超声波雾化器
三种雾化器的工作原理

三种雾化器的工作原理雾化器是一种常见的设备,常用于电子烟、医疗器械和空气净化器等领域。
它的主要功能是将液体转化为细小的颗粒,以便于吸入或者扩散。
根据不同的工作原理,雾化器可以分为三种类型:超声波雾化器、热雾化器和压缩空气雾化器。
1. 超声波雾化器的工作原理:超声波雾化器利用超声波振动将液体分散成弱小颗粒。
它由一个振动器和一个液体容器组成。
振动器通过高频振动产生超声波,使液体表面形成波纹,进而将液体分散成弱小颗粒。
这些弱小颗粒随后通过超声波的作用,被推向外部空气中。
超声波雾化器的优点是操作简单、无需加热,适合于对温度敏感的物质。
2. 热雾化器的工作原理:热雾化器通过加热将液体转化为蒸汽,然后将蒸汽冷却成细小的颗粒。
它由一个加热装置和一个喷嘴组成。
加热装置加热液体,使其达到沸点并转化为蒸汽。
蒸汽通过喷嘴喷出后,迅速冷却并凝结成弱小的颗粒。
这些颗粒随后被扩散到空气中。
热雾化器的优点是雾化效果好,适合于各种液体。
3. 压缩空气雾化器的工作原理:压缩空气雾化器利用压缩空气将液体分散成弱小颗粒。
它由一个压缩空气源、一个液体供应系统和一个喷嘴组成。
压缩空气源将空气压缩并送入液体供应系统。
液体通过喷嘴被喷入空气流中,并在空气流的作用下分散成弱小颗粒。
这些弱小颗粒随后被扩散到外部空气中。
压缩空气雾化器的优点是雾化效果稳定,适合于高粘度液体。
以上是三种常见雾化器的工作原理。
不同类型的雾化器适合于不同的应用场景。
在选择雾化器时,需要考虑液体的特性、雾化效果和使用环境等因素。
同时,雾化器的维护和清洁也非常重要,以确保其正常工作和延长使用寿命。
三种雾化器的工作原理

三种雾化器的工作原理雾化器是一种常见的设备,用于将液体转化为细小的颗粒,以便更容易吸入或散布。
在市场上有许多不同类型的雾化器,每种都有其独特的工作原理。
在本文中,我们将详细介绍三种常见的雾化器工作原理。
1. 超声波雾化器:超声波雾化器是一种利用超声波振动将液体分散成微小颗粒的设备。
它包括一个液体容器和一个超声波振荡器。
当超声波振荡器工作时,它会产生高频的声波振动,使液体产生微小的液滴。
这些液滴随后会进一步分散成更小的颗粒,形成可吸入的雾化物。
2. 热雾化器:热雾化器是一种利用加热原理将液体转化为雾化物的设备。
它包括一个加热元件和一个液体喷雾器。
当加热元件加热时,液体喷雾器会将液体喷射到加热元件上,液体在加热元件的高温作用下迅速蒸发,形成微细的液滴。
这些液滴随后冷却并形成可吸入的雾化物。
3. 压缩空气雾化器:压缩空气雾化器是一种利用压缩空气将液体雾化的设备。
它包括一个压缩空气源和一个液体喷雾器。
当压缩空气通过喷雾器时,它会产生高速气流,将液体抛射成细小的液滴。
这些液滴随后会进一步分散成更小的颗粒,形成可吸入的雾化物。
这三种雾化器都有各自的优缺点。
超声波雾化器可以产生非常细小的颗粒,适用于制备药物雾化剂和香氛喷雾剂等。
热雾化器可以产生较大的雾化颗粒,适用于湿润空气和气味散布等应用。
压缩空气雾化器具有较高的雾化效率,适用于农药喷雾和涂层应用等。
总结起来,超声波雾化器利用超声波振动,热雾化器利用加热原理,压缩空气雾化器利用压缩空气,将液体转化为可吸入的雾化物。
选择合适的雾化器取决于具体的应用需求和期望的雾化效果。
超声雾化器的工作原理和应用

超声雾化器的工作原理和应用超声雾化器是一种利用超声波高频振动产生微小颗粒的设备。
它通过将液体喷射成微小颗粒,使其成为悬浮在气体中的雾,从而实现空气湿化、粒子喷射等应用。
超声雾化器广泛应用于医疗、农业、化学工程等领域。
