2018年广西高考数学试卷(理科)(全国新课标Ⅲ)

合集下载

2018新课标全国卷3高考理科数学试题及答案解析

2018新课标全国卷3高考理科数学试题及答案解析

绝密★启用前2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A I B 中元素的个数为 A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣=A .12B .22C .2D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳4.(x +y )(2x -y )5的展开式中x 3y 3的系数为 A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为 A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6πD .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A.3B.3C.3D .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP u u u r=λAB u u u r +μAD u u u r,则λ+μ的最大值为A .3B .CD .2二、填空题:本题共4小题,每小题5分,共20分。

2018年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2018年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设z=+2i,则|z|=()A.0B.C.1D.2.(5分)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12B.﹣10C.10D.125.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.28.(5分)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5B.6C.7D.89.(5分)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3 11.(5分)已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3C.2D.412.(5分)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。

2018年全国统一高考数学试卷(理科)(新课标Ⅱ)(含答案)

2018年全国统一高考数学试卷(理科)(新课标Ⅱ)(含答案)

绝密★启用前2018年全国统一高考数学试卷(理科)(新课标Ⅱ)考试时间:120分钟;试卷整理:微信公众号--浙江数学学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分一.选择题(共12小题,满分60分,每小题5分)1.(5分)(2018•新课标Ⅱ)=()A.iB.C.D.2.(5分)(2018•新课标Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z),则A 中元素的个数为()A.9B.8C.5D.43.(5分)(2018•新课标Ⅱ)函数f(x)=的图象大致为()A.B.C.D.4.(5分)(2018•新课标Ⅱ)已知向量,满足||=1,=﹣1,则•(2)=()A.4B.3C.2D.05.(5分)(2018•新课标Ⅱ)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x6.(5分)(2018•新课标Ⅱ)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4B.C.D.27.(5分)(2018•新课标Ⅱ)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1B.i=i+2C.i=i+3D.i=i+48.(5分)(2018•新课标Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.B.C.D.9.(5分)(2018•新课标Ⅱ)在长方体ABCD﹣A 1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()A.B.C.D.10.(5分)(2018•新课标Ⅱ)若f(x)=cosx﹣sinx在[﹣a,a]是减函数,则a的最大值是()A.B.C.D.π11.(5分)(2018•新课标Ⅱ)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50B.0C.2D.5012.(5分)(2018•新课标Ⅱ)已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共4小题,满分20分,每小题5分)13.(5分)(2018•新课标Ⅱ)曲线y=2ln(x+1)在点(0,0)处的切线方程为.14.(5分)(2018•新课标Ⅱ)若x,y满足约束条件,则z=x+y的最大值为.15.(5分)(2018•新课标Ⅱ)已知sinα+cosβ=l,cosα+sinβ=0,则sin(α+β)=.16.(5分)(2018•新课标Ⅱ)已知圆锥的顶点为S,母线SA,SB所成角的余弦值为,SA与圆锥底面所成角为45°,若△SAB的面积为5,则该圆锥的侧面积为.评卷人得分三.解答题(共7小题,满分80分)17.(12分)(2018•新课标Ⅱ)记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.18.(12分)(2018•新课标Ⅱ)如图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,…,17)建立模型①:=﹣30.4+13.5t;根据2010年至2016年的数据(时间变量t的值依次为1,2,…,7)建立模型②:=99+17.5t.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.19.(12分)(2018•新课标Ⅱ)设抛物线C:y2=4x的焦点为F,过F且斜率为k (k>0)的直线l与C交于A,B两点,|AB|=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.20.(12分)(2018•新课标Ⅱ)如图,在三棱锥P﹣ABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且二面角M﹣PA﹣C为30°,求PC与平面PAM所成角的正弦值.21.(12分)(2018•新课标Ⅱ)已知函数f(x)=e x﹣ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a.22.