主变失灵保护启动回路原理示意图

合集下载

500kV主变压器高压侧断路器失灵启动主变保护跳闸回路设计分析

500kV主变压器高压侧断路器失灵启动主变保护跳闸回路设计分析
中国设备工程 2017.08 (上)
91
Research and Exploration 研究与探索 ·监测与诊断
ZJ1
主变保护A屏
导致主变保护误动跳三侧断路器。
+
ZJ1-1
+-
5011 SLQA 1
如 图 3 所 示, 边 断 路 器 5011 和 中 断
&
主变保护A屏通过非电量 跳主变三侧
路器 5012 失灵启动回路都是双接点。同样 两个断路器只要有一个断路器失灵动作, 失 灵 启 动 的 双 接 点( 如 5011 的 SLQA1 和 5011 的 SLQA2)同时导通,主变保护的中 间继电器 ZJ1 和 ZJ2 就会同时动作,继而
中国 设备 Engineering 工程
hina C Plant
500kV 主变压器高压侧断路器失灵启动 主变保护跳闸回路设计分析
侯可,柳鑫,张文博,刘霄扬
(国网河南省电力公司检修公司,河南 郑州 450007) 摘要: 500kV 主变高压侧断路器失灵启动主变保护跳闸回路对于整个电网安全、稳定运行十分重要。当主变高压侧断 路器失灵动作时,断路器无法跳开,必须要发给主变保护启失灵开入,然后通过非电量保护跳开主变高、中、低三侧断路器, 从而防止事故范围扩大。然而,目前大部分 500kV 变电站由于主变保护厂家不同、型号不同以及设计单位不同,主变高压 侧断路器失灵启动主变保护跳闸回路参差不齐,很容易导致主变保护拒动或误动,给整个电网运行带来巨大隐患。本文从 理论和现场实际出发,分析几种跳闸回路的优缺点,从而寻找出一种既不会造成主变保护拒动又不会误动的主变高压侧断 路器失灵启动主变保护跳闸回路。 关键词:断路器失灵;主变跳闸;回路设计 中图分类号:TM772 文献标识码:A 文章编号:1671-0711(2017)08(上)-0091-02

220kV开关失灵保护浅析

220kV开关失灵保护浅析

2021.07.DQGY
工排查及调试跟踪,可以及早发现失灵保护因设计缺 理工大学, 2018.
陷、接线错误及调试不良等方面的问题,在变电站投运 [5]丰有刚, 熊洁. 220 kV变电站开关失灵保护误动分析[J]. 农
前完成整改,保证失灵保护功能完备。
村电气化, 2018(7): 35-36.
严格定值管理并做好试验跟踪。根据各回路保护配 [6]罗薇. 开关失灵保护分析[J]. 山东工业技术, 2018(13): 136.
2021.07.DQGY
Hale Waihona Puke 0 引言了广泛应用。电力系统当中,安装有很多开关设备,当电气设备
运行中出现故障时,需要通过开关跳闸将故障切除,以 2 失灵保护回路的构成
68
保证非故障供电系统继续运行。而当开关发生拒动时,
失灵保护由电压闭锁元件、保护动作与电流判别构
将会导致故障无法切除,影响供电系统稳定运行进而造 成的启动回路、时间元件及跳闸出口回路组成。启动回
(2)管理措施 收集整理最新的标准、规范及反措,组织相关人员 学习,了解及掌握失灵保护的特点及配置要求,提高认
灵保护的实现方式,在对各种回路接线的分析中,指出 失灵保护回路容易出现及被忽视的问题及原因,提出避 免相应问题所采取的应对措施建议。希望通过落实应对 措施,有效避免失灵保护误动作,对提高电网安全稳定 运行具有重要作用。电器
为了保证在变压器回路开关发生拒动的情况下失灵
后,同时启动两套失灵保护装置。
保护能够真正起到作用,启动失灵保护时,必须联跳变
压器各侧开关以便实现隔离故障点,不能快速返回的保
3 失灵保护常见问题及确保正确动作的措施
护也不建议启动失灵。
3.1 失灵保护常见的问题

