小学数学常考相遇问题、追及问题(附例题、解题思路

合集下载

【精品】小学数学 基本的相遇与追及问题 非常完整版题型训练+详细答案

【精品】小学数学 基本的相遇与追及问题 非常完整版题型训练+详细答案

基本的相遇与追及问题(1)根据学习的“路程和=速度和 时间”继续学习简单的直线上的相遇与追及问题(2)研究行程中复杂的相遇与追及问题(3)通过画图使较复杂的问题具体化、形象化,融合多种方法达到正确理解题目的目的一、相遇和追及(1)相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间.(2)追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=(甲的速度-乙的速度)×追及时间=速度差×追及时间.⨯⎧⎪÷⎨⎪÷⎩÷⎧⎪⨯⎨⎪÷⎩总路程=速度和相遇时间相遇问题速度和=总路程相遇时间相遇时间=总路程速度和追及时间=追及路程速度差追及问题追及路程=速度差追及时间速度差=追及路程追及时间二、在研究追及和相遇问题时,一般都隐含以下两种条件:(1)在整个被研究的运动过程中,2个物体所运行的时间相同(2)在整个运行过程中,2个物体所走的是同一路径。

例题讲解: 教学目标:相遇与追及问题例题讲解:例题1、一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。

3.5小时两车相遇。

甲、乙两个城市的路程是多少千米?解答:相遇路程等于速度和乘以相遇时间得到甲乙两地路程为:(46+48)×3.5=94×3.5=329(千米).举一反三:两地间的路程有255千米,两辆汽车同时从两地相对开出,甲车每小时行45千米,乙车每小时行40千米。