(10分)(2018•新课标Ⅱ)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.23.(10分)(2018•新课标Ⅱ)设函数f(x)=5﹣|x+a|﹣|x﹣2|.(1)当a=1时,求不等式f(x)≥0的解集;(2)若f(x)≤1,求a的取值范围.2018年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一.选择题(共12小题,满分60分,每小题5分)1.(5分)(2018•新课标Ⅱ)=()A.iB.C.D.【考点】A5:复数的运算.【分析】利用复数的除法的运算法则化简求解即可.【解答】解:==+.故选:D.【点评】本题考查复数的代数形式的乘除运算,是基本知识的考查.2.(5分)(2018•新课标Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z),则A 中元素的个数为()A.9B.8C.5D.4【考点】1A:集合中元素个数的最值.【分析】分别令x=﹣1,0,1,进行求解即可.【解答】解:当x=﹣1时,y2≤2,得y=﹣1,0,1,当x=0时,y2≤3,得y=﹣1,0,1,当x=1时,y2≤2,得y=﹣1,0,1,即集合A中元素有9个,故选:A.【点评】本题主要考查集合元素个数的判断,利用分类讨论的思想是解决本题的关键.3.(5分)(2018•新课标Ⅱ)函数f(x)=的图象大致为()A.B.C.D.【考点】6B:利用导数研究函数的单调性;3A:函数的图象与图象的变换.【分析】判断函数的奇偶性,利用函数的定点的符号的特点分别进行判断即可.【解答】解:函数f(﹣x)==﹣=﹣f(x),则函数f(x)为奇函数,图象关于原点对称,排除A,当x=1时,f(1)=e﹣>0,排除D.当x→+∞时,f(x)→+∞,排除C,故选:B.【点评】本题主要考查函数的图象的识别和判断,利用函数图象的特点分别进行排除是解决本题的关键.4.(5分)(2018•新课标Ⅱ)已知向量,满足||=1,=﹣1,则•(2)=()A.4B.3C.2D.0【考点】9O:平面向量数量积的性质及其运算;91:向量的概念与向量的模.【分析】根据向量的数量积公式计算即可.【解答】解:向量,满足||=1,=﹣1,则•(2)=2﹣=2+1=3,故选:B.【点评】本题考查了向量的数量积公式,属于基础题5.(5分)(2018•新课标Ⅱ)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x【考点】KC:双曲线的性质.【分析】根据双曲线离心率的定义求出a,c的关系,结合双曲线a,b,c的关系进行求解即可.【解答】解:∵双曲线的离心率为e==,则=====,即双曲线的渐近线方程为y=±x=±x,故选:A.【点评】本题主要考查双曲线渐近线的求解,结合双曲线离心率的定义以及渐近线的方程是解决本题的关键.6.(5分)(2018•新课标Ⅱ)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4B.C.D.2【考点】HR:余弦定理.【分析】利用二倍角公式求出C的余弦函数值,利用余弦定理转化求解即可.【解答】解:在△ABC中,cos=,cosC=2×=﹣,BC=1,AC=5,则AB====4.故选:A.【点评】本题考查余弦定理的应用,考查三角形的解法以及计算能力.7.(5分)(2018•新课标Ⅱ)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1B.i=i+2C.i=i+3D.i=i+4【考点】EH:绘制程序框图解决问题;E7:循环结构.【分析】模拟程序框图的运行过程知该程序运行后输出的S=N﹣T,由此知空白处应填入的条件.【解答】解:模拟程序框图的运行过程知,该程序运行后输出的是S=N﹣T=(1﹣)+(﹣)+…+(﹣);累加步长是2,则在空白处应填入i=i+2.故选:B.【点评】本题考查了循环程序的应用问题,是基础题.8.(5分)(2018•新课标Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.B.C.D.【考点】CB:古典概型及其概率计算公式.【分析】利用列举法先求出不超过30的所有素数,利用古典概型的概率公式进行计算即可.【解答】解:在不超过30的素数中有,2,3,5,7,11,13,17,19,23,29共10个,从中选2个不同的数有=45种,和等于30的有(7,23),(11,19),(13,17),共3种,则对应的概率P==,故选:C.【点评】本题主要考查古典概型的概率的计算,求出不超过30的素数是解决本题的关键.9.(5分)(2018•新课标Ⅱ)在长方体ABCD﹣A 1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【分析】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线AD1与DB1所成角的余弦值.【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,∵在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA 1=,∴A(1,0,0),D 1(0,0,),D(0,0,0),B 1(1,1,),=(﹣1,0,),=(1,1,),设异面直线AD1与DB1所成角为θ,则cosθ===,∴异面直线AD1与DB1所成角的余弦值为.故选:C.【点评】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.10.(5分)(2018•新课标Ⅱ)若f(x)=cosx﹣sinx在[﹣a,a]是减函数,则a的最大值是()A.B.C.D.π【考点】GP:两角和与差的三角函数;H5:正弦函数的单调性.【分析】利用两角和差的正弦公式化简f(x),由,k∈Z,得,k∈Z,取k=0,得f(x)的一个减区间为[,],结合已知条件即可求出a的最大值.【解答】解:f(x)=cosx﹣sinx=﹣(sinx﹣cosx)=,由,k∈Z,得,k∈Z,取k=0,得f(x)的一个减区间为[,],由f(x)在[﹣a,a]是减函数,得,∴.则a的最大值是.故选:A.【点评】本题考查了两角和与差的正弦函数公式的应用,三角函数的求值,属于基本知识的考查,是基础题.11.(5分)(2018•新课标Ⅱ)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50B.0C.2D.50【考点】3K:函数奇偶性的性质与判断.【分析】根据函数奇偶性和对称性的关系求出函数的周期是4,结合函数的周期性和奇偶性进行转化求解即可.