超声雾化器的工作原理是基于超声波在液体中产生的驰豫振动效应。
当超声波通过液体时,它会在液体中产生高频振动。
这个振动会引起液体表面的波动,并产生微小颗粒。
超声波的频率决定了产生的颗粒大小,而振幅则控制了颗粒的密度。
超声雾化器的应用之一是医疗领域。
在呼吸疾病治疗中,超声雾化器被广泛用于给药。
通过将液体药物通过超声雾化器喷射成微小颗粒,患者可以通过呼吸吸入这些颗粒,以达到治疗的效果。
超声雾化器能够将药物雾化为非常细小的颗粒,使药物更容易被吸收到患者的呼吸系统中,提高药效。
除了医疗应用,超声雾化器也被应用于其他领域。
在农业领域,超声雾化器用于作物保护和温室灌溉。
通过将水雾化成微小颗粒,可以增加空气中的湿度,创造一个适宜的环境,促进植物生长。
此外,超声雾化器还可以将农药雾化成微小颗粒,方便喷洒到作物的叶面,提高农药的利用效率。
在化学工程中,超声雾化器被用于喷射干燥和粒子喷射。
喷射干燥是通过将液体雾化成微小颗粒,使其在热气流中蒸发,从而将液体转化为干粉。
这在粉末冶金、食品加工等领域中具有重要的应用。
另外,超声雾化器还能够将固体颗粒或液体颗粒喷射到特定的目标上,例如,用于涂层、喷漆等工艺。
超声雾化器还应用于空气质量监测和消毒。
在空气质量监测中,超声雾化器可以将液体样品转化为微小颗粒,并将其悬浮在空气中。
这使得监测设备能够更好地捕捉到空气中的微小颗粒,从而提高监测的准确性。
此外,超声雾化器还可以将消毒剂雾化成微小颗粒,通过扩散到空气中,达到消毒的效果。
总而言之,超声雾化器是一种利用超声波高频振动产生微小颗粒的设备。
它在医疗、农业、化学工程等多个领域中有广泛的应用。
通过将液体雾化成微小颗粒,超声雾化器可以实现空气湿化、粒子喷射、药物给药等功能,为各行各业带来了诸多便利。
超声波雾化器原理

超声波雾化器原理超声波雾化器是一种利用超声波振动原理将液体转化为微细颗粒的装置。
它在医疗、化工、食品等领域有着广泛的应用,其原理和工作方式对于了解超声波技术和雾化技术都具有重要意义。
超声波雾化器的原理是利用超声波振动使液体产生微小的液滴,从而形成雾化。
在超声波振动的作用下,液体表面产生了高频的液体波纹,当波纹达到一定振幅时,会形成液体射流。
这些射流在超声波的作用下会被撕裂成微小的液滴,最终形成雾化。
超声波雾化器的工作原理可以分为两个部分,超声波振动和雾化。
首先,超声波振动是由超声波发生器产生的,它会将电能转化为超声波振动能。
这些超声波振动会传导到雾化器的振动装置上,使其产生高频的振动。
这种高频振动会传导到液体表面,从而产生液体波纹和射流。
其次,雾化是指将液体转化为微小液滴的过程。
在超声波的作用下,液体会被撕裂成微小的液滴,形成雾化。
超声波雾化器的工作原理使其具有一些独特的优点。
首先,由于超声波雾化器是利用超声波振动实现雾化的,因此其雾化效果非常好,可以产生均匀细小的雾化颗粒。
其次,超声波雾化器的工作过程中不需要加热,可以避免液体因加热而发生化学变化。
此外,超声波雾化器的工作过程中也不需要添加任何辅助剂,可以实现纯净的雾化。
除了上述优点,超声波雾化器也存在一些局限性。
首先,超声波雾化器的雾化效率受到液体的粘度和表面张力的影响,因此并不适用于所有类型的液体。
其次,超声波雾化器的工作过程中会产生一定的噪音,需要进行一定的隔音处理。
总的来说,超声波雾化器是一种利用超声波振动原理实现液体雾化的装置。
其工作原理简单明了,通过超声波振动使液体产生微小液滴,形成均匀细小的雾化颗粒。
虽然超声波雾化器也存在一些局限性,但其优点使其在医疗、化工、食品等领域有着广泛的应用前景。
希望本文能够帮助读者更好地了解超声波雾化器的原理和工作方式。
