水泵特性曲线 .
水泵变频运行特性曲线

水泵变频运行特性曲线 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】一、引言水泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。
但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。
二、水泵变频运行分析的误区1.有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律流量比例定律 Q1/Q2=n1/n2扬程比例定律 H1/H2=(n1/n2)2轴功率比例定律 P1/P2=(n1/n2)3并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。
以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题:1)为什么水泵变频运行时频率在30~35Hz以上时才出水2)为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,后才随着转速的升高而升高2.绘制水泵的性能特性曲线和管道阻力曲线很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示。
图1 水泵的特性曲线图1中,水泵在工频运行的特性曲线为F1,额定工作点为A,额定流量QA,额定扬程HA ,管网理想阻力曲线R1=KQ与流量Q成正比。
采用节流调节时的实际管网阻力曲线R2,工作点为B,流量QB,扬程HB。
采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量QC,扬程HC;这里QB=QC。
按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。
实际水泵变频调速时,频率降到30~35Hz以下时就不出水了,流量已经降到零。
3.变频泵与工频泵并联变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水是否工频泵的水会向变频泵倒灌4.以上分析的误区1)相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。
水泵特性曲线

水泵特性曲线
水泵是一类非常有效的设备,能够将低压低流量的流体转变成高压高流量的流体。
它的性能特性可以用水泵特性曲线来表示。
水泵特性曲线描述了水泵的流量,扬程、功率和效率随压力的变化情况,曲线中的节点代表了水泵的特性。
水泵特性曲线由水泵流量测试、扬程测试、功率测试和效率测试构成。
水泵流量测试是用来测量水泵扬程和流量的组合。
水泵流量测试结果表示水泵在不同的扬程和流量下的表现情况,从而可以得出水泵的流量和扬程数据。
扬程测试是用来测量水泵扬程的工作指标。
水泵的扬程是指水泵将低压低流量的流体转变成高压高流量的流体时,其能量消耗的能力。
扬程测试涉及到水泵的稳定工作,节点点是水泵在不同扬程下的性能特性。
功率测试是用来测量水泵机械效率和电功率效率的工作指标。
功率测试使用标准机理原理,测量水泵在不同扬程下的功率消耗情况,从而可以得出水泵的能耗特性。
最后是效率测试,它是用来测量水泵的流量、扬程、功率和效率之间的关系。
它直接基于水泵流量测试、扬程测试和功率测试的结果,推算出水泵的效率情况。
从而可以得出水泵的效率特性。
总之,水泵特性曲线是在测试水泵特性时必备的工作指标。
以上是关于水泵特性曲线的介绍,希望对大家有所帮助。
- 1 -。
几种泵的特性曲线

量小、输出压强高的高 粘性流体。
在火力发电厂中, 润滑系统常采用齿轮泵, 而螺杆泵则常用作 输送润滑油及调节油,也可作为锅炉燃料油输送泵。
111111
五、泵与风机性能曲线的比较
(三)容积式泵与风机性能曲线特性 2.齿轮泵和螺杆泵
由于吸水池液面压强和循环水管出口处水池液面压强均 为大气压,即 p p 0。则管路系统性能曲线方程为:
g
H c H z h w 2 1 4 .1 9 q V 2 6
111111
H c H z h w 2 1 4 .1 9 q V 2 6
上式中流量的单位是m3/s,而 性能曲线图上流量的单位为m3/h, 故必须换算后方能代入管路性能曲 线方程中。根据计算结果,列出管 道性能曲线上的对应点如下:
=3100m3/h,H =38m, =90%。
所以该循环水泵工作时所需 要的轴功率为:
P s h1 g q 3 V H 0 9.1 2 9 9 0 3 .8 0 .9 0 0 3 30 6 6 1 3 0 0 8 30 0 ( k 5)W 6
111111
Байду номын сангаас
l0=l+le=250+350=600(m) 所以,为克服流动阻力而损失的能量为:
h w l d 0 d q 2 2 V g /4 2 g 8 l d 0 5 q V 2 0 .0 9 3 .88 0 3 6 .1 6 0 0 4 .6 5 q V 0 2 1 .1 9 q V 2 6
已知:管道的直径d =600mm, 管长l=250m,局部阻力的等值长度 le=350m,管道的沿程阻力系数
=0.03,水泵房进水池水面至循环
离心泵特性曲线