【解答】解:∵f(x)是奇函数,且f(1﹣x)=f(1+x),∴f(1﹣x)=f(1+x)=﹣f(x﹣1),f(0)=0,则f(x+2)=﹣f(x),则f(x+4)=﹣f(x+2)=f(x),即函数f(x)是周期为4的周期函数,∵f(1)=2,∴f(2)=f(0)=0,f(3)=f(1﹣2)=f(﹣1)=﹣f(1)=﹣2,f(4)=f(0)=0,则f(1)+f(2)+f(3)+f(4)=2+0﹣2+0=0,则f(1)+f(2)+f(3)+…+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(49)+f(50)=f(1)+f(2)=2+0=2,故选:C.【点评】本题主要考查函数值的计算,根据函数奇偶性和对称性的关系求出函数的周期性是解决本题的关键.12.(5分)(2018•新课标Ⅱ)已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.【考点】K4:椭圆的性质.【分析】求得直线AP的方程:根据题意求得P点坐标,代入直线方程,即可求得椭圆的离心率.【解答】解:由题意可知:A(﹣a,0),F1(﹣c,0),F2(c,0),直线AP的方程为:y=(x+a),由∠F 1F2P=120°,|PF2|=|F1F2|=2c,则P(2c,c),代入直线AP:c=(2c+a),整理得:a=4c,∴题意的离心率e==.故选:D.【点评】本题考查椭圆的性质,直线方程的应用,考查转化思想,属于中档题.二.填空题(共4小题,满分20分,每小题5分)13.(5分)(2018•新课标Ⅱ)曲线y=2ln(x+1)在点(0,0)处的切线方程为y=2x.【考点】6H:利用导数研究曲线上某点切线方程.【分析】欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x=0处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵y=2ln(x+1),∴y′=,当x=0时,y′=2,∴曲线y=2ln(x+1)在点(0,0)处的切线方程为y=2x.故答案为:y=2x.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.14.(5分)(2018•新课标Ⅱ)若x,y满足约束条件,则z=x+y的最大值为9.【考点】7C:简单线性规划.【分析】由约束条件作出可行域,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案.【解答】解:由x,y满足约束条件作出可行域如图,化目标函数z=x+y为y=﹣x+z,由图可知,当直线y=﹣x+z过A时,z取得最大值,由,解得A(5,4),目标函数有最大值,为z=9.故答案为:9.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.(5分)(2018•新课标Ⅱ)已知sinα+cosβ=l,cosα+sinβ=0,则sin(α+β)=.【考点】GP:两角和与差的三角函数.【分析】把已知等式两边平方化简可得2+2(sinαcosβ+cosαsinβ)=1,再利用两角和差的正弦公式化简为2sin(α+β)=﹣1,可得结果.【解答】解:sinα+cosβ=l,两边平方可得:sin2α+2sinαcosβ+cos2β=1,①,cosα+sinβ=0,两边平方可得:cos2α+2cosαsinβ+sin2β=0,②,由①+②得:2+2(sinαcosβ+cosαsinβ)=1,即2+2sin(α+β)=1,∴2sin(α+β)=﹣1.∴sin(α+β)=.故答案为:.【点评】本题考查了两角和与差的正弦函数公式的应用,三角函数的求值,属于基本知识的考查,是基础题.16.(5分)(2018•新课标Ⅱ)已知圆锥的顶点为S,母线SA,SB所成角的余弦值为,SA与圆锥底面所成角为45°,若△SAB的面积为5,则该圆锥的侧面积为40π.【考点】MI:直线与平面所成的角.【分析】利用已知条件求出圆锥的母线长,利用直线与平面所成角求解底面半径,然后求解圆锥的侧面积.【解答】解:圆锥的顶点为S,母线SA,SB所成角的余弦值为,可得sin∠AMB==.△SAB的面积为5,可得sin∠AMB=5,即×=5,即SA=4.SA与圆锥底面所成角为45°,可得圆锥的底面半径为:=2.则该圆锥的侧面积:π=40π.故答案为:40π.【点评】本题考查圆锥的结构特征,母线与底面所成角,圆锥的截面面积的求法,考查空间想象能力以及计算能力.三.解答题(共7小题,满分80分)17.(12分)(2018•新课标Ⅱ)记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.【考点】85:等差数列的前n项和;84:等差数列的通项公式.【分析】(1)根据a1=﹣7,S3=﹣15,可得a1=﹣7,3a1+3d=﹣15,求出等差数列{a n}的公差,然后求出a n即可;(2)由a1=﹣7,d=2,a n=2n﹣9,得S n===n2﹣8n=(n﹣4)2﹣16,由此可求出S n以及S n的最小值.【解答】解:(1)∵等差数列{a n}中,a1=﹣7,S3=﹣15,∴a1=﹣7,3a1+3d=﹣15,解得a1=﹣7,d=2,∴a n=﹣7+2(n﹣1)=2n﹣9;(2)∵a1=﹣7,d=2,a n=2n﹣9,∴S n===n2﹣8n=(n﹣4)2﹣16,∴当n=4时,前n项的和S n取得最小值为﹣16.【点评】本题主要考查了等差数列的通项公式,考查了等差数列的前n项的和公式,属于中档题.18.(12分)(2018•新课标Ⅱ)如图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,…,17)建立模型①:=﹣30.4+13.5t;根据2010年至2016年的数据(时间变量t的值依次为1,2,…,7)建立模型②:=99+17.5t.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.【考点】BK:线性回归方程.【分析】(1)根据模型①计算t=19时的值,根据模型②计算t=9时的值即可;(2)从总体数据和2000年到2009年间递增幅度以及2010年到2016年间递增的幅度比较,即可得出模型②的预测值更可靠些.【解答】解:(1)根据模型①:=﹣30.4+13.5t,计算t=19时,=﹣30.4+13.5×19=226.1;利用这个模型,求出该地区2018年的环境基础设施投资额的预测值是226.1亿元;根据模型②:=99+17.5t,计算t=9时,=99+17.5×9=256.5;.利用这个模型,求该地区2018年的环境基础设施投资额的预测值是256.5亿元;(2)模型②得到的预测值更可靠;因为从总体数据看,该地区从2000年到2016年的环境基础设施投资额是逐年上升的,而从2000年到2009年间递增的幅度较小些,从2010年到2016年间递增的幅度较大些,所以,利用模型②的预测值更可靠些.【点评】本题考查了线性回归方程的应用问题,是基础题.19.(12分)(2018•新课标Ⅱ)设抛物线C:y2=4x的焦点为F,过F且斜率为k (k>0)的直线l与C交于A,B两点,|AB|=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.