增材制造工艺
《增材制造》课件—02增材制造技术的常见工艺方法及其装备

该工艺的基本原理如图2- 1所示 。SLS工艺的原 理是预先在工作台上铺一层粉末材料(金属粉末或 非金属粉末) ,在计算机控制下 , 按照界面轮廓信 息 , 利用大功率激光对实心部分粉末进行扫描烧结, 然后不断循环 , 层层堆积成型 , 直至模型完成。
(1)高温烧结 高温烧结阶段形成大量闭孔 , 并持续缩小 , 使孔隙尺寸和孔
隙总数有所减少 , 烧结体密度明显增加 。在高温烧结后 , 坯体密 度和强度增加 , 性能也得到改善。 (2) 热等静压烧结
热等静压烧结工艺是将制品放置到密闭的容器中 , 使用流体 介质 , 向制品施加各向同等的压力 , 同时施以高温 ,在高温高压 的作用下 ,制品的组织结构致密化。 (3)熔浸
图2- 16 FDM工艺原理
2.4 熔融沉积(FDM)
· 2.4.2 FDM的成型过程
FDM成型工艺在原型制作同时需要制作支撑 , 为了节省材料成本和提高制作效率 , 新 型的FDM设备采用双喷头 , 如图2- 17所示 。一个喷头用于成型原型零件 , 另一个喷头用于 成型支撑 。
FDM的成型过程是在供料辊上 , 将实心 丝状原材料进行缠绕 , 由电动机驱动辊子旋 转 , 辊子和丝材之间的摩擦力是丝材向喷嘴 出口送进的动力 。喷嘴在XY坐标系运动 ,沿 着软件指定的路径生成每层的图案 。待每层 打印完毕后 , 挤压头再开始打印下一层 , 直 至加工结束。
定的切片软件进行切片 , 最后将切片数据输入烧结系统。 (2) 粉层激光烧结叠加
激光烧结的过程原理如图2- 1所示 。加热前对成型空间进行预热 ,然后将一层薄薄 的热可熔粉末涂抹在部件建造室 。在这一层粉末上用CO2激光束选择性地扫描CAD部 件最底层的横截面 。 当横截面被完全扫描后 , 通过滚轴机将新一层粉末涂抹到前一层 之上 。这一过程为下一层的扫描做准备 。重复操作 ,每一层都与上一层融合 。每层粉 末依次被堆积 , 重复上述过程直至打印完毕。
增材制造技术的工艺方法

增材制造技术的工艺方法增材制造技术(Additive Manufacturing,AM)是一种通过逐层添加材料构建三维物体的制造方法。
相对于传统的减材制造方法,增材制造技术具有很多独特的优势,如可实现复杂的内部结构、灵活性高、节约材料、快速制造等。
以下将介绍几种常见的增材制造技术及其工艺方法。
一、激光烧结制造技术激光烧结制造技术(Selective Laser Sintering,SLS)是使用激光束将粉末材料局部熔化并烧结在一起来构建物体。
其工艺方法主要包括:首先,准备粉末材料,将其均匀分布在工作台上;然后,使用激光束扫描和烧结每一层粉末,将其粘结在一起;最后,重复这个过程直到构建出完整的物体。
在这个过程中,未被烧结的粉末可用于支撑和填充内部空腔。
二、熔融沉积制造技术熔融沉积制造技术(Fused Deposition Modeling,FDM)是通过从喷嘴中挤出熔化的塑料丝线来构建物体。
其工艺方法主要包括:首先,将塑料丝线装入机器中,并加热使其熔化;然后,通过喷嘴将熔化的塑料线一层层地挤压出来,形成物体的每一层;最后,重复这个过程直到构建出完整的物体。
在这个过程中,使用一个可移动的工作台来保持物体的稳定。
三、光固化制造技术光固化制造技术(Stereolithography,SLA)是通过使用紫外线激光束逐层固化液体光敏树脂来构建物体。
其工艺方法主要包括:首先,将光敏树脂涂覆在一个工作台上,形成一个薄层;然后,使用紫外线激光束扫描和固化光敏树脂的特定区域,形成物体的每一层;最后,重复这个过程直到构建出完整的物体。
在这个过程中,光敏树脂经过固化后可以形成物体的外部结构。
四、电子束熔化制造技术电子束熔化制造技术(Electron Beam Melting,EBM)是使用高能电子束将金属粉末熔化并熔融在一起来构建物体。
其工艺方法主要包括:首先,将金属粉末均匀分布在工作台上;然后,使用高能电子束扫描和熔化金属粉末,将其融化并与前一层熔融的金属相融合;最后,重复这个过程直到构建出完整的物体。
增材制造技术主要工艺分类