甲、乙两车相遇时,各行了多少千米?解答:相遇时间是:255÷(45+40)=255÷85=3(小时),所以甲走的路程为:45×3=135(千米),乙走的路程为:40×3=120(千米).例题2、大头儿子的家距离学校3000米,小头爸爸从家去学校接大头儿子放学,大头儿子从学校回家,他们同时出发,小头爸爸每分钟比大头儿子多走24米,50分钟后两人相遇,那么大头儿子的速度是每分钟走多少米?解答:大头儿子和小头爸爸的速度和:3000÷50=60(米/分钟),小头爸爸的速度:(60+24)÷2=42(米/分钟),大头儿子的速度:60-42=18(米/分钟).举一反三:聪聪和明明同时从各自的家相对出发,明明每分钟走20米,聪聪骑着脚踏车每分钟比明明快42米,经过20分钟后两人相遇,你知道聪聪家和明明家的距离吗?解答:直接利用公式:(20+62)×20=1640(米).例题3、A、B两地相距90米,包子从A地到B地需要30秒,菠萝从B地到A地需要15秒,现在包子和菠萝从A、B两地同时相对而行,相遇时包子与B地的距离是多少米?解答:包子的速度90÷30=3(米/秒),菠萝的速度:90÷15=6(米/秒),相遇的时间:90÷(3+6)=10(秒),包子距B地的距离:90-3×10=60(米).举一反三:甲、乙两车分别从相距360千米的A、B两城同时出发,相对而行,已知甲车到达B城需4小时,乙车到达A城需12小时,问:两车出发后多长时间相遇?解答:要求两车的相遇时间,则必须知道它们各自的速度,甲车的速度是360÷4=90(千米/时),乙车的速度是360÷12=30(千米/时),则相遇时间是360÷(90+30)=3(小时).例题4、甲、乙两辆汽车分别从A、B两地出发相对而行,甲车先行1小时,甲车每小时行48千米,乙车每小时行50千米,5小时相遇,求A、B两地间的距离.解答:这题不同的是两车不“同时”.求A、B两地间的路程就是求甲、乙两车所行的路程和.这样可以充分别求出甲车、乙车所行的路程,再把两部分合起来.48×(1+5)=288(千米),50×5=250(千米),288+250=538(千米).举一反三:(1)甲、乙两列火车从相距770千米的两地相向而行,甲车每小时行45千米,乙车每小时行41千米,乙车先出发2小时后,甲车才出发.甲车行几小时后与乙车相遇?解答:甲、乙两车出发时间有先有后,乙车先出发2小时,这段时间甲车没有行驶,那么乙车这2小时所行的路程不是甲、乙两车同时相对而行的路程,所以要先求出甲、乙两车同时相对而行的路程,再除以速度和,才是甲、乙两车同时相对而行的时间.乙车先行驶路程:41×2=82(千米),甲、乙两车同时相对而行路程:770-82=688(千米),甲、乙两车速度和:45+41=86(千米/时),甲车行的时间:688÷86=8(小时).(2)甲、乙两列火车从相距144千米的两地相向而行,甲车每小时行28千米,乙车每小时行22千米,乙车先出发2小时后,甲车才出发.甲车行几小时后与乙车相遇?解答:甲、乙两车出发时间有先有后,乙车先出发2小时,这段时间甲车没有行驶,那么乙车这2小时所行的路程不是甲、乙两车同时相对而行的路程,所以要先求出甲、乙两车同时相对而行的路程,再除以速度和,才是甲、乙两车同时相对而行的时间.乙车先行驶路程:22×2=44(千米),甲、乙两车同时相对而行路:144-44=100(千米),甲、乙两车速度和:28+22=50(千米),与乙车相遇时甲车行的时间为:100÷50=2(小时).(3)妈妈从家出发到学校去接小红,妈妈每分钟走75米.妈妈走了3分钟后,小红从学校出发,小红每分钟走60米.再经过20分钟妈妈和小红相遇.从小红家到学校有多少米?解答:妈妈先走了3分钟,就是先走了75×3=225(米).20分钟后妈妈和小红相遇,也就是说妈妈和小红共同走了20分钟,这一段的路程为:(75+60)×20=2700(米),这样妈妈先走的那一段路程,加上后来妈妈和小红走的这一段路程,就是小红家到学校的距离.即(75×3)+(75+60)×20=2925(米).(4)甲乙两座城市相距530千米,货车和客车从两城同时出发,相向而行.货车每小时行50千米,客车每小时行70千米.客车在行驶中因故耽误1小时,然后继续向前行驶与货车相遇.问相遇时客车、货车各行驶多少千米?解答:因为客车在行驶中耽误1小时,而货车没有停止继续前行,也就是说,货车比客车多走1小时.如果从总路程中把货车单独行驶1小时的路程减去,然后根据余下的就是客车和货车共同走过的.再求出货车和客车每小时所走的速度和,就可以求出相遇时间.然后根据路程=速度×时间,可以分别求出客车和货车在相遇时各自行驶的路程.相遇时间:(530-50)÷(50+70)=4(小时)相遇时客车行驶的路程:70×4=280(千米)相遇时货车行驶的路程:50×(5+1)=250(千米).(5)甲、乙两列火车从相距366千米的两个城市对面开来,甲列火车每小时行37千米,乙列火车每小时行36千米,甲列火车先开出2小时后,乙列火车才开出,问乙列火车行几小时后与甲列火车相遇?解答:(366-37×2)÷(37+36)=4(小时).例题5、甲、乙两辆汽车分别从A B两地出发相向而行,甲车先行3小时后乙车从B地出发,乙车出发5小时后两车还相距15千米.甲车每小时行48千米,乙车每小时行50千米.求A B两地间相距多少千米?解答:题目中写的“还”相距15千米指的就是最简单的情况。

小学数学 基本的相遇与追及问题 课件+作业(带答案)

小学数学 基本的相遇与追及问题 课件+作业(带答案)