【考点】KN:直线与抛物线的位置关系.【分析】(1)方法一:设直线AB的方程,代入抛物线方程,根据抛物线的焦点弦公式即可求得k的值,即可求得直线l的方程;方法二:根据抛物线的焦点弦公式|AB|=,求得直线AB的倾斜角,即可求得直线l的斜率,求得直线l的方程;(2)根据过A,B分别向准线l作垂线,根据抛物线的定义即可求得半径,根据中点坐标公式,即可求得圆心,求得圆的方程.【解答】解:(1)方法一:抛物线C:y2=4x的焦点为F(1,0),当直线的斜率不存在时,|AB|=4,不满足;设直线AB的方程为:y=k(x﹣1),设A(x1,y1),B(x2,y2),则,整理得:k2x2﹣2(k2+2)x+k2=0,则x1+x2=,x1x2=1,由|AB|=x1+x2+p=+2=8,解得:k2=1,则k=1,∴直线l的方程y=x﹣1;方法二:抛物线C:y2=4x的焦点为F(1,0),设直线AB的倾斜角为θ,由抛物线的弦长公式|AB|===8,解得:sin2θ=,∴θ=,则直线的斜率k=1,∴直线l的方程y=x﹣1;(2)过A,B分别向准线x=﹣1作垂线,垂足分别为A1,B1,设AB的中点为D,过D作DD1⊥准线l,垂足为D,则|DD1|=(|AA1|+|BB1|)由抛物线的定义可知:|AA1|=|AF|,|BB1|=|BF|,则r=|DD1|=4,以AB为直径的圆与x=﹣1相切,且该圆的圆心为AB的中点D,由(1)可知:x1+x2=6,y1+y2=x1+x2﹣2=4,则D(3,2),过点A,B且与C的准线相切的圆的方程(x﹣3)2+(y﹣2)2=16..【点评】本题考查抛物线的性质,直线与抛物线的位置关系,抛物线的焦点弦公式,考查圆的标准方程,考查转换思想思想,属于中档题.20.(12分)(2018•新课标Ⅱ)如图,在三棱锥P﹣ABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且二面角M﹣PA﹣C为30°,求PC与平面PAM所成角的正弦值.【考点】MJ:二面角的平面角及求法;LW:直线与平面垂直;MI:直线与平面所成的角.【分析】(1)利用线面垂直的判定定理证明PO⊥AC,PO⊥OB即可;(2)根据二面角的大小求出平面PAM的法向量,利用向量法即可得到结论.【解答】解:(1)证明:∵AB=BC=2,O是AC的中点,∴BO⊥AC,且BO=2,又PA=PC=PB=AC=2,∴PO⊥AC,PO=2,则PB2=PO2+BO2,则PO⊥OB,∵OB∩AC=O,∴PO⊥平面ABC;(2)建立以O坐标原点,OB,OC,OP分别为x,y,z轴的空间直角坐标系如图:A(0,﹣2,0),P(0,0,2),C(0,2,0),B(2,0,0),=(﹣2,2,0),设=λ=(﹣2λ,2λ,0),0<λ<1则=﹣=(﹣2λ,2λ,0)﹣(﹣2,﹣2,0)=(2﹣2λ,2λ+2,0),则平面PAC的法向量为=(1,0,0),设平面MPA的法向量为=(x,y,z),则=(0,﹣2,﹣2),则•=﹣2y﹣2z=0,•=(2﹣2λ)x+(2λ+2)y=0令z=1,则y=﹣,x=,即=(,﹣,1),∵二面角M﹣PA﹣C为30°,∴cos30°=|=,即=,解得λ=或λ=3(舍),则平面MPA的法向量=(2,﹣,1),=(0,2,﹣2),PC与平面PAM所成角的正弦值sinθ=|cos<,>|=||==.【点评】本题主要考查空间直线和平面的位置关系的应用以及二面角,线面角的求解,建立坐标系求出点的坐标,利用向量法是解决本题的关键.21.(12分)(2018•新课标Ⅱ)已知函数f(x)=e x﹣ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a.【考点】6D:利用导数研究函数的极值.【分析】(1)通过两次求导,利用导数研究函数的单调性极值与最值即可证明,(2)分离参数可得a=在(0,+∞)只有一个根,即函数y=a与G(x)=的图象在(0,+∞)只有一个交点.结合图象即可求得a.【解答】证明:(1)当a=1时,函数f(x)=e x﹣x2.则f′(x)=e x﹣2x,令g(x)=e x﹣2x,则g′(x)=e x﹣2,令g′(x)=0,得x=ln2.当∈(0,ln2)时,h′(x)<0,当∈(ln2,+∞)时,h′(x)>0,∴h(x)≥h(ln2)=e ln2﹣2•ln2=2﹣2ln2>0,∴f(x)在[0,+∞)单调递增,∴f(x)≥f(0)=1,解:(2),f(x)在(0,+∞)只有一个零点⇔方程e x﹣ax2=0在(0,+∞)只有一个根,⇔a=在(0,+∞)只有一个根,即函数y=a与G(x)=的图象在(0,+∞)只有一个交点.G,当x∈(0,2)时,G′(x)<0,当∈(2,+∞)时,G′(x)>0,∴G(x)在(0,2)递减,在(2,+∞)递增,当→0时,G(x)→+∞,当→+∞时,G(x)→+∞,∴f(x)在(0,+∞)只有一个零点时,a=G(2)=.【点评】本题考查了利用导数探究函数单调性,以及函数零点问题,考查了转化思想、数形结合思想,属于中档题.22.(10分)(2018•新课标Ⅱ)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.【考点】QH:参数方程化成普通方程.【分析】(1)直接利用转换关系,把参数方程和极坐标方程与直角坐标方程进行转化.(2)利用直线和曲线的位置关系,在利用中点坐标求出结果.【解答】解:(1)曲线C的参数方程为(θ为参数),转换为直角坐标方程为:.直线l的参数方程为(t为参数).转换为直角坐标方程为:sinαx﹣cosαy+2cosα﹣sinα=0.(2)把直线的参数方程代入椭圆的方程得到:+=1整理得:(4cos2α+sin2α)t2+(8cosα+4sinα)t﹣8=0,则:,由于(1,2)为中点坐标,所以:,则:8cosα+4sinα=0,解得:tanα=﹣2,即:直线l的斜率为﹣2.【点评】本题考查的知识要点:参数方程和极坐标方程与直角坐标方程的转化,直线和曲线的位置关系的应用,中点坐标的应用.23.(10分)(2018•新课标Ⅱ)设函数f(x)=5﹣|x+a|﹣|x﹣2|.(1)当a=1时,求不等式f(x)≥0的解集;(2)若f(x)≤1,求a的取值范围.【考点】R5:绝对值不等式的解法.【分析】(1)去绝对值,化为分段函数,求出不等式的解集即可,(2)由题意可得|x+a|+|x﹣2|≥4,根据据绝对值的几何意义即可求出【解答】解:(1)当a=1时,f(x)=5﹣|x+1|﹣|x﹣2|=.当x≤﹣1时,f(x)=2x+4≥0,解得﹣2≤x≤1,当﹣1<x<2时,f(x)=2≥0恒成立,即﹣1<x<2,当x≥2时,f(x)=﹣2x+6≥0,解得2≤x≤3,综上所述不等式f(x)≥0的解集为[﹣2,3],(2)∵f(x)≤1,∴5﹣|x+a|﹣|x﹣2|≤1,∴|x+a|+|x﹣2|≥4,∴|x+a|+|x﹣2|=|x+a|+|2﹣x|≥|x+a+2﹣x|=|a+2|,∴|a+2|≥4,解得a≤﹣6或a≥2,故a的取值范围(﹣∞,﹣6]∪[2,+∞).【点评】本题考查了绝对值的不等式和绝对值的几何意义,属于中档题。