超声雾化器使用说明

超声雾化器使用说明超声雾化器是一种常见的医疗设备,常用于治疗呼吸道疾病,如哮喘、慢性阻塞性肺病等。
本文将详细介绍超声雾化器的使用方法,以确保正确操作和发挥最佳治疗效果。
一、雾化器的组成与原理超声雾化器主要由超声振动器、药液杯、气泵和控制面板四个部分组成。
其工作原理是通过超声波的振荡作用将液体药物分散成微小的液体颗粒,形成雾状物质,便于患者吸入。
二、使用前的准备工作1. 首先,确保超声雾化器的所有零部件都完好无损,未受到任何损坏。
2. 在使用之前,清洗超声雾化器的所有可拆卸部件,保持其清洁卫生。
使用温水和中性清洁剂进行清洗,并用干净的毛巾擦干。
切勿使用有腐蚀性的清洁剂,以免损坏设备。
3. 准备好需要使用的药物,并按照医生或药物说明书的建议配制药液。
三、使用步骤1. 将超声振动器连接到控制面板,并确保连接牢固。
2. 打开超声雾化器的电源,将其置于平稳的工作台面上。
3. 打开药液杯的盖子,将配制好的药液倒入药液杯中,并确保液面不超过最高标记线。
4. 将药液杯安装到超声雾化器上,并将其牢固固定。
5. 根据需要,选择合适的治疗时间和震荡频率,并在控制面板上进行设置。
根据医嘱或药物说明,调整雾化器的雾化时间和药液输入速率。
6. 将雾化器的输出管连接到合适的雾化器面罩或嘴嚼,确保连接紧密,防止雾化物泄漏。
7. 开始使用超声雾化器治疗,根据医生的建议进行每次治疗的时间和频率。
四、注意事项1. 使用过程中,患者应尽可能保持正坐姿,并将面罩或嘴嚼正确放置于口鼻部位,以确保雾化物进入呼吸道。
2. 使用时请遵循医生或药物说明书的建议,不要随意更改药液配方或使用量。
3. 使用过程中,尽量避免外界干扰和杂音,以确保雾化器的正常工作。
4. 每次使用后,请及时清洗和消毒雾化器的所有可拆卸部件,并将其储存在干燥通风的地方。
5. 定期检查超声雾化器的性能,如果发现任何故障或异常情况,请立即停止使用并寻求专业维修人员的帮助。
总结:超声雾化器是一种有效治疗呼吸道疾病的设备,正确使用可以帮助患者获得最佳的治疗效果。
超声雾化器使用方法

超声雾化器使用方法超声雾化器是一种先进的应用于室内空气净化的新型设备,它是将洁净水转换成水雾,通过超声波发射而成,用以清洁室内空气和创造室内舒适环境的一种新型设备。
本文将介绍超声雾化器的使用方法,以便提高其使用效果。
一、开机准备1.首先,检查超声雾化器的电源线,确保插头已正确插入插座,然后按下开机按钮。
2.确认电源线与超声雾化器的连接紧固,关闭超声雾化器的开关,将超声雾化器放在室内需要净化的空气中即可。
二、使用方法1.打开超声雾化器,确保空气和电源来源都处于稳定的状态,把洁净水加入超声发射室。
2.按下打开开关,超声波发射室内的水就会被变成水雾,该水雾将被发射出来,以净化室内的空气。
3.当水雾完全发射出来后,请按下关闭开关,以关闭超声雾化器,并停止发射水雾。
4.将超声雾化器放回原处,以备下次使用。
三、注意事项1.在使用超声雾化器前,要先检查电源电线,确保良好的电源连接,避免发生危险情况。
2.使用超声雾化器时,必须将其安置在平稳而湿润的区域,以免发生变形或损坏。
3.不要使用混合的水,否则可能会损坏超声雾化器,严重时可能会造成人身伤害。
4.超声雾化器的每次使用,都需要适时开启和关闭,以达到最佳的净化效果。
四、使用超声雾化器可以获得的好处1.超声雾化器可以有效净化室内空气,以去除室内空气中的有害物质,减少空气污染。
2.超声雾化器可以有效补充室内湿度,保持室内空气宜人,创造舒适的室内环境。
3.超声雾化器可以有效清除室内甲醛、苯、TVOC等有害物质的含量,减少对人体的伤害。