增材制造技术主要工艺分类增材制造技术(Additive Manufacturing,AM)是一种以逐层堆积材料来制造物体的制造技术。
通过该技术,可以直接将设计数据转化为实体,并且可以制造出复杂形状的物体,无需模具,使得设计和制造过程更加高效、灵活和个性化。
增材制造技术主要工艺分类能够描述不同的制造方法和材料。
1. 喷墨喷墨技术是增材制造技术中最常用的一种工艺。
它可以通过对液体材料的喷射来逐层堆积物体。
在喷墨技术中,打印头移动在工作平台上方,通过压力控制喷嘴中的液体材料的喷射,将材料层层堆积叠加。
常见的喷墨技术包括喷墨打印、光固化等。
•喷墨打印:喷墨打印是一种利用液体材料的喷射来逐层堆积物体的增材制造技术。
在喷墨打印中,材料以小滴的形式喷射到工作平台上,然后逐层叠加堆积。
喷墨打印常用于制造可视化模型、原型制作等。
•光固化:光固化是一种利用紫外线固化液态材料来逐层堆积物体的增材制造技术。
在光固化中,材料以液态的形式喷洒到工作平台上,然后通过紫外线照射,使得材料迅速固化,形成一层固态材料。
然后再次涂覆液态材料,进行下一层的固化,逐层堆积。
光固化常用于制造复杂结构、精细模型等。
2. 熔融熔融技术是增材制造技术中另一种常用的工艺。
它通过材料加热至熔点并逐层堆积来制造物体。
常见的熔融技术包括激光熔化、电子束熔化等。
•激光熔化:激光熔化是一种利用高能激光束将材料加热至熔点并逐层堆积物体的增材制造技术。
在激光熔化中,激光束聚焦在工作平台上的材料上,通过高能激光的照射,使得材料瞬间熔化,然后在工作平台上迅速凝固,形成一层固态材料。
然后再次熔化材料,进行下一层的凝固,逐层堆积。
激光熔化常用于制造金属零件、航空零件等。
•电子束熔化:电子束熔化是一种利用电子束将材料加热至熔点并逐层堆积物体的增材制造技术。
在电子束熔化中,电子束聚焦在工作平台上的材料上,通过电子束的照射,使得材料瞬间加热至熔点,然后在工作平台上迅速凝固,形成一层固态材料。
增材制造简介介绍