2018年全国新课标Ⅲ卷全国3卷高考理科数学试卷及参考答案与试题解析

2018年全国新课标Ⅲ卷全国3卷高考理科数学试卷及参考答案与试题解析

2018年全国新课标Ⅲ卷全国3卷高考理科数学试卷及参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5.00分)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( )A.{0}B.{1}C.{1,2}D.{0,1,2}2.(5.00分)(1+i)(2-i)=( )A.-3-iB.-3+iC.3-iD.3+i3.(5.00分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )A. B. C. D.4.(5.00分)若sinα=,则cos2α=( )A. B. C.- D.-5.(5.00分)(x2+)5的展开式中x4的系数为( )A.10B.20C.40D.806.(5.00分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x-2)2+y2=2上,则△ABP面积的取值范围是( )A.[2,6]B.[4,8]C.[,3]D.[2,3]7.(5.00分)函数y=-x4+x2+2的图象大致为( )A. B. C.D.8.(5.00分)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(x=4)<P(X=6),则p=( ) A.0.7 B.0.6 C.0.4 D.0.39.(5.00分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=( )A. B. C. D.10.(5.00分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D-ABC体积的最大值为( )A.12B.18C.24D.5411.(5.00分)设F1,F2是双曲线C:-=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为( )A. B.2 C. D.12.(5.00分)设a=log0.20.3,b=log20.3,则( )A.a+b<ab<0B.ab<a+b<0C.a+b<0<abD.ab<0<a+b二、填空题:本题共4小题,每小题5分,共20分。

2018年数学真题及解析_2018年全国统一高考数学试卷(文科)(全国新课标ⅲ)

2018年数学真题及解析_2018年全国统一高考数学试卷(文科)(全国新课标ⅲ)

2018年云南省高考数学试卷(文科)(全国新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5.00分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2}2.(5.00分)(1+i)(2﹣i)=()A.﹣3﹣i B.﹣3+i C.3﹣i D.3+i3.(5.00分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A. B. C. D.4.(5.00分)若sinα=,则cos2α=()A.B.C.﹣ D.﹣5.(5.00分)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为()A.0.3 B.0.4 C.0.6 D.0.76.(5.00分)函数f(x)=的最小正周期为()A.B.C.πD.2π7.(5.00分)下列函数中,其图象与函数y=lnx的图象关于直线x=1对称的是()A.y=ln(1﹣x)B.y=ln(2﹣x)C.y=ln(1+x) D.y=ln(2+x)8.(5.00分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[,3]D.[2,3]9.(5.00分)函数y=﹣x4+x2+2的图象大致为()A.B.C.D.10.(5.00分)已知双曲线C:﹣=1(a>0,b>0)的离心率为,则点(4,0)到C的渐近线的距离为()A.B.2 C.D.211.(5.00分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.12.(5.00分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.54二、填空题:本题共4小题,每小题5分,共20分。

2018年新课标I、II、III数学(文)(理)高考真题试卷(Word版含答案)

2018年新课标I、II、III数学(文)(理)高考真题试卷(Word版含答案)