练习5:一辆客车和一辆货车分别从相距1200千米的甲、乙两城出发。客车的速度是货车的2 倍。若两车
同时出发,相向而行,则10小时后两车可以相遇。若两车同时出发,同向而行,经过多长时间,客车可以 从后面追上货车?
相遇路程和:1200千米 相遇时间:10小时
速度和:1200÷10=120(千米/时) 货车速度:120÷(1+2)=40(千米/时)
知识点二:基本追及问题
例题4:一天早晨,小芳以每分钟90米的速度步行去上学。 出发5分钟后,妈妈发现小芳忘记带作业本,
于是以每分钟140米的速度骑车去追小芳。经过多少分钟,妈妈可以追上小芳?
小芳 家
妈妈
分析:
路程差:5×90=450(米) 速度差:140-90=50(米/分钟) 追及时间:450÷50=9(分钟) 答:经过9分钟,妈妈可以追上小芳。
总结:追及时间=路程差÷速度差
练习4:下午放学后,小新从学校出发步行去体育场。小东放学后因为要值日,15分钟后才从学
校出发骑车去体育场。小新的步行速度为每分钟60米,小东的骑车速度为 每分钟160米。经过多少分 钟,小东可以追上小新?
路程差:60×15=900(米) 速度差:160-60=100(米/分钟) 追及时间:900÷100=9(分钟) 答:经过9分钟,小东可以追上小新。
客车前2小时先行驶:80×2=160(千米) 客车和货车共同行驶:460-160=300(千米)
速度和:80+70=150(千米/小时) 相遇时间:300÷150=2(小时)
答:货车行驶2小时后可以与客车相遇。
知识点二:基本追及问题
例题3:甲、乙两列火车从相距150千米的A、B 两地同时出发,同向而行。乙车在前,甲车在后

小学数学-相遇问题与追及问题典型例题

小学数学-相遇问题与追及问题典型例题

1.一辆小轿车和一辆面包车从两地同时出发,相向而行,2.5小时后还相距25千米.(列方程解答)2.一列快车全长151米,每秒钟行15米,一列慢车全长254米,每秒行12米.两车相向而行,从相遇到离开要___ 秒钟.3.甲乙两地相距520km,客车和货车同时从两地相向而行,4小时后相遇,货车与客车的速度比是4:9,两车速度各是多少?4.小明和爷爷围着小区中心的圆形花坛散步.花坛直径30米,小明每秒走0.8米,爷爷每秒走0.7米.两人同时同地出发,背向而行,多少秒后可以相遇?5.甲乙两辆汽车同时从某地出发,背向而行.甲车每小时行42.5千米,比乙车每小时慢23.5千米,3小时后两车相距多少千米?6.在AB两城有甲乙两人,分别从AB两城同时相向而行,2小时相遇,相遇时甲所走的路程与乙所走的路程比是9:7,如果甲乙两人同时同向而行,甲需要多少小时才能追上乙?参考答案与试题解析1.一辆小轿车和一辆面包车从两地同时出发,相向而行,2.5小时后还相距25千米.(列方程解答)【解析】:根据题意可知:有两种情况,相遇前相距25千米,(小轿车的速度+面包车的速度)×2.5+25=400千米,设小轿车每小时行驶x千米,据此列方程解答即可;如果是相遇后两车相距25千米,(小轿车的速度+面包车的速度)×2.5-400=25千米,设小轿车每小时行驶x千米,据此列方程解答即可;【解答】:解:相遇前两车25千米。

设小轿车每小时行驶x千米,(x+60)×2.5+25=400(x+60)×2.5=375x+60=150x=90答:小轿车每小时行驶90千米.相遇后两车相距25千米。

设小轿车每小时行驶x千米,(x+60)×2.5-400=25(x+60)×2.5-400+400=25+400(x+60)×2.5=425(x+60)×2.5÷2.5=425÷2.5x+60=170x+60-60=170-60x=110答:小轿车每小时行驶110千米。

常见的相遇问题及追及问题等计算公式(非常实用)

常见的相遇问题及追及问题等计算公式(非常实用)