4.超声雾化器操作简单,维护方便,可以有效提高室内空气质量,达到室内空气净化的效果。
综上所述,可以看出,超声雾化器是一种先进的应用于室内空气净化的新型设备,它可以在简单的操作和维护下,有效净化室内空气,为人们创造一个舒适的室内空气环境,是家庭、办公室空气净化的有效利器。
但是,在使用超声雾化器时,也要注意一些安全措施,以确保安全和节能的使用效果。
超声雾化器PPT精讲

确保电源线连接良好,避免 接触不良或断路。
01
调整雾量大小,根据患者的
需要和舒适度进行调节。
02
03
确保药物容器清洁干燥,避 免残留物影响雾化的效果。
04
05
使用过程中,应保持一定的 距离,避免过近或过远,以
免影响效果。
超声雾化器的常见故障及排除方法
雾量过小或无雾
检查电源是否正常,检查 雾化片是否完好,检查药 物容器是否清洁干燥。
超声雾化器的应用领域
01
02
03
医疗领域
用于治疗呼吸道疾病,如 哮喘、慢性阻塞性肺病等。
环境领域
用于空气净化、消毒、加 湿等。
工业领域
用于喷涂、清洗、焊接等 工艺。
超声雾化器的优缺点
高效
能够快速地将液体或固体物质破碎成 微小颗粒,提高工作效率。
可调
可以根据需要调节雾状的大小和浓度 。
超声雾化器的优缺点
超声雾化片
将超声波转换为微小水滴,形 成雾气,将药物分散成微小颗 粒。
电源
为超声波发生器和风扇提供电 能,保证其正常工作。
超声波发生器
产生高频振动,驱动超声雾化 片产生超声波,将药物分散成 微小颗粒。
风扇
将雾气吹向患者,帮助药物扩 散,使药物能够快速进入呼吸 道。
控制器
控制超声波发生器的频率和风 扇的工作状态,调节雾气的大 小和扩散范围。
环境改善领域
利用超声雾化器的加湿、除尘等 功能,可以改善室内空气质量, 为人们创造更加舒适的生活环境。
对超声雾化器发展的展望与建议
加强基础研究
为了推动超声雾化器的持续发展,需要加强基础研究,深入了解 其工作原理、材料特性等方面的知识。
超声波雾化器原理

超声波雾化器原理超声波雾化器是一种利用超声波振动原理将液体转化为微小颗粒的设备。
它主要由超声波发生器、振动系统、雾化室和控制系统等部分组成。
在超声波雾化器中,超声波振动系统是核心部件,它通过高频振动将液体分散成微小颗粒,并形成雾状物质。
超声波雾化器的工作原理主要包括超声波振动原理、液体雾化原理和雾化效果控制原理。
首先,超声波振动原理是超声波雾化器实现雾化的基础。
超声波是指频率超过20kHz的声波,其振动频率高,波长短,能够产生强烈的振动效果。
超声波振动系统将电能转化为超声波能量,通过振动系统传递到液体中,使液体分子产生高频振动。
这种高频振动会破坏液体表面张力,使液体分子逐渐分散成微小颗粒。
因此,超声波振动是实现液体雾化的关键。
其次,液体雾化原理是超声波雾化器实现雾化的物理过程。
在超声波振动的作用下,液体分子受到强烈的振动力,逐渐形成微小颗粒。
这些微小颗粒随着超声波振动的作用,逐渐脱离液体表面,形成雾状物质。
由于超声波振动频率高,导致液体颗粒的尺寸非常小,一般在1-100μm之间,因此形成的雾状物质具有均匀细小的特点。
最后,雾化效果控制原理是超声波雾化器实现雾化效果的调节。
超声波振动系统的频率、振幅和液体性质等因素会影响雾化效果。
通过控制超声波振动系统的参数,可以调节雾化器的雾化效果,使其适应不同的工艺需求。
此外,雾化室的结构设计和控制系统的精准度也会对雾化效果产生影响。
因此,在实际应用中,需要根据具体的工艺要求和液体特性,对超声波雾化器进行合理的参数调节和优化设计,以获得理想的雾化效果。