谈主变保护启动失灵电流回路的问题

谈主变保护启动失灵电流回路的问题

数,通过压实度检测及取芯观察,其效果优于振动碾压情况。

为解决石灰(粉)土表层层皮现象,整平后先用胶轮压路机(或振动压路机但小振动)碾压一遍,形成光滑的表面,然后均匀覆盖一层4cm厚的土或覆盖塑料布(土工布)用重型压路机碾压。

在北京西路控制重型压路机碾压6遍,如含水量适中,压实度均可达到95%以上。

在K0+840~K0+960段检测其压实度为91.2%~92.5%,未达到设计要求,增加2遍碾压后,检测压实度为96.3%~97.2%。

因此,石灰土压实遍数应由检测的压实度来确定。

(五)养生石灰土是一种水硬性材料,施工成型后应有足够的水分,使石灰与土尽快发生反应,形成强度。

北京西路在养生期间保持一定的湿度,养生期为7d。

在养生期间采用覆盖措施进行保护,同时封闭交通。

(六)交通管制在石灰土强度形成过程中,车辆碾压对石灰土强度形成是有利的。

原因是通过碾压可使其密实度进一步提高,从而提高其强度。

随着密实度的增加及行车荷载压力作用,将促进石灰与土颗粒间的接触及水分的均匀再分布,从而加速其各类反应的进行。

但是,如果过多、过重车辆荷载的作用,由于粉土粘性较小,抗剪能力差,在外力强作用下,极易松散、扰动,将导致整体结构破坏,对于石灰土强度的形成则是不利的。

因此,北京西路石灰土养生期间除洒水车辆外,禁止一切车辆通行,在施工期间,车辆通过非机动车道绕行。

(七)其它方面除此之外,温度对石灰土强度形成亦有很大影响。

春、夏季施工的石灰土,由于温度高,强度形成较快;深秋、冬季施工的石灰土,由于温度较低,强度增长缓慢。

施工过程中石灰与土的粉碎程度、拌和的均匀性均对石灰土强度形成有一定的影响。

三、结语粉土用作石灰土底基层施工较粘土存在许多困难,应针对工程的实际情况采取切实可行的措施,确保施工质量。

结合北京西路道路施工,总结如下两点经验:1.石灰稳定无塑性指数的粉土时,建议添加30%~40%左右的粘性土。

2.石灰稳定无塑性指数的粉土时,为提高石灰土材料的初期强度,可掺入2%~3%的水泥(按质量计)。

开关失灵保护原理及运行中校验方法和注意事项探究

开关失灵保护原理及运行中校验方法和注意事项探究
以下 是两种常用的失灵保护启动回路:
1 . 1 . 1 保护 跳 闸开入 + 失灵 电流 判据 方式
方式接线如 图 1 、 图 2所示 。 这种方式接入 的量包括主保护 和辅助保护两个开入接 点。具体 经过 是: 主保护动作 并且辅助 保 护 经 一 定延 时在 三 相 中任 意 一 相 仍 检 测 到 足 够 大 的 电流 , 二 者动 作开入到 失灵装置 , 失灵保 护闭锁 电压 开放 , 失灵保 护动 作后首先跳开母联和分段 , 再经延时切除该元件所在母 线的各 个连接元件 。图 1 、 图 2分别是主变、 线路失灵启动回路 。
1 偶
三 I 鲥 刚
间隔故障跳 闸后 , 其断路器 不能跳 开时 即为 断路器失灵 , 发 生 断路器失灵必须将连接母线上所有 间隔断路器跳 开, 实现这 一 功 能 的 保 护 装 置 即 为母 线 失 灵 保 护 。 各 间隔 上 的 断 路 器 是 否 发 生失灵应 由本 间隔保护判 出, 称作失灵启动 。目前 的电力系统 中, 失灵启动 的条件在不同地区不尽相 同。
( 8 ) 对扩 建、 技 改工程 中失灵保 护 已投入运行 的设备 , 验 收 时接 入失灵 启动回路 并进行 失灵联跳开关 时,应做好 安全措 施, 确保 联跳其他运行 中开关 的出口压板在退出位置 。 ( 9 ) 对失灵 电流判别 由母线保护 实现 ( 即 以上 的失灵 启动
1 . 3 主变 保护 电压 闭锁 回路
图 3 主变 失 灵启 动 回路
1 . 1 . 2 保护开入 ( 母差装置 自带电流检测元件 ) 方式
第二种接入方式接入的量只是保护接 点动 作, 有 流判据 由 失灵保护装置完成。目前广州局典型设计采用该种失灵启动方 式 。图 3 、 图 4是该种方式下主变 、 线路失灵启动 回路 。

