初中数学算数平方根
2022年初中数学同步 7年级下册 第07课 算数平方根与平方根(教师版含解析)-

第07课 算数平方根与平方根课程标准1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.知识点01 平方根和算术平方根的概念1.算术平方根的定义如果一个正数的平方等于,即,那么这个正数x 叫做的算术平方根(规定0的算术平方根还是0);的算术平方根记作a ,读作“a 的算术平方根”,叫做被开方数. 注意:(1)当式子有意义时,一定表示一个非负数,即≥0,≥0. (2)负数没有算数平方根;(3)算数平方根等于本身的数有:0和1; (4)算数平方根平方等于原来的数; (5)注意a 运算结果的非负性; 2.平方根的定义如果,那么x 叫做a 的平方根.求一个数的平方根的运算,叫做开平方.平方与开平方互为逆运算.(≥0)的平方根的符号表达为,其中是的算术平方根.注意:(1)非负数才有平方根; (2)负数没有平方根;(3)平方根等于本身的数是:0;(4)一个正数有2个平方根,他们互为相反数; (5)平方根平方等于原来的数;x a 2x a =a a a a a a a 2x a =a a a (0)a a ±≥a a 目标导航知识精讲知识点02 平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:和 2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0. 注意:算术平方根平方根定义若正数x ,2x a =,正数x 叫做a 的算术平方根,x a =若数x ,2x a =,数x 叫做a 的平方根,x a =±a 的范围 0a ≥0a ≥表示aa ±正数有一个算术平方根,是正数正数有两个平方根,它们互为相反数0的算术平方根是0 0的平方根是0 负数没有算术平方根负数没有平方根知识点03 平方根的性质(1)2a =,0||0,0,0a a a a a a >⎧⎪==⎨⎪-<⎩(2)2()a =,(0)a a ≥知识点04 平方根小数点位数移动规律被开方数的小数点向右(左)每移动两位,算术平方根的小数点向右(左)移动一位。
复习初中数学算术平方根与立方根的计算

复习初中数学算术平方根与立方根的计算在初中数学学习中,算术平方根和立方根是重要的概念。
它们在解决实际问题时起着重要作用。
本文将详细介绍算术平方根和立方根的计算方法。
一、算术平方根的计算算术平方根是指一个数的平方等于该数的非负平方根。
下面我们来介绍一种常见的计算算术平方根的方法,即牛顿迭代法。
1. 假设要计算数a的算术平方根,首先先猜测一个近似值x。
2. 接下来,我们使用公式x = (x + a/x)/2来不断迭代计算,直到满足精度要求。
2.1 首先,将猜测的近似值x代入公式中,计算出x1 = (x + a/x)/2。
2.2 然后,将x1代入公式中,计算出x2 = (x1 + a/x1)/2。
2.3 以此类推,直到满足所需的精度。
通过不断迭代,我们可以得到越来越接近真实平方根的近似值。
二、立方根的计算立方根是指一个数的三次方等于该数的非负立方根。
计算立方根的方法有多种,下面我们介绍一种常用的二分法。
1. 对于一个正数a,我们可以将立方根x的范围限定在0到a之间。
2. 首先,我们猜测一个近似值x,并将其平方与a进行比较。
2.1 如果x的立方小于a,则将x的范围缩小到x到a之间。
2.2 如果x的立方大于a,则将x的范围缩小到0到x之间。
3. 通过不断缩小x的范围,我们最终可以得到一个足够接近的近似值。
三、练习题为了帮助大家更好地理解算术平方根和立方根的计算,以下是一些练习题:1. 计算√25的值。
2. 计算∛8的值。
3. 尝试使用不同的计算方法,比较它们的优缺点。
通过解决这些练习题,我们可以加深对算术平方根和立方根的计算方法的理解。
结语通过本文的介绍,我们了解了算术平方根和立方根的计算方法。
算术平方根可以使用牛顿迭代法来逐步逼近真实值,而立方根可以使用二分法来逼近。
这些方法在解决实际问题中有着重要的应用,希望本文对你的数学学习有所帮助。
初中数学《平方根》课件1