总的来说,超声波雾化器是一种利用超声波振动原理实现液体雾化的设备。
其工作原理包括超声波振动原理、液体雾化原理和雾化效果控制原理。
通过合理控制超声波振动系统的参数和优化雾化器的结构设计,可以实现对液体的高效雾化,满足不同工艺需求。
超声波雾化器在医疗、化工、食品等领域具有广泛的应用前景,对于实现微粒化、均匀雾化等工艺要求具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超声波雾化器摘要在日常生活中雾化器得到了广泛的应用,但是现有的雾化器都需要手工控制开启和关闭并且不具备对室空气温湿度的监测,人们在使用过程中存在过度加湿和干烧的问题,不仅给室空气舒适度造成负面影响并且还存在安全隐患。
因此开发设计一种价格低廉、功耗低、具有自动控制功能的雾化器显得尤为必要。
本设计采用智能控制,以AT80S51单片机为核心,外接辅助电路,通过实现加湿器的防干烧、声光报警、智能开启和关闭以及室温湿度的显示功能基本实现雾化器的智能化。
关键词:单片机;智能;雾化器;相对湿度;传感器;目录第1章绪论 (5)1.1概况 (5)1.2本文研究容 (5)第2章CPU最小系统设计 (5)2.1总体设计方案 (6)2.2CPU的选择 (7)2.3数据存储器扩展 (8)2.4复位电路设计 (9)2.5时钟电路设计 (10)2.6CPU最小系统图 (11)第3章输入输出接口电路设计 (11)3.1传感器的选择 (11)3.2检测接口电路设计 (12)3.2.1 A/D转换器选择 (12)3.2.2 模拟量检测接口电路图 (12)3.3输出接口电路设计 (13)3.4人机对话接口电路设计 (13)第4章系统设计与分析 (15)4.1系统原理图 (15)4.2系统原理综述 (15)文献 (17)第1章绪论1.1概况用途功能:超声波加湿器是采用超声波高频振荡的原理,将水雾化为一至五微米的超微粒子,通过风动装置,将水雾扩散到空气中,从而达到均匀加湿空气的目的。
现状:现有生产五个系列的产品,其基本单元均为组合或者说集成式超声波雾化器,其整体还有电源系统、供水系统、水雾输送系统等,另根据不同的使用场所、不同形式、不同要求设计的不锈钢机体,组装为不同的超声波工业加湿设备。
现有生产五个系列的产品,所具有的差别主要是在应用领域不同、控制方式不同、雾化量不同等几个方面。
首先,应用领域五个系列多种领域;其次;每个领域有侧重不同的控制方式;第三,每个场所有不同的加湿量。
1.2本文研究容根据任务书容进行描述(要完成的功能以及设计的容)系统软件实现的功能:1)通过LED显示温湿度值及水位;2)比较监测到的水位,发现低水位时自动掉电并声光报警;3)根据相对湿度值控制加湿器的开关。
本课题研究主要涉及以下方面:1)通过对控制系统的功能及要求确定总体设计方案2) 系统硬件电路的设计与开发 3) 系统软件程序的设计与调试 4)系统性能测试本设计将采用智能控制,以AT80S51单片机为核心,外接辅助电路,通过实现加湿器的防干烧、声光报警、智能开启和关闭以及室温湿度的显示功能基本实现加湿器的智能化。
第2章 cpu 最小系统设计2.1 总体设计方案根据任务书中的设计要求以及设计容,画出总体方案框图,并简要说明各模块功能。
....图2.1 过程层原理框图表1.1 变电站情况图1-1 自动加湿器功能原理图温度检测:利用DS18B20数字温度传感器检测环境实时温度湿度检测:两个温度传感器分别采集室空气的干湿球温度,并将采集的温度传送至单片机。
单片机对这两个数据加以处理并结合室湿度要求加湿器的开启和闭合液位检测:利用BZ0504液位开关检测水槽实时液位。