关于 220kV 主变变高失灵联跳三侧改造的设计探讨

关于 220kV 主变变高失灵联跳三侧改造的设计探讨

5 2 ・ 电子 技术 与软 件工 程
E l e c t r o n i c T e c h n o l o g y &S o f t wa r e E n g i n e e r i n g
P o we r E l e c t r o n i c s● 电力 电子
及保护 动作 接点。
电力电子 ・ P o we r E l e c t r o n i c s
关于 2 2 0 k V主变变高失灵联跳三侧改造的设计探讨
文/ 耿 博
键词 】母线保护 断路器失灵保 护 变压器
图1 :主 变 断路 器 失 灵 保 护 逻 辑 框 图
目前 在 许 多 2 2 0 k V 变 电 站 中 , 主 变 变 高
主 2启动 失灵 主 1 启动 失灵
时 ,只能通过变压器后备保护动作跳开主 侧断路器 。这就会产生如下 问题: 当母线

2 2 0 k V主变高压侧断路器失灵时 ,母线
, — — — — — 7 - - 、 —— — — — — — — — — /
CZX . 1 2 AR
会跳开变压器所在母线上的所有断路器 , 该母线上 的其他有源支路 。但是主变 中、
发生 故 障时 ,主变 保护 动 作接 点 闭合 。 若开 关跳开 ,则保护动作 接点返 回, 电流接 点 S L Q D 返回 ,失 灵保 护不动作 。若开关拒动 , 则保护动作接 点不 返回, 电流接点 闭合 ,启动
失 灵 回 路 导 通 ,再 经 刀 闸 辅 助 接 点 选 或破坏系统的正常运行。
为 了防范 高压侧 失 灵保护 联跳 主变 三侧 } 不完善所带来 的系统风险 ,南 网总调发文
了几 项 反 措 内 容 。 要 求 2 2 0 k V 主 变 高 压 灵 时 ,能 够 联 跳 主 变 各 侧 开 关 ,新 建 工 程

500kV主变保护失灵回路分析

500kV主变保护失灵回路分析

第39卷第3期电力系统保护与控制Vol.39 No.3 2011年2月1日Power System Protection and Control Feb.1, 2011500 kV主变保护失灵回路分析舒逸石,魏 民,马 勇(安阳供电公司,河南 安阳 455000)摘要:针对500 kV主变失灵回路的特殊性,分别对主变高压侧、中压侧失灵启动回路的逻辑原理进行论述。

通过对主变失灵保护的启动回路和跳闸回路的分析,总结了主变高压侧失灵回路的特点即“高压侧任一断路器拒动联跳主变三侧断路器并跳开高压侧相关断路器”;中压侧断路器失灵回路的特点即“断路器失灵解除复压闭锁且不判断路器位置”。