9
3
3
思考:开平方与平方是什么关系? 开平方与平方是互为逆运算
求一个数a的平方根的运算,叫做开平方。
例:求下列各数的平方根: 你能写出一个
(1)100; (2) 9 16
数,让你的同伴 ; (3求)出0.它25的平方根
吗?
解:(1)∵(±10)2=100,
∴100的平方根是±10 ;
(2)∵ ( 3)2 9 ,
(3)0 (4)0.04
解:
1
81 9
2
25 5 49 7
3 0 0 4 0.04 0.2
检测目标
5. 求下列各式中的 x: 即
.
开平方与平方是互为逆运算
(2)(-2)2;
﹢3是前面学习过的9的算术平方根,
(1) 25 x =36; 2 ﹢3是前面学习过的9的算术平方根,
∴100的平方根是±10 ;
﹢3是前面学习过的9的算术平方根, (2)4x2-49=0.
2
2
求一个数a的平方根的运算,叫做开平方。
算术平方根的性质是什么?
则有2a+1+a-4=0,即3a-3=0,
方法归纳:一个正数有两个平方根,它们互为
相反数.
目标导学二:开平方的概念
填空: 求平方
求平方根
1 1
1
2 2
4
3
9
3
1
1 1
4
2 2
检测目标
3.填空
(1)(-5)2的平方根是 ±5 ,算术平方根 是5 ;
(2) 16 的平方根是 ±2,算术平方 根是2
(3)若x2=3,则 x= ±3 ,若 x2 =3,则 x= ±3 ;
(4)若(x-1)2=2,则x= 3或-1 ,
初中数学平方根的计算公式

初中数学平方根的计算公式如果一个非负数x的平方等于a,即x2=a(a≥0),那么这个非负数x叫做a的算术平方根。
a的算术平方根记为√a,读作“根号a”,a叫做被开方数。
求一个非负数a的平方根的运算叫做开平方。
平方根计算公式假设要求a的平方根,先假设为x,然后计算(a/x+x)/2,把得到的数当成x,同样计算(a/x+x)/2,直到两个数差不多相等就可以了。
比如计算√3,我假设是1.5,代入上面公式 (3/1.5+1.5)/2=1.75,我再计算一遍 (3/1.75+1.75)/2=1.732,我继续计算 (3/1.732+1.732)/2=1.732,两个一样了,那保留三位小数就是1.732,按计算器得到的是1.。
什么是平方根平方根,又叫二次方根,表示为〔±√ ̄〕,其中属于非负数的平方根称之为算术平方根。
一个正数有两个实平方根,它们互为相反数,负数没有平方根。
算术平方根:如果一个非负数x的平方等于a,那么这个非负数x叫做a的算术平方根,记作x=√a。
其中,a叫做被开方数。
算术平方根只有一个!例如:因为2和-2的平方都是4,且只有2是正数,所以2就是4的算术平方根。
平方根口诀(1)11-19的平方:原数加尾数,尾平方;逢10进位例如:132=? 13+3=16 32=9 132=169(2)41-49的平方:尾加15,10减尾再平方,占2位例如:432=? 3+15=18 10-3=7 72=49 432=1849(3)51-59的平方:尾加二十五,尾平方占2位例如:542=? 4+25=29 42=16 542=2916(4)91-99的平方:尾数乘2加80;10减尾数再平方,占2位例如:952=? 5×2+80=90 10-5=5 52=25 952=9025。
初中数学七年级上册: 平方根 课件

平方根的定义
一般地,如果一个数x的平方等于a, 即x2=a,那么这个数x就叫做a的平方根( 也叫做二次方根). 例如:6²等于36,(-6)²也等于36,
所以,6和-6都是36的平方根。讨论来自一个正数有几个平方根?
一个正数a有两个平方根,并且它们互为 相反数,一个是正数,另一个是负数。
其中正的平方根又叫做a的算术平方根,
记作: a ,另一个是 a ,这两个平方根
合起来可以记作 a ,读作:“
”
思考:0有几个平方根?负数呢?
0只有一个平方根,就是0本身。 (特别地,0的算术平方根是0)
负数没有平方根。
平方根的性质
1、一个正数有两个平方根,它们互 为相反数。
2、0只有一个平方根,它是0本身。 3、负数没有平方根。
想一想
(1)( 64)2等于多少? (2)( 49)2等于多少? (3)( 7.2)2等于多少? (4)对于正数 a,( a)2等于多少?
由此可见,对于正数 a,( a)2 a
1.填空 (1)25的平方根是__±__5___。
(2)( 5)2 ___5______。
(3) ( 5)2 ____5_____。
1、什么是算术平方根? 2、16的算术平方根是_______。 3、9的算术平方根是_______。
1、理解并掌握平方根的定义、性质;
2、会求一个非负数的平方根;
3、了解平方根和算术平方根的区别与联 系。
想一想
我们知道,36的算术平方根是6,也就 是说6的平方等于36,那么平方等于36的数 还有哪些呢?
例3 求下列各数的平方根:
(1)64
(2)
49 121
(3)0.0004
初一数学平方根的计算