小学常用公式和差问题(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数+1)=小数差倍问题差÷(倍数-1)=小数植树问题1 单条线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:棵数=全长÷间隔长+1=间隔数+1全长=间隔长×(棵数-1)间隔长=全长÷(棵数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:棵数=间隔数=全长÷间隔长全长=间隔长×棵数间隔长=全长÷棵数⑶如果在非封闭线路的两端都不要植树,那么:棵数=全长÷间隔长-1=间隔数-1全长=间隔长×(棵数+1)间隔长=全长÷(棵数+1)2 双边线路上的植树问题主要也有三种情形:参考单条线路上的植树问题,注意要除以2.3 环形或叫封闭线路上的植树问题的数量关系如下棵数=间隔数=全长÷间隔长全长=间隔长×棵数间隔长=全长÷棵数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)【题目】一游泳池道长100米,甲乙两个运动员从泳道的两端同时下水做往返训练15分钟,甲每分钟游81米,乙每分钟游89米.甲运动员一共从乙运动员身边经过了多少次?【解答】从身边经过,包括迎面和追上两种情况。

小学数学相遇追击练习题汇总

小学数学相遇追击练习题汇总

小学数学相遇追击练习题汇总在小学数学学习中,相遇追击是一个常见且有趣的题型。

通过这类练习题的学习,可以帮助学生巩固对各种运算的理解和应用能力。

本文将为大家汇总一些小学数学相遇追击练习题,并进行解答,希望能够帮助大家更好地理解和掌握这一题型。

1. 小明和小华在操场上相向而行,小明每分钟可以走200米,小华每分钟可以走150米。

如果他们同时出发,他们最后一次相遇在离小明出发地点800米的地方。

问他们出发多长时间后相遇?解答:设他们出发时间为t分钟,则小明走了200t米,小华走了150t米。

根据题意,相遇时小明走了800米,小华走了(800 - 200t)米。

由此可得方程:200t = 150t + 80050t = 800t = 16所以,他们出发16分钟后相遇。

2. 甲乙两辆汽车从同一地点同时出发,甲车以每小时60公里的速度向北行驶,乙车以每小时80公里的速度向东行驶。

两辆车最后在距离出发地点720公里的地方相遇。

问他们出发多长时间后相遇?解答:设他们出发时间为t小时,则甲车走了60t公里,乙车走了80t公里。

根据题意,相遇时甲车走了720公里,乙车走了720公里。

由此可得方程:60t = 720t = 12所以,他们出发12小时后相遇。

3. 小李和小王同时从同一地点出发,小李每分钟走2米,小王每分钟走1.5米。

他们向同一个方向走,小李比小王快2分钟到达公园,小李走了多远?解答:设小李走了t分钟,则小王走了(t + 2)分钟。

根据题意,小李走了2t米,小王走了1.5(t + 2)米。

由此可得方程:2t = 1.5(t + 2)2t = 1.5t + 30.5t = 3t = 6所以,小李走了6分钟,即走了2 × 6 = 12米。

通过以上的练习题,我们可以看到相遇追击题目常常涉及到距离、时间、速度等概念。

解题时需要运用到代数方程的求解和计算能力。

通过多做练习,同学们可以更好地掌握这一类型的题目。

相遇问题与追及问题

相遇问题与追及问题

72 x 96 x 252
解得: x 1 . 5 经检验,符合题意.
答:1.5小时后相遇.
甲、乙两站相距252千米,一列慢车从甲站开出,每小时 行驶72千米,另一列快车从乙站开出,每小时行96千米. (2)慢车先开出1小时,相向而行,慢车开出几小时后两 车相遇?
分析: 慢
速度 72千米/小时 速度 96千米/小时
作业布置
教材22页 第11、13题
车 速度72千米/小时 甲 路程 72 x
速度 96千米/小时
·
252千米
·
乙 路程 96 x
快 车
等量关系:快车路程+慢车路程=420千米 — 252千米 解:设 x 小时后两车相距420千米,根据题意得,
72 x 96 x 420 252
解得: x 1 经检验,符合题意.
答:1小时后两车相距420千米.
行程问题 ——相遇问题、追及问题
例题
甲、乙两站相距252千米,一列慢车从甲站开出,每小时 行驶72千米,另一列快车从乙站开出,每小时行96千米. (1)两列火车同时开出,相向而行,几小时后相遇?
分析: 慢
速度 72千米/小时 速度 96千米/小时
车 甲
·
x
路程 72 x