得出了主变失灵启动的判据即“电流判别+电量保护出口”,电量保护启动失灵的原则——跳哪侧断路器启动哪侧失灵。

关键词:主变失灵;拒动;失灵启动;电流判别;电量保护The analysis of failure circuit of 500 kV transformer protectionSHU Yi-shi,WEI Min,MA Yong(Anyang Power Supply Company,Anyang 455000,China)Abstract:Aiming at the particularity of failure circuit of 500 kV main transformer this paper discusse,s the logic principle of start up failure circuit at high-pressure side and middle-pressure side Through the analysis.of the start-up and trip circuit of failure protection of main transformer,it points out the characteristic of the failure circuit in high-pressure side of main transformer is that “when the high side breaker refuses to trip the breaker of three sides and the high,-side associated will be tripped”and the characteristic of the failure,circuit in middle-pressure side transformer is that “when circuit-breaker failures, the complex voltage lockout should be removed and breaker location is not judged”The failure start.-up criterion of main transformer is educed namely “current discrimination + power,protection exit”,and the principle of electricity protection start up failure is that failure protection at the side which trips should be started.Key words:transformer failure;refuse to move;failure start-up;current discrimination;electricity protection中图分类号: TM77 文献标识码:B 文章编号: 1674-3415(2011)03-0134-030 引言在高压和超高压电网中,断路器失灵保护作为近后备保护方式被普遍采用,其目的是保护跳闸出口断路器拒动时,快速而有选择性地切除故障点。

220kV变压器断路器失灵保护技术原则

220kV变压器断路器失灵保护技术原则

附件:220kV变压器断路器失灵保护技术原则断路器失灵保护是确保电网安全运行十分重要的后备措施,国调《“防止电力生产重大事故的二十五项重点要求”继电保护实施细则》明确提出:220kV断路器失灵保护按一套配置并必须投入运行,但须解决220kV变压器断路器失灵保护因保护灵敏度不足而不能投运的问题。

同时为防止发电机非全相运行造成对发电机组的危害,必须具有发变组220kV断路器非全相时重跳本断路器,及相应的起动失灵功能。

为满足上述要求,规范浙江电网220kV变压器断路器失灵保护的配置,使其安全可靠地投入运行,特制定本技术原则。

一、动作原理(一)变压器、发电机保护起动失灵回路1.原理示意图图1:保护动作起动失灵判别逻辑保护2动作接点图2:失灵起动与母差保护的接口回路2.原理说明1)变压器220kV断路器失灵起动判别采用“相电流Iφ或零序I0或负序电流I2”元件动作,配合“保护动作”和“断路器合闸位置”三个条件组成的与逻辑,经第一时限去起动断路器失灵保护并发出“断路器失灵保护起动”的信号;经第二时限去解除断路器失灵保护的复合电压闭锁并发出告警信号。

2)图1中的“保护动作接点”为变压器(或发电机)能快速返回的电气量保护出口继电器接点(非全相及瓦斯等非电量保护不起动此出口继电器)。

3)图1中的“断路器辅接点”指断路器本体辅助接点。

该接点当断路器三相机械联动时为断路器本体的辅助常开接点;当断路器分相操作时为断路器本体的三相辅助常开接点并联;不得使用位置继电器或其它重动继电器的接点。

断路器辅接点在发变组接线的失灵起动回路中必须接入,在其他情况下可不接。

4)断路器失灵保护的电流元件动作与返回时间均不应大于20ms。

5)T1、T2应整定为≤20ms,一般T1整定为0ms。

6)起动失灵的电气量保护需输出两副接点,一副用于起动判别逻辑;另一副接点串接于起动判别至母差的断路器失灵跳闸的接口回路,见图2,以提高保护的安全性。

(二)发变组非全相保护及起动失灵回路1.原理示意图图3:非全相保护及失灵判别逻辑图4:非全相失灵起动与母差保护的接口回路2.原理说明1)该回路仅适用于发电厂的主变压器220kV断路器。