2000年代至今
03
增材制造技术得到了快速发展,被广泛应用于各个行
业和领域。
增材制造技术的重要性和优势
高度定制化
增材制造技术可以根据客户 需求进行定制化生产,满足
个性化的需求。
1
减少生产成本
增材制造技术可以减少材料 浪费和生产成本,提高生产
效率。
创新设计
增材制造技术可以应用于创 新设计,使产品更加独特和 新颖。
材料利用率高:能够减少材料浪费,降低成本。
特点 高效率:实现快速制造,节约生产时间。 高度定制化:能够根据客户需求进行定制化生产。
增材制造的技术类型
激光熔化技术(Laser Melting ):利用高能量激光束熔化金 属粉末,逐层堆积形成物体。
粉末烧结技术(Powder Sintering):利用激光或其他 能源将粉末颗粒烧结在一起,
环保可持续性
增材制造技术可以减少生产 过程中的废弃物和污染,更 加环保和可持续。
增材制造技术的挑战和限制
技术成熟度
增材制造技术的成熟度还需要进一步提高, 以满足更广泛的应用需求。
材料限制
增材制造技术的材料选择还需要进一步拓展 ,以满足不同领域的需求。
生产效率
增材制造技术的生产效率还需要提高,以满 足大规模生产的需求。
逐层堆积形成物体。
光固化技术( Photopolymerization):利 用光敏树脂作为材料,通过激 光束照射凝固,逐层堆积形成 物体。
熔融沉积技术(Fused Deposition Modeling):利 用热熔性材料作为材料,通过 喷嘴将材料逐层沉积形成物体 。
增材制造的应用领域
医疗
制造人体植入物、 医疗器械等。
激光增材制造技术工艺过程

激光增材制造技术工艺过程
1.设计模型:首先根据所需物体的形状、尺寸和功能要求进行设计,通常采用计算机辅助设计软件建模。
2.准备材料:根据设计模型选定相应的材料,将其制成粉末状并筛选,以确保粒度均匀。
3.激光熔化:将激光聚焦在材料粉末层的表面上,精确地控制激光能量和扫描路径,使金属粉末熔化并凝固成固体层。
这一过程持续进行,不断堆积层与层之间的粉末。
4.层间粘合:当一层完全构造完成后,将工作台下降一个层次,将新的粉末层覆盖在上一层之上。
通过控制激光聚焦点的位置和能量,将新的粉末层与之前的层融合在一起。
5.后处理:通过去除未熔化的金属粉末、清洗、热处理等方式,使构造的物体获得更优异的力学性能和表面质量。
激光增材制造技术具有制造精度高、制造周期短、材料利用率高、无须模具等优势,因而在航空航天、汽车、医疗、模具等领域得到广泛应用。
- 1 -。
浅析增材制造技术

浅析增材制造技术增材制造技术是近年来备受瞩目的一项先进制造技术,它在制造业中具有广泛的应用前景,被认为是工业革命的下一个风口。
随着科技的不断发展,增材制造技术已经成为了许多行业的焦点,包括航空航天、汽车、医疗、电子等领域。
本文将从增材制造技术的基本原理、现状及未来发展进行浅析。
一、基本原理增材制造技术是一种通过逐层堆叠材料来实现物体制造的新型制造技术。
与传统的减材制造技术相比,增材制造技术不需要任何模具,而是直接将设计好的三维模型按照一定的层压工艺逐层制造而成,因此也称为“3D打印技术”。
增材制造技术的核心是通过控制打印头(或其他制造设备)的活动路径和原材料的堆积方法,将设计好的三维模型逐层制造而成。
这种制造方法不仅可以实现复杂形状的制造,还可以大大提高制造效率和灵活性。
二、现状目前,增材制造技术已经在航空航天、汽车、医疗、电子等领域得到了广泛的应用。
在航空航天领域,增材制造技术已经被用于制造航空发动机零部件、航天器组件等高端产品。
通过增材制造技术,可以实现设计上不可能实现的复杂结构,提高产品的性能和可靠性。
在汽车领域,增材制造技术被用于制造汽车零部件、模具等产品,可以大大降低制造成本,提高生产效率。
在医疗领域,增材制造技术可以用于制造医疗器械、人工器官等产品,可以为医疗行业带来革命性的变革。
在电子领域,增材制造技术被用于制造电子产品、射频器件等产品,可以大大提高产品的性能和稳定性。
增材制造技术已经成为了许多行业的焦点,并且正在逐步改变着这些行业的发展路径。
三、未来发展增材制造技术是一项非常具有发展潜力的新型制造技术,它不仅可以带来生产效率和产品质量的提升,还可以改变产品设计和制造的方式,为制造业带来全新的发展机遇。
随着科技的不断发展,相信增材制造技术将会在未来的制造业中扮演更加重要的角色。
四种增材制造方法