初一数学平方根的计算平方根是数学中的一个重要概念,它在初中数学学习中经常出现,并且在实际生活中也有广泛的应用。
在本文中,我们将讨论初一数学中平方根的计算方法,帮助同学们更好地理解和应用它。
1. 平方根的定义数学中,平方根是指一个数的平方等于它自身的非负实数。
可以用符号√来表示平方根,例如√4=2,表示2是4的平方根。
2. 平方根的计算方法初一数学中,求解平方根可以通过以下几种方法进行。
2.1 估算法当我们需要大致计算一个数的平方根时,可以通过估算来得到近似值。
例如,计算√40,我们可以估算它的值在6和7之间,然后通过试算法来逼近准确答案。
2.2 开方法在初一数学学习中,我们通常会使用开方法来计算平方根。
具体步骤如下:(1) 将给定的数进行因数分解;(2) 将因数分解后的每个因数进行一半的次数相乘;(3) 如果存在无法进行完全相乘的因数,则该因数提出纯数的形式;(4) 将上述所得结果相乘。
举个例子,计算√16:(1) 16可以进行因数分解,得到4乘以4;(2) 因数分解后的每个因数为4,因此我们将4乘以4;(3) 由于4没有无法进行完全相乘的因数,所以我们可以直接将结果相乘;(4) 最后得到的结果为4。
2.3 算术平方根法在一些特殊情况下,我们需要计算无理数的平方根,这时可以使用算术平方根法来计算。
算术平方根法基于牛顿迭代法,可以逐步逼近准确答案。
3. 平方根的应用平方根在生活中有着广泛的应用。
以下是一些常见的应用场景。
3.1 几何学中的平方根在几何学中,平方根经常出现在计算图形的面积和周长中。
例如,正方形边长的平方根就是正方形对角线的长度,而三角形斜边的平方根则可以帮助我们计算三角形的面积。
3.2 物理学中的平方根在物理学中,平方根被广泛应用于计算速度、加速度等物理量。
例如,质点的运动速度可以通过速度的平方根来计算。
4. 结语通过本文的探讨,我们了解了初一数学中平方根的计算方法和应用场景,希望对同学们在数学学习中有所帮助。
人教初中数学七下 6.1 平方根(第1课时)算术平方根课件 【经典初中数学课件】

选择身高在哪个范围内的学生参加呢?
为了使选取的参赛选手身高比较整齐, 需要知道数据的分布情况,即在哪些身高范 围的学生比较多,哪些身高范围内的学生人 数比较少.为此可以通过对这些数据适当分 组来进行整理.
1.计算最大值和最小值的差
在上面的数据中,最小值是149, 最大值是172,它们的差是23,说明身 高的变化范围是23 cm.
身高/㎝
2.易于显示各组之间频数之间的差别
等距分组的频数分布直方图
小长方形面积= 组 频组距 数距 =频数
频数 (学生人数)
20
15
身高/㎝
2.易于显示各组之间频数之间的差别
等距分组的频数分布直方图
小长方形面积= 组 频组距 数距 =频数
频数 (学生人数)
20
15
10
5
0 149 152 155 158 161 164 167 170 173 身高/㎝
等距分组的频数分布直方图 如上
•
频数分布直方图是以小长方形的面
积来反映数据落在各个小组内的频数的大
计,
评估数学考试情况,经过整
理得到如下频数分布直方图, 60 学生人数
60
请回答下列问题:
50
(1)此次抽样调查 的样本容量是_____
40
30
28
28
20
15 10 10
14
5
0
分
0~35 36~47 48~59 60~71 72~83 84~95 96~107 108~120
小结
通过本节学习,我们了解了频数分布的意义及 获得一组数据的频数分布的一般步骤: (1)计算极差; (2) 决定组距和组数; (3) 决定分点; (4) 列出频数分布表; (5)画出频数分布直方图和频数折线图。
初中数学人教版 平方根与算术平方根 人教版