主变保护的原理及作用讲解课件

主变保护的原理及作用讲解课件
Байду номын сангаас
变压器保护情况简介
◆非电量保护 ● 变压器非电量保护主要有瓦斯保护、压力保护、温度保护、油位保护及冷却 器全停保护。 ● 非电量保护和差动保护都是变压器的主保护,且对于差动保护反映不了的绕组 很少的匝间短路故障或星形接线中绕组尾部的相间短路故障有很灵敏的判别能 力
变压器保护情况简介
●瓦斯保护 瓦斯保护是变压器油箱内绕组短路故障及异常的主要保护,其作用原理是:变 压器内部故障时,在故障点产生有电弧的短路电流,造成油箱内局部过热并使 变压器油分解,并产生气体(瓦斯),进而造成喷油、冲动气体继电器,瓦斯 保护动作。 瓦斯保护分为轻瓦斯及重瓦斯两种。轻瓦斯作用于信号,重瓦斯作用于切除变 压器。有载调压的变压器,在有载调压部分也配置气体继电器。
变压器保护情况简介
◆后备保护 ●复合电压闭锁方向过流保护 复合电压闭锁元件是由正序低电压和负序过电压元件构成,作为被保护设备及 相邻设备相间故障的后备保护。 保护的接入电路为变压器某侧TA二次三相电流,接入电压为变压器本侧或其他 侧的TV二次三相电压。为提高保护的灵敏度,三相电流一般取自电源侧,而 电压可以取自负荷侧。

主变差动保护要考虑的一个基本原则是要保证正常情况和区外故障时,用以比 较的主变高低压侧电流幅值是相等,相位相反或相同,从而在理论上保证差流 为0。
变压器保护情况简介
◆ 差动保护(比率制动式) ●如果差动保护动作电流是固定值,按躲过区外故障最大不平衡电流来整定,此 时如果发生匝间短路,离开中性点较近的单相接地短路,就不能灵敏动作。 ●比率制动式差动保护的动作电流是随外部短路电流按比率增大,既能保证外部 短路不误动,又能保证内部故障有较高的灵敏度。
变压器保护情况简介
●压力保护 压力保护也是变压器油箱内部故障的主保护,含压力和压力突变量保护。其作 用原理与重瓦斯保护基本相同,但它反映的是变压器油的压力。当变压器内部 故障时,温度升高,油膨胀压力增高,使压力继电器动作,切除变压器。 ●温度及油位保护 当变压器温度升高或油位异常时,温度或油位保护动作发出报警信号。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主变失灵保护启动回路原理示意图
+24V
(BP-2B 电源)
复合电压动作
解除失灵复压
I
母失灵出口
失灵出口短延时跳母联
失灵出口长延时跳I 母
复合电压动作
解除失灵复压
II 母失灵出口失灵出口短延时跳母联
失灵出口长延时跳II 母
说明:TJR1:1号主变第一套978保护出口跳闸信号,开关跳开时瞬时返回,实际是通过光隔开入; TJR2:1号主变第二套978保护出口跳闸信号,开关跳开时瞬时返回,实际是通过光隔开入; 1LP19:1号主变第一套978保护启动失灵;2LP19:1号主变第二套978保护启动失灵; 8LP21:RCS-974保护装置失灵启动;8LP22:RCS-974保护装置解除复合电压; LP552:母差屏1号主变失灵启动;LP75:母差屏1号主变解除复合电压闭锁; 1G :25011闸刀辅助接点;2G :25012闸刀辅助接点;
LJ1、LJ2、LJ0分别为RCS-974保护装置中失灵启动过流、负序过流、零序过流动作接点; SLQD2:1号主变失灵启动短延时(解除复压);SLQD1:1号主变失灵启动长延时(失灵启动),实际是通过光隔开入;
T1:BP-2B 失灵出口短延时;T2:BP-2B 失灵出口长延时;
动作过程:失灵保护动作后经短延时(0.5秒)解除复压,长延时(0.8)秒去启动BP-2B 装置中的失灵保护。

BP-2B 保护装置中的失灵保护启动后,经短延时(0.3秒)去跳母联,长延时(0.6秒)去跳开相应母线所有元件。

瓦斯保护为什么不去启动失灵保护?
答:由于瓦斯保护的接点动作后,当开关跳开不会迅速返回,可能造成失灵保护误动作,所以瓦斯保护不去启动失灵。

第一套978第二套978(974电源)。

相关文档
最新文档