四种增材制造方法
1、还原光聚合
还原光聚合是一种常见的增材制造工艺。
它的特点是使用光敏树脂作为构建物体的材料。
通过还原光聚合,物体由光敏树脂制成,然后暴露在光线下。
暴露在光线下会导致树脂固化,从而硬化和固化。
2、材料喷射
许多制造公司使用材料喷射来构建三维物体。
也称为喷墨打印,材料喷射涉及使用3D打印机将材料液滴沉积到基材上。
用于逐层构建三维对象。
在沉积到基材上之后,材料被固化。
材料喷射被认为是最快、最准确的增材制造工艺之一。
3、粘合剂喷射
除了材料喷射,还有粘合剂喷射。
粘合剂喷射类似于材料喷射。
这两种增材制造工艺都使用3D打印机将材料沉积到基材上。
主要区别在于材料喷射使用液体材料,而粘合剂喷射使用粉末材料。
粉末材料被选择性地沉积到基材的特定层中,从而逐层构建三维物体。
4、粉床融合
粉末床融合已成为越来越流行的增材制造工艺。
也被称为选择性激光熔化(SLM),它通过使用激光熔化沉积的材料而名副其实。
与大多数增材制造工艺一样,粉末床融合涉及使用打印头将材料沉积到基材上。
不过,它与其他增材制造工艺的区别在于它使用了激
光。
粉末床融合使用激光熔化沉积的材料,从而使其硬化和凝固,然后构建三维物体。
增材制造工艺(3篇)

第1篇随着科技的飞速发展,传统制造业面临着前所未有的挑战。
为了满足个性化、定制化生产的需求,增材制造(Additive Manufacturing,AM)作为一种新兴的制造技术,逐渐成为工业领域的研究热点。
本文将从增材制造工艺的定义、原理、应用及发展趋势等方面进行探讨。
一、增材制造工艺的定义增材制造,又称3D打印,是一种以数字模型为基础,通过逐层堆积材料的方式,制造出实体物体的技术。
与传统的减材制造(如切削、铸造等)相比,增材制造具有以下特点:1. 设计与制造一体化:增材制造可以实现复杂、异形零件的快速制造,缩短产品研发周期。
2. 定制化生产:根据用户需求,可快速调整产品结构,满足个性化定制。
3. 节约材料:增材制造可以实现材料的高效利用,减少材料浪费。
4. 减少中间环节:增材制造可直接从数字模型制造出产品,减少中间加工环节。
二、增材制造工艺原理增材制造工艺主要包括以下几种:1. 层积制造:通过逐层堆积材料,形成所需形状的实体。
如FDM(熔融沉积建模)、SLA(光固化立体打印)等。
2. 粉末床熔融:将粉末材料铺在平台上,利用激光、电子束等高温能量源将粉末局部熔化,形成所需形状的实体。
如SLS(选择性激光烧结)、DMLS(直接金属激光烧结)等。
3. 金属增材制造:利用激光、电子束等高温能量源,将金属粉末局部熔化,形成所需形状的实体。
如EBM(电子束熔融)、DMLS等。
4. 3D打印金属:采用高速离心力将金属粉末喷射到高速旋转的基板上,形成所需形状的实体。
如HSM(高速金属打印)等。
5. 光固化工艺:通过光敏树脂材料在紫外光照射下固化,形成所需形状的实体。
如DLP(数字光处理)、SLA等。
三、增材制造工艺应用增材制造工艺在各个领域都有广泛的应用,以下列举几个典型应用:1. 零件制造:在航空航天、汽车、医疗器械等领域,增材制造工艺可以制造出复杂、轻量化、高强度的零件。
2. 模具制造:增材制造工艺可以快速制造出各种复杂模具,提高模具设计、制造效率。