·
路程
96 x
·

快 车
等量关系:快车路程+慢车路程=总路程 解:设 小时后相遇,根据题意得,
96 x 72 x 252
解得: x 10 . 5 经检验,符合题意.
答:10.5小时后相遇.
甲、乙两站相距252千米,一列慢车从甲站开出,每小时 行驶72千米,另一列快车从乙站开出,每小时行96千米. (5)两列火车同时开出,同向而行,慢车在快车后面,几 小时后快车与慢车相距420千米? 分析: 慢 车

小学数学常考相遇问题、追及问题(附例题、解题思路)

小学数学常考相遇问题、追及问题(附例题、解题思路)

相遇问题【含义】两个运动的物体同时由两地出发相向而行,在途中相遇.这类应用题叫做相遇问题.【数量关系】相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式.例1南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?解392÷(28+21)=8(小时)答:经过8小时两船相遇.例2小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?解“第二次相遇”可以理解为二人跑了两圈.因此总路程为400×2相遇时间=(400×2)÷(5+3)=100(秒)答:二人从出发到第二次相遇需100秒时间.例3甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离.解“两人在距中点3千米处相遇”是正确理解本题题意的关键.从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×2)千米,因此,相遇时间=(3×2)÷(15-13)=3(小时)两地距离=(15+13)×3=84(千米)答:两地距离是84千米.追及问题【含义】两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体.这类应用题就叫做追及问题.【数量关系】追及时间=追及路程÷(快速-慢速)追及路程=(快速-慢速)×追及时间【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式.例1好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?解(1)劣马先走12天能走多少千米?75×12=900(千米)(2)好马几天追上劣马?900÷(120-75)=20(天)列成综合算式75×12÷(120-75)=900÷45=20(天)答:好马20天能追上劣马.例2小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑.小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米.解小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间.又知小明跑200米用40秒,则跑500米用[40×(500÷200)]秒,所以小亮的速度是(500-200)÷[40×(500÷200)]=300÷100=3(米)答:小亮的速度是每秒3米.例3我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击.已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?解敌人逃跑时间与解放军追击时间的时差是(22-16)小时,这段时间敌人逃跑的路程是[10×(22-6)]千米,甲乙两地相距60千米.由此推知追及时间=[10×(22-6)+60]÷(30-10)=220÷20=11(小时)答:解放军在11小时后可以追上敌人.例4一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离.解这道题可以由相遇问题转化为追及问题来解决.从题中可知客车落后于货车(16×2)千米,客车追上货车的时间就是前面所说的相遇时间,这个时间为16×2÷(48-40)=4(小时)所以两站间的距离为(48+40)×4=352(千米)列成综合算式(48+40)×[16×2÷(48-40)]=88×4=352(千米)答:甲乙两站的距离是352千米.。

小升初行程问题专项训练之相遇问题追及问题

小升初行程问题专项训练之相遇问题追及问题

小升初行程问题专项训练之相遇问题追及问题一、基本公式:1、路程=速度×时间2、相遇问题:相遇路程=速度和×相遇时间3、追及问题:相差路程=速度差×追及时间二、行程问题(一)-----相遇问题例题:1.XXX和XXX同时从两地相对出发,XXX步行每分钟走8米,XXX骑自行车的速度是XXX步行的3倍,经过5分钟后两人相遇,问这两地相距多少米?2.在一条笔直的公路上,XXX和XXX骑车从相距900米的A、B两地同时出发,XXX每分钟行200米,XXX每分钟行250米,经过多少时间两人相距2700米?(分析各种情况)3.客货两车同时从甲、乙两地相对开出,客车每小时行44千米,货车每小时行52千米,两车相遇后继续以原速度前进,到达乙、甲两地后立即返回,第二次相遇时,货车比客车多行60千米。