判断有水时输出0V,无水时5V。
单片机控制:我们标配的是AT80S51,作为核心部件,实现对部功能的控制。
液晶显示:利用1602液晶显示模块。
显示实时的温湿度。
声光报警:当检测的液位低于安全值时,蜂鸣器响且LED灯闪亮,提醒用户给水槽加水。
2.2 CPU的选择根据设计要求以及设计容,说明CPU的型号,并简要介绍所选择CPU的部资源以及引脚结构图。
T89C2051是一种带2K字节闪烁可编程可擦除只读存储器的单片机。
单片机的可擦除只读存储器可以反复擦除1000次。
该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89S51是一种高效微控制器,AT89C2051是它的一种精简版本。
AT89S51单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
外形及引脚排列如图2-1所示图2-2 AT89S51芯片引脚图AT89S51共有40个引脚,大致可分为4类:电源引脚、时钟电路引脚、I/O引脚、控制线引脚。
根据开发的需要和单片机的结构,我们就可以实现单片机的自动工作,即实现自动化!2.3数据存储器扩展结合设计题目说明扩展数据存储器必要性,阐明控制的数据存储器型号,并简要概括其性能,再加上CPU与数据存储器的硬件原理图。
扩展数据存储器电路常用RAM芯片:Intel 6116(2KB)、6264(8KB)、62256(32KB)等。
RAM是用来存放各种数据的,MCS-51系列8位单片机部有128BRAM存储器,CPU对部RAM具有丰富的操作指令。
但是,当单片机用于实时数据采集或处理大批量数据时,仅靠片提供的RAM是远远不够的。
此时,我们可以利用单片机的扩展功能,扩展外部数据存储器。
实训6的参考程序1就是一个扩展RAM 的使用实例。
常用的外部数据存储器有静态RAM(Static Random Access Memory—SRAM)和动态RAM(Dynamic Random Access Memory—DRAM)两种。
前者读/写速度高,一般都是8位宽度,易于扩展,且大多数与相同容量的EPROM引脚兼容,有利于印刷板电路设计,使用方便;缺点是集成度低,成本高,功耗大。
后者集成度高,成本低,功耗相对较低;缺点是需要增加一个刷新电路,附加另外的成本。
MCS-51单片机扩展片外数据存储器的地址线也是由P0口和P2口提供的,因此最大寻址围为64KB(0000H~FFFFH)。
一般情况下,SRAM用于仅需要小于64KB数据存储器的小系统,DRAM经常用于需要大于64KB的大系统。
图2-3 数据存储扩展电路图2.4复位电路设计阐述复位电路的重要性;画出复位电路原理图,说明复位条件以及复位过程复位电路的基本功能是:系统上电时提供复位信号,直至系统电源稳定后,撤销复位信号。
为可靠起见,电源稳定后还要经一定的延时才撤销复位信号,以防电源开关或电源插头分-合过程中引起的抖动而影响复位。
图3-3所示的RC复位电路可以实现上述基本功能,图3为其输入-输出特性。
但解决不了电源毛刺(A点)和电源缓慢下降(电池电压不足)等问题而且调整RC 常数改变延时会令驱动能力变差。
左边的电路为高电平复位有效右边为低电平Sm为手动复位开关Ch可避免高频谐波对电路的干扰。
图2-4 上电及手动复位电路图2.5时钟电路设计阐述时钟电路的重要性;画出时钟电路原理图,说明复电容参数值以及晶振频率时钟电路用于产生MCS-51单片机工作时所必须的时钟控制信号,MCS-51单片机的部电路在时钟信号的控制下,严格的执行指令进行工作,在执行指令时,CPU首先要到程序存储器中取出所需要的指令操作码,然后译码,并由时序电路产生一系列控制信号去完成指令所规定的操作。