2018 年一般高等学校招生全国一致考试( Ⅰ卷 )文科数学注意事项:1.答卷前,考生务势必自己的九名、考生号等填写在答题卡和试卷指定地点上.2.回答选择题时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需变动,用橡皮擦洁净后,再选涂其余答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(此题共 12 小题,每题 5 分,共60 分.在每题给出的四个选项中,只有一项是切合题目要求的.)1.已知会合 A 0,2 ,B 2 , 1,0 ,1,2 ,则AIB ()A. 0,2 B. 1,2 C. 0 D. 2, 1,0 ,1,21 i,则 z ()2.设z 2i1 iA.0 B.1C. 1 D. 2 23.某地域经过一年的新乡村建设,乡村的经济收入增添了一倍.实现翻番.为更好地认识该地域乡村的经济收入变化状况,统计了该地域新乡村建设前后乡村的经济收入组成比率.获得以下饼图:则下边结论中不正确的选项是()A.新乡村建设后,栽种收入减少B.新乡村建设后,其余收入增添了一倍以上C.新乡村建设后,养殖收入增添了一倍D.新乡村建设后,养殖收入与第三家产收入的总和超出了经济收入的一半4.记 S n为等差数列a n的前n项和.若 3S3 S2 S4, a1 2 ,则 a3 ()A.12 B.10 C.10 D. 125.设函数 f x x 3a 1 x 2ax .若 f x 为奇函数, 则曲线 yf x 在点 0 ,0 处的切线方程为()A . y2xB . y xC . y 2xD . y x6.在 △ ABC 中, AD 为 BC 边上的中线,uuurE 为 AD 的中点,则 EB ()A . 3 uuur1 uuurB . 1 uuur 3 uuur4 AB4 AC 4 AB AC4 C . 3 uuur 1 uuur D . 1 uuur 3 uuur 4 AB4 AC4 AB AC47.某圆柱的高为 2,底面周长为 16,其三视图以下图,圆柱表面上的点 M 在正视图上的对应点为 A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱 侧面上,从 M 到 N的路径中,最短路径的长度为( )A .2 17B .2 5C .3D .28.设抛物线 C :y24 x 的焦点为 F ,过点2 ,0 且斜率为2的直线与 C 交于 M , N 两点,3uuuur uuur ()则FM FNA .5B . 6C .7D . 89.已知函数 f xx, ≤0 , f xf x x a (),若 g x 存在 2 个零点, 则 a 的exln x ,x 0取值范围是A . 1,0B . ,C . 1,D . 1,10.下列图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆组成,三个半圆的直径分别为直角三角形ABC 的斜边 BC ,直角边 AB , AC , △ ABC 的三边所围成的地区记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1 , p 2 , p 3 ,则( )A . p 1 p 2B . p 1 p 3C . p 2 p 3D . p 1 p 2p 3211.已知双曲线 C :xy 2 1 , O 为坐标原点, F 为 C 的右焦点,过 F 的直线与 C 的两条渐 3近线的交点分别为 M , N .若 △ OMN 为直角三角形,则 MN () A .3B . 3C .2 3D . 4212.设函数 f x2 x, ≤ 0,则知足 f x 1f 2x 的 x 的取值范围是()x 01,yA .,1B . 0,C . 1,0D . ,0二、填空题(此题共 4 小题,每题 5 分,共 20 分)13.已知函数 f xlog 2 x 2 a ,若 f 31 ,则 a________.x 2 y 2 ≤ 014.若 x ,y 知足拘束条件x ≥ 0 ,则 z3x 2 y 的最大值为 ________.y 1y ≤ 015.直线 y x 1 与圆 x 2y 2 2 y 3 0 交于 A ,B 两点,则 AB________ .16. △ ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c ,已知 b sinC csin B4asin Bsin C ,b 2c 2 a 2 8 ,则 △ ABC 的面积为 ________.三、解答题(共70 分。

2017年全国统一高考数学试卷及参考答案(理科)(全国新课标III)

2017年全国统一高考数学试卷及参考答案(理科)(全国新课标III)

2017年全国统一高考数学试卷(理科)(全国新课标III)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为()A.3 B.2 C.1 D.02.(5分)设复数z满足(1+i)z=2i,则|z|=()A.B.C.D.23.(5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.(5分)(x+y)(2x﹣y)5的展开式中的x3y3系数为()A.﹣80 B.﹣40 C.40 D.805.(5分)已知双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=16.(5分)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减7.(5分)执行如图的程序框图,为使输出S的值小于91,则输入的正整数N 的最小值为()A.5 B.4 C.3 D.28.(5分)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.C.D.9.(5分)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为()A.﹣24 B.﹣3 C.3 D.810.(5分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A. B.C.D.11.(5分)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A.﹣B.C.D.112.(5分)在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为()A.3 B.2C.D.2二、填空题:本题共4小题,每小题5分,共20分。