问甲、乙两地相距多千米?4.XXX从甲地向乙地走,XXX同时从乙地向甲地走,当各自到达终点后,又迅速返回,各自速度不变,两人第一次相遇在距甲地40米处,第二次相遇在距乙地15米处,问甲、乙两地相距多少米?5.甲村、乙村相距6千米,XXX与XXX分别从甲、乙两村出发,在两村之间往返行走(到达另一村后就马上返回)。

在出发后40分钟两人第一次相遇。

小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇。

问XXX和XXX两人的速度各是多少?6.XXX与XXX划分从甲、乙两村动身,在两村之间往返行走(抵达另一村后就马上返回)。

他们离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇。

问他们两人第四次相遇的地址离乙村有多远?(相遇指迎面相遇)7.甲、乙两辆汽车同时从东西两地相向开出,甲每小时行56千米,乙每小时行48千米,两车在离两地中点32千米处相遇。

问:东西两地间的距离是多少千米?8.甲、乙两地相距15千米,小聪和XXX划分从甲、乙两地同时相向而行,2小时后在离中点0.5千米处相遇,求小聪和XXX的速率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学常考相遇问题、追及问题(附例题、解题思路
相遇问题
【含义】
两个运动的物体同时由两地出发相向而行,在途中相遇。

这类应用题叫做相遇问题。

【数量关系】
相遇时间=总路程÷(甲速+乙速)
总路程=(甲速+乙速)×相遇时间
【解题思路和方法】
简单的题目可直接利用公式,复杂的题目变通后再利用公式。

例1
南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?

392÷(28+21)=8(小时)
答:经过8小时两船相遇。

例2
小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?

“第二次相遇”可以理解为二人跑了两圈。

因此总路程为400×2
相遇时间=(400×2)÷(5+3)=100(秒)
答:二人从出发到第二次相遇需100秒时间。

例3
甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。


“两人在距中点3千米处相遇”是正确理解本题题意的关键。

从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×2)千米,因此,
相遇时间=(3×2)÷(15-13)=3(小时)
两地距离=(15+13)×3=84(千米)
答:两地距离是84千米。

追及问题
【含义】
两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。

这类应用题就叫做追及问题。

【数量关系】
追及时间=追及路程÷(快速-慢速)
追及路程=(快速-慢速)×追及时间
【解题思路和方法】
简单的题目直接利用公式,复杂的题目变通后利用公式。

例1
好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?解
(1)劣马先走12天能走多少千米?75×12=900(千米)
(2)好马几天追上劣马?900÷(120-75)=20(天)
列成综合算式75×12÷(120-75)=900÷45=20(天)
答:好马20天能追上劣马。

例2
小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。

小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。

小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间。

又知小明跑200米用40秒,则跑500米用[40×(500÷200)]秒,所以小亮的速度是
(500-200)÷[40×(500÷200)]
=300÷100=3(米)
答:小亮的速度是每秒3米。

例3
我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。

已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?

敌人逃跑时间与解放军追击时间的时差是(22-16)小时,这段时间敌人逃跑的路程是[10×(22-6)]千米,甲乙两地相距60千米。

由此推知
追及时间=[10×(22-6)+60]÷(30-10)
=220÷20=11(小时)
答:解放军在11小时后可以追上敌人。

例4
一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。

这道题可以由相遇问题转化为追及问题来解决。

从题中可知客车落后于货车(16×2)千米,客车追上货车的时间就是前面所说的相遇时间,
这个时间为16×2÷(48-40)=4(小时)
所以两站间的距离为(48+40)×4=352(千米)
列成综合算式(48+40)×[16×2÷(48-40)]
=88×4
=352(千米)
答:甲乙两站的距离是352千米。

相关文档
最新文档