CPU发出的时序信号有两类,一类用于片对各个功能部件的控制,另一类用于对片外存储器或I/O端口的控制。
MCS-51单片机各功能部件的运行都是以时钟信号为基准,有条不紊地一拍一拍地工作,因此时钟频率直接影响单片的速度,时钟电路的质量也直接影响单片机系统的稳定性。
常用的时钟设计电路有两种方式,一种是部时钟方式,一种是外部时钟方式。
图2-5 时钟电路设计图2.6 CPU最小系统图根据上述4节图,形成完整的CPU最小系统图图2-6 Cpu最小系统图第3章输入输出接口电路设计3.1传感器的选择根据所要检测或要控制的任务,首先确定传感器,并介绍传感器的性能等特性。
传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
它是实现自动检测和自动控制的首要环节。
3.2检测接口电路设计3.2.1A/D转换器选择根据设计参数以及要求,选择A/D转换器芯片,并介绍其性能特性,转换精度。
模数转换器即A/D转换器,或简称ADC,通常是指一个将模拟信号转变为数字信号的电子元件。
通常的模数转换器是将一个输入电压信号转换为一个输出的数字信号。
由于数字信号本身不具有实际意义,仅仅表示一个相对大小。
故任何一个模数转换器都需要一个参考模拟量作为转换的标准,比较常见的参考标准为最大的可转换信号大小。
而输出的数字量则表示输入信号相对于参考信号的大小。
模数转换器最重要的参数是转换的精度与转换速率,通常用输出的数字信号的二进制位数的多少表示精度,用每秒转换的次数来表示速率。
转换器能够准确输出的数字信号的位数越多,表示转换器能够分辨输入信号的能力越强,转换器的性能也就越好。
高精度高速度的A/D转换器在军事,太空,医疗等尖端领域有著致关重要的地位。
3.2.2模拟量检测接口电路图画出有传感器、CPU、AD转换器等电路连接图,即完整的模拟量检测硬件电路。
图3-2-2 模拟量检测接口电路图3.3输出接口电路设计图3-3单片机与时钟、液晶显示器及按键接口电路图3.4人机对话接口电路设计该部分主要是设计键盘和显示器,根据设计具体情况设计合理的键盘和显示。
键盘是由若干按键组合而成的,常采用矩阵式连接,称为矩阵式键盘,即每条水平线和垂直线在交叉处通过一个按键加以连接。
当需要的键数比较多时,采用矩阵连接可以减少I/O口的占用。
利用LED点阵式显示模块不仅可以显示数字,也可显示所有西文字母和符号,与由单个发光二极管组合连成的显示器相比,具有焊点少、连线少,所有亮点在同平面、亮度均匀、外形美观等优点,可以代替数码管、符号管和米字管。
如果将多块组合,可以构成大屏幕显示屏,用于汉字、图形、图表等等的显示,因此被广泛用于机场、车站、码头、银行及许多公共场所的指示、说明、广告等场合。
第4章系统设计与分析4.1系统原理图图4-1 超声波雾化器原理图4.2系统原理综述该雾化器具有以下特点:分体式,即超声雾化头与电源和电路部分完全分离;便携式,体积小、即插即用、设有自保功能;高可靠,可全天候工作;雾化量大,与别墅的山水盆景配套可发生云雾缭绕的动感;特别适合过分干燥的环境对空气加湿,以利人的呼吸;在水中加入适量的某种溶剂,给被污染的居住环境消毒,以预防疾病(如把生活用醋定时雾化,可预防流感)。
此主题相关图片如下:一、电路工作原理。
该雾化器电路如图1所示,电源变压器B(AC220V/30W)经降压(36V)送D1~D4整流和C5、C6滤波后给电路提供工作电压。
雾化器工作电路由振荡器、换能器和水位控制电路等组成。
1.振荡器和换能器。