2018年广西高考数学试卷文科全国新课标ⅲ学生版

2018年广西高考数学试卷文科全国新课标ⅲ学生版

2018年广西高考数学试卷(文科)(全国新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)(2018?新课标Ⅲ)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2}2.(5分)(2018?新课标Ⅲ)(1+i)(2﹣i)=()A.﹣3﹣iB.﹣3+iC.3﹣iD.3+i3.(5分)(2018?新课标Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()..BA.C.D)(sinα=4.(5分)(2018?新课标Ⅲ)若,则cos2α=.﹣.﹣A.B.CD ,既新课标Ⅲ)若某群体中的成员只用现金支付的概率为2018?0.4555.(分)()0.15用现金支付也用非现金支付的概率为,则不用现金支付的概率为(0.7C0.4B0.3A...D0.6.的最小正周期为()=)(2018?新课标Ⅲ)函数f(x分)6.(5 CA..B.πD.2π7.(5分)(2018?新课标Ⅲ)下列函数中,其图象与函数y=lnx的图象关于直线x=1对称的是()A.y=ln(1﹣x)B.y=ln(2﹣x)C.y=ln(1+x)D.y=ln(2+x)8.(5分)(2018?新课标Ⅲ)直线x+y+2=0分别与x轴,y轴交于A,B两点,点22=2上,则△ABP面积的取值范围是() +y)P在圆(x﹣2A.[2,6]B.[4,8]C.[,3]D.[2,3]42+2的图象大致为(x新课标Ⅲ)函数y=﹣ +x)2018?分)(9.5(.A.B.C.D)的离心>0,b>05分)(2018?新课标Ⅲ)已知双曲线C=1(a10.())到C的渐近线的距离为(率为,则点(4,0BA..2C.2D.(5).若cb,C的对边分别为a,新课标Ⅲ)△分)(2018?ABC的内角A,B,11.△ABC的面积为,则C=(.B.DCA..的球的球面上四是同一个半径为4C,D新课标Ⅲ)设分)(2018?A,B,12.(5体积的最大值为﹣ABC,则三棱锥D点,△ABC为等边三角形且面积为9)(.54DC.24B.18A.12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年广西高考数学试卷(理科)(全国新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知集合A={x|x−1≥0},B={0, 1, 2},则A∩B=()A.{0}B.{1}C.{1, 2}D.{0, 1, 2}2. (1+i)(2−i)=()A.−3−iB.−3+iC.3−iD.3+i3. 中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A.B.C.D.4. 若sinα=13,则cos2α=()A.89B.79C.−79D.−895. (x2+2x)5的展开式中x4的系数为()A.10B.20C.40D.806. 直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x−2)2+y2=2上,则△ABP面积的取值范围是()A.[2, 6]B.[4, 8]C.[√2, 3√2]D.[2√2, 3√2]7. 函数y=−x4+x2+2的图象大致为()A.B.C.D.8. 某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<P(X=6),则p=()A.0.7B.0.6C.0.4D.0.39. △ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为a2+b2−c24,则C=()A.π2B.π3C.π4D.π610. 设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9√3,则三棱锥D−ABC体积的最大值为()A.12√3B.18√3C.24√3D.54√311. 设F1,F2是双曲线C:x2a2−y2b2=1(a>0,b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P ,若|PF 1|=√6|OP|,则C 的离心率为( )A.√5B.2C.√3D.√212. 设a =log 0.20.3,b =log 20.3,则( ) A.a +b <ab <0 B.ab <a +b <0 C.a +b <0<ab D.ab <0<a +b 二、填空题:本题共4小题,每小题5分,共20分。

已知向量a →=(1, 2),b →=(2, −2),c →=(1, λ).若c → // (2a →+b →),则λ=________.曲线y =(ax +1)e x 在点(0, 1)处的切线的斜率为−2,则a =________.函数f(x)=cos(3x +π6)在[0, π]的零点个数为________.已知点M(−1, 1)和抛物线C:y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90∘,则k =________.三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

