,那么x叫做a的平方根.
即如果a
±”,读作“正、负根号a”
正数a的平方根表示为“a
2.平方根与算术平方根的区别与联系
3.开平方:求一个数a 的平方根的运算,叫做开平方.
开平方是一种运算,它与平方运算是互逆运算,开平方运算的结果就是平方根,我们就是利用开平方与平方的互逆运算关系求平方根.
【典例】
例1 (2020春•丛台区校级月考)求下列各式中的:(x )
(1)29250x -=;
(2)24(21)36x -=.
A .53
x =和2x = B .53x =-和2x =或1x =- C .53x =±和1x =- D .53
x =±和2x =或1x =-
【方法总结】
此题考查了平方根,熟练掌握平方根的定义是解本题的关键.
例2 (2020秋•雁塔区校级月考)若x ,y 210y -=,
【方法总结】
本题考查了算术平方根以及平方根,解题时注意:一个正数的两个平方根互为相反数.
【随堂练习】
1.已知一个正数m 的两个不同的平方根是1a -与52a -,求a 和m 的值.
2.(2020秋•滨湖区期中)已知21a -的平方根为3±,31a b +-的算术平方根为4.
(1)求a 、b 的值;
(2)求2a b +的算术平方根.
知识点3 立方根
1.一般地,如果一个数x 的立方等于a ,那么这个数x 叫做a 的立方根或三次方根,这就是说,如果3x a =,那么x 叫做a 的立方根.
2.一个数a “三次根号a ”,其中a 叫被开方数,3叫根指数,不能省略,若省略表示平方.
3.理解立方根的概念需注意两点:
(1)任意数a ;
(2)判断一个数x 是不是某数a 的立方根,就看3x 是不是等于a.
4. 立方根的性质
(1)正数的立方根是正数,负数的立方根是负数,0的立方根是0 .
(2)33
33a a -=-
(3)a a =33)(
5.开立方:求一个数立方根的运算,叫做开立方.
说明:开立方和立方互为逆运算,借助立方运算,我们可以求任意数的立方根. 【典例】
例1 (2020秋•嵊州市期中)已知某正数的两个平方根分别是1-和4a -,12b -的立方根为2.
(1)求a ,b 的值.
(2)求a b +的平方根.
【方法总结】
本题主要考查了平方根与立方根,注意一个正数有两个平方根,这两个平方根互为相反数. 例2 (2020秋•碑林区校级月考)已知21a -的平方根是3±,31a b +-的算术平方根是4,求2a b +的立方根.
【方法总结】
此题考查了立方根,平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.
【随堂练习】
1.(2020春•嘉陵区期末)如果37(1)18
x -+
=,试求x 的值.
2.(2020春•鱼台县期末)正数x 的两个平方根分别是2a -,27a -.
(1)求a 的值;
(2)求1x -这个数的立方根.
3.(2020春•盐池县期末)已知21a +的平方根是3±,324a b +-的立方根是2-,
求458a b -+的立方根.
综合运用
1.(20200=,则2020()a b -的值为( )
A .1
B .1-
C .1±
D .0
2.(2020a b +的值为______.
3.(2020秋•金牛区校级月考)互为相反数,z 是64的平方根,求x y z
-+的平方根.
4.(2020春•潮安区期中)有一个边长为9cm 的正方形和一个长为24cm 、宽为6cm 的长方形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少厘米?
5.(2020秋•宝应县期中)求下列各式中x 的值.
(1)2(1)2x +=;
(2)329203
x +=.
6.(2020秋•荥阳市期中)已知21x +的算术平方根是04,z 是27-的立方根, 求2x y z ++的平方根.
7.(2020秋•吴江区期中)(1)若实数m 、n 满足等式|2|0m -,求23m n +的平方根;
(2)已知8y
8.(2020春•渝水区校级月考)已知一个正数m 的平方根为21n +和43n -.
(1)求m 的值;
(2)2|3|()0a c n --=,a b c ++的立方根是多少?。

相关文档
最新文档