0的平方根只有一个,即 0 0
三、平方根与算术平方根的联系与区别
1) 平方根包含算术平方根,算术平方
联
根是平方根中的一个;
系: 2) 平方根和算术平方根都只有非负数才有
3) 0的平方根、算术平方根都是0
1)定义不同: 平方根为 a
区 2)表示方法不同 别: 3)个数不同
儒家的最高境界是“拿得起”,佛家的最高境界是“放得下”,道家的最高境界是“想得开”;所以说,儒释道的最高境界,就是这三句话、九个字。中国历史上还曾有过其他一些“人生境界”说,其中三个最著名的,正好可以与儒释道这三大最高境界对照参悟。 跟儒家学拿得起。儒家是追求入世、讲究做事的,要求奋发进取、勇于担当、意志坚定。概括为三个字,就是“拿得起”。什么是“拿得起”?且看这个“儒”字——左边一个“人”,右边一个“需”,合起来就是“人之所需”。人活世上,有各种精神或生存的需要,满足这些需要就需要去获取。去拿,并且拿到了、拿对了,就是拿得起。
平方根与算术平方根
一、平方根与算术平方根定义
如果一个数的平方等于a,那么这个数 就叫做a的平方根;其中 a称为被开方数 正数a 的正平方根是数a 的算术平方根
表示为 a 读作“根号 a” 正数a 的负平方根表示为 a 读作“负根号a”
a 因此,正数a的平方根可记做
二、性质: 一个正数有两个平方根;它们互为相反数;
2. 求使 x1 x1有意义x
的取值范围. 解:要使式子有意义,必须满足:
x 1 0
x
1
0
解得xx
Байду номын сангаас
1 1
所以,x 的取值范围是. x1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§
问
题 情
52 25,
境 那么5是25的什么呢?
算术平方根的定义:
如果一个正数x的平方等于a,即x2 a,那么这个 正数x叫做a的算术平方根.a的算术平方根记为 a,
如果一个正数x的平方等于a,即x2
读作“根号a”,a叫做被开方数. 规定:0的算术平方根是0.
x
注:
1.算术平方根是正数。 2. 读作二次根号,简称
P75 1、2题
1 2 3
. 平方
. . 9 10
1
1
4
2
9 算术平方 3
.
根
.
.
.
.
.
81
9
100
10
例1 求下列各数的算术
平方根: 1100
2 49
64
3 0.0001
提示:算术平方根的定义是什么? 应用定义做题。
(1)解:
因为102 =100
所以100的算术平方根是10,即 100=10;
练结合的方式完成对算术平方根 概念的理解,算术平方根的表 示和算术平方根的解法等三个
部分的学习。
期间穿插着活动游戏,让学生 加深对算术平方根概念的理解 和感知平方与算术平方根互为 逆运算的关系。
(2) 最后用约1—2分钟时 间进行尾声部分,主要是小结 以及布置作业。
以上就是我对本节 课的设计和说明,恳 请大家批评和指正! 谢谢!
二、目标分析
知识目标:
(1)从问题情境带领学生 认识理解算术平方根的概念,并会 用根号表示数的算术平方根。
(2)通过教学设计让学生 感知求正数的算术平方根与平方运 算的互逆关系。
能力目标:
(1)通过讲练结合,培养学 生处理概念形成和解决问题的能 力。
(2)训练学生动脑,动口, 动手的能力。
情感目标:
(1)让学生积极参与教学活 动,培养他们对数学的好奇心和 求知欲。
(2)分组学习方式,培养 学生与他人沟通交流,分工合作 的能力。
三、教学重难点
重点:正确理解算术平方
根的概念,会用根号表示一个 正数的算术平方根。
难点:算术平方根的概念
的理解与应用。
四、过程分析
(1)用约10分钟时间进行课题 导入和新课讲授。主要是通过讲
Байду номын сангаас
(2)解:
因为
7 8
2
=
49 64
所以 49的算术平方根是 7 ,即 49 = 7 ;
64
8
64 8
(3)解:
因为0.012 =0.0001
所以0.0001的算术平方根是0.01, 即 0.0001=0.01;
这节课我们学了什么???
本节课我们学会了算术 平方根的概念、用根号 表示一个正数的算术平 方根、算术平方根的求 法。
数学与统计学院 1001班
义务教育课程标注实验教科书八年级上册
第十三章第一节
说课
说课
教
目
教
过
材
标
学
程
分
分
重
分
析
析
难
析
点
一 、教材分析
1.本节课分2个部分,分别是: 算术平方根的概念,算术平方根 的解法。
2.本节课紧密的衔接以前的乘 方运算,通过这一节的引导,我 们将逐步学习平方根,立方根, 无理数以及实数。算术平方根是 学生进一步顺利,快捷操作开平 方的基础,也是形成学生合理知 识链接的重要环节。
根号。
游戏规则:
卡片分为AB两面,在A面上写着110这十个数字,B面写着他们的平方。
要求:1.两人一组,共同合作。
2.一个同学任意抽出一张卡片, 另一个同学回答卡片上数字的平方或者 算术平方根。(若一方抽出是A面,则 对方回答出它的平方。若是B面则回答 它的算术平方根)。
注:正数的平方与算术平方根互为逆运 算