(一)必考题:共60分。

等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m .某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:(1)画出y=f(x)的图象;(2)当x∈[0, +∞)时,f(x)≤ax+b,求a+b的最小值.参考答案与试题解析2018年广西高考数学试卷(理科)(全国新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.【答案】C【考点】交集及其运算【解析】求解不等式化简集合A,再由交集的运算性质得答案.【解答】解:∵A={x|x−1≥0}={x|x≥1},B={0, 1, 2},∴A∩B={x|x≥1}∩{0, 1, 2}={1, 2}.故选C.【点评】本题考查了交集及其运算,是基础题.2.【答案】D【考点】复数代数形式的乘除运算【解析】直接利用复数代数形式的乘除运算化简得答案.【解答】解:(1+i)(2−i)=2+(2−1)i+1=3+i.故选D.【点评】本题考查了复数代数形式的乘除运算,是基础题.3.【答案】A【考点】简单空间图形的三视图【解析】直接利用空间几何体的三视图的画法,判断选项的正误即可.【解答】解:由题意可知,如图摆放的木构件与某一带卯眼的木构件咬合成长方体,小的长方体,是榫头,从图形看出,轮廓是长方形,内含一个长方形,并且一条边重合,另外3边是虚线,所以木构件的俯视图是A.故选A.【点评】本题看出简单几何体的三视图的画法,是基本知识的考查.4.【答案】B【考点】求二倍角的余弦【解析】cos2α=1−2sin2α,由此能求出结果.【解答】解:∵sinα=13,∴cos2α=1−2sin2α=1−2×19=79.故选B.【点评】本题考查二倍角的余弦值的求法,考查二倍角公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.【答案】C【考点】二项式定理的应用【解析】由二项式定理得(x2+2x)5的展开式的通项为:T r+1=C5r(x2)5−r(2x)r=2r C5r x10−3r,由10−3r=4,解得r=2,由此能求出(x2+2x)5的展开式中x4的系数.【解答】解:由二项式定理得(x2+2x)5的展开式的通项为:T r+1=C5r(x2)5−r(2x)r=2r C5r x10−3r,由10−3r=4,解得r=2,∴(x2+2x)5的展开式中x4的系数为22C52=40.故选C.【点评】本题考查二项展开式中x4的系数的求法,考查二项式定理、通项公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.6.【答案】A【考点】两角和与差的正弦公式正弦函数的定义域和值域圆的综合应用直线与圆的位置关系点到直线的距离公式【解析】求出A(−2, 0),B(0, −2),|AB|=2√2,设P(2+√2cosθ, √2sinθ),点P到直线x+y+2=0的距离:d=√2cosθ+√2sinθ+2|√2=|2sin(θ+π4)+4|√2∈[√2,3√2],由此能求出△ABP面积的取值范围.【解答】解:∵直线x+y+2=0分别与x轴,y轴交于A,B两点,∴令x=0,得y=−2,令y=0,得x=−2,∴A(−2, 0),B(0, −2),|AB|=√4+4=2√2,∵点P在圆(x−2)2+y2=2上,∴设P(2+√2cosθ, √2sinθ),∴点P到直线x+y+2=0的距离:d=√2cosθ+√2sinθ+2|√2=|2sin(θ+π4)+4|√2,∵sin(θ+π4)∈[−1, 1],∴d=|2sin(θ+π4)+4|√2∈[√2,3√2],∴△ABP面积的取值范围是[2, 6].故选A.【点评】本题考查三角形面积的取值范围的求法,考查直线方程、点到直线的距离公式、圆的参数方程、三角函数关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.7.【答案】D【考点】函数的图象变化利用导数研究函数的单调性【解析】根据函数图象的特点,求函数的导数利用函数的单调性进行判断即可.【解答】解:函数过定点(0, 2),排除A,B.函数的导数f′(x)=−4x3+2x=−2x(2x2−1),由f′(x)>0得2x(2x2−1)<0,得x<−√22或0<x<√22,此时函数单调递增,由f′(x)<0得2x(2x2−1)>0,得x>√22或−√22<x<0,此时函数单调递减,排除C.故选D.【点评】本题主要考查函数的图象的识别和判断,利用函数过定点以及判断函数的单调性是解决本题的关键.8.【答案】B【考点】离散型随机变量的期望与方差二项分布的应用【解析】利用已知条件,转化为二项分布,利用方差转化求解即可.【解答】解:某群体中的每位成员使用移动支付的概率都为p,可看做是独立重复事件,满足X∼B(10, p),P(X=4)<P(X=6),可得C104p4(1−p)6<C106p6(1−p)4,可得1−2p<0.即p>12.因为DX=2.4,可得10p(1−p)=2.4,解得p=0.6或p=0.4(舍去).故选B.【点评】本题考查离散型离散型随机变量的期望与方差的求法,独立重复事件的应用,考查转化思想以及计算能力.9.【答案】C【考点】解三角形三角形求面积余弦定理三角函数值的符号【解析】推导出S△ABC=12absinC=a2+b2−c24,从而sinC=a2+b2−c22ab=cosC,由此能求出结果.【解答】解:∵△ABC的内角A,B,C的对边分别为a,b,c, △ABC的面积为a2+b2−c24,∴S△ABC=12absinC=a2+b2−c24,∴sinC=a2+b2−c22ab=cosC.∵0<C<π,∴C=π4.故选C.【点评】本题考查三角形内角的求法,考查余弦定理、三角形面积公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.10.【答案】B【考点】柱体、锥体、台体的体积计算球的体积和表面积【解析】本题主要考查球与三棱锥的切接问题及三棱锥的体积的最值问题.【解答】解:如图,设E是AC的中点,M是△ABC的重心,O为球心,连结BE,OM,OD,BO.因为S△ABC=√34AB2=9√3,所以AB=6,BM=23BE=23√AB2−AE2=2√3.易知OM⊥平面ABC,所以在Rt△OBM中,OM=√OB2−BM2=2,所以当D,O,M三点共线且DM=OD+OM时,三棱锥D−ABC的体积取得最大值,且最大值V max=13S△ABC×(4+OM)=13×9√3×6=18√3.故选B.【点评】此题暂无点评11.【答案】C【考点】双曲线的渐近线双曲线的离心率余弦定理点到直线的距离公式【解析】先根据点到直线的距离求出|PF2|=b,再求出|OP|=a,在三角形F1PF2中,由余弦定理可得|PF1|2= |PF2|2+|F1F2|2−2|PF2|⋅|F1F2|cos∠PF2O,代值化简整理可得√3a=c,问题得以解决.【解答】解:双曲线C:x2a2−y2b2=1(a>0.b>0)的一条渐近线方程为y=bax,∴点F2到渐近线的距离d=√a2+b2=b,即|PF2|=b,∴|OP|=√|OF2|2−|PF2|2=√c2−b2=a,cos∠PF2O=bc,∵|PF1|=√6|OP|,∴|PF1|=√6a,在三角形F1PF2中,由余弦定理可得|PF1|2=|PF2|2+|F1F2|2−2|PF2|⋅|F1F2|cos∠PF2O,∴6a2=b2+4c2−2×b×2c×bc=4c2−3b2=4c2−3(c2−a2),即3a2=c2,即√3a=c,∴e=ca=√3,故选C.【点评】本题考查了双曲线的简单性质,点到直线的距离公式,余弦定理,离心率,属于中档题.12.【答案】B【考点】对数值大小的比较换底公式的应用【解析】直接利用对数的运算性质化简即可得答案.【解答】解:∵a=log0.20.3=lg0.3−lg5,b=log20.3=lg0.3lg2,∴a+b=lg0.3lg2−lg0.3lg5=lg0.3(lg5−lg2)lg2lg5=lg0.3lg52lg2lg5,ab=−lg0.3lg2⋅lg0.3lg5=lg0.3⋅lg103lg2lg5,∵lg103>lg52,lg0.3lg2lg5<0,∴ab<a+b<0.故选B.【点评】本题考查了对数值大小的比较,考查了对数的运算性质,是中档题.二、填空题:本题共4小题,每小题5分,共20分。

相关文档
最新文档