离心泵特性曲线首先离心泵的特性曲线图如下接下来是对于这个图的一些解读:离心泵的性能曲线包括流量-扬程(Q-H)曲线、流量-功率曲线(Q-N)、流量-效率曲线(Q-ŋ)以及流量-汽蚀余量(Q-NPSHr)曲线。
水泵的性能参数之间的相互变化关系及相互制约性:首先以该水泵的额顶转速为先决条件的。
水泵性能曲线主要有三条曲线:流量—扬程曲线,流量—功率曲线,流量—效率曲线。
它是离心泵的基本的性能曲线。
比转速小于80的离心泵具有上升和下降的特点称驼峰性能曲线。
比转速在80~150之间的离心泵具有平坦的性能曲线。
比转数在150以上的离心泵具有陡降性能曲线。
一般的说,当流量小时,扬程就高,随着流量的增加扬程就逐渐下降。
上述曲线都是在一定的转速下,以试验的方法求得的。
不同的转速,可以通过公式进行换算。
在性能曲线上,对于一个任意的流量点,都可以找出一组与其相对应的扬程、功率、效率以及汽蚀余量值。
通常,把这一组相对应的参数称为工作状况,简称工况或工况点。
对于离心泵最高效率点的工况称为最佳工况点。
泵在最高效率点工况下运行是最理想的。
但是用户要求的性能千差万别,不一定和最高效率点下的性能相一致。
要想使每一个用户要求的泵都在泵最高效率点下运行,那样做需要的泵规格就太多了。
为此,规定一个范围(通常以效率下降5%~8%为界),称为泵的工作范围。
我们利用叶轮的切割或者变频技术可以扩大泵的工作范围。
我们把同一类型的水泵,将它的各种不同比转数以及相同比转数不同口径的泵的工作区域集中画在同一个Q-H坐标平面上。
为了使图面上大泵的方块不致太大,坐标可以采用对数坐标,于是就得到了该类型泵的系列型谱。
各类型的泵均有各自的型谱,使用户选用水泵十分方便。
每种系列用几种比转数的水力模型,泵的口径按一定的流量间隔比变化。
同一口径的泵扬程也按一定的间隔变化。
ISO 2858规定了标准的型谱。
水泵特性曲线.

第/弋节离心泵的特性曲线离心泵的特性曲线定义-、理论特性曲线的定性分实测特性曲线的讨论离心泵的特性曲线定义当转速n为常量时,列出H、N、n以及Hs等随渝量变化的函数关系,即:H = f (Q) N = F (Q)Hs =屮(Q) n=<P (Q)我们把这些方程关系用曲线来表示,就称这些曲线为离心泵的特性曲线。
叶轮中通过的水量可用下式表示:Q T = FzCzr也即: n - T^2r- 式中Q T ----- 泵理论流量(nP/s );F2——叶轮的出口面积(in2),C N —叶轮出口处水流绝对速度的径向(m/s ) C一、理论特性曲线的定性分析1、理论扬程特性曲线的定性分析J 胪 由叫=将 Czu = U2 ■ C2rCtgp2 代入, 可得:Hy = KU2・ C2rCtgp2) s Q 图1-22 速度三角形"Cu=Ceosa = u - C,etgf3 Cj=Csma所以:H T = ILa (U2 - * Ctgp2)式中卩2、F2均为常数。
当水泵转速一定时,U2也为常数。
HT = A - B Q T是一个直线方程。
其斜率是用卩2来反映的p2> 90-B^,H T = A + B QT后弯式,上倾直线,扬程随流量的增加而减小。
02= 9()2时,径向式,是一条水平直线,扬程不随理论流量的变化。
p2< 90:时,H T = A-BQ T前弯式,是一条下倾直线,理论扬程随理论流量的增加而增加。
二、实测特性曲线的讨论7040302010J oz1、每一个Q都对应于一定的H, N n Hs2. Q-H曲线是一条不规则的下倾曲线(1)设计工况点。
最高效率点,水泵在该点工作效率最高。
(2)水泵高效工作段。
是水泵效率较高的工作范围,最髙效率点10%左右范围内作为水泵的高效工作段,选泵时,应使设计流量和扬程落在高效段内。
3、Q—N曲线N随着Q的增大而增大,闭闸启动:水泵启动前,压水管路闸阀是全闭的,待电动机运转正常后,压力表读数达到预定数值时,再逐步打开闸阀,使水泵工作正常运行。
水泵特性曲线

每 或1者k扬说g程水,(通当过H水A水泵)泵的表后流示其量:能为当量Q水的A时泵增,流值水量为泵为H能QA,时够, 供给每1kg水的能量为HA。
功率(NA)表示:当水泵的流量为QA 时,泵轴上所消耗的功率(kW)。
效率(ηA)表示:当水泵的流量为QA 时,水泵的有效功率占其轴功率的百分数 (%)。
所以: HT =
u2 g
(u2 -
QT F2
ctgβ2 )
式中β2 、F2 均为常数。当水泵转速一定时, u2也
为常数。
故:
HT = A – B QT
是一个直线方程。其斜率是用β2来反映的
β2> 90º时,HT = A + B QT
后弯式,上倾直线,扬程随流量的增加而减小。
β2= 90º时,径向式,是一条水平直线,扬程不
5、被输送液体的重力密度和粘度等对特性曲线的影 响。所输送的液体粘度愈大,泵内的能量损失愈 大,水泵的扬程和流量都要减小,效率要下降, 而轴功率增大。因此,如果被输送液体的粘度与 试验条件不符时, 则Q-H,Q-N,Q- η , Q-Hs要进行换算后才能使用,不能直接套用。
综上所述,从能量的传递角度来看,对 于水泵特性曲线
N随着Q的增大而增大,
闭闸启动:水泵启动前,压水管路闸阀是 全闭的,待电动机运转正常后,压力表读 数达到预定数值时,再逐步打开闸阀,使 水泵工作正常运行。
Q—N曲线,指的是水或某种特定液体时 的轴功率与流量之间的关系,抽升的液
体容重不同时,要换算
4、Q—Hs曲线 该曲线上各点的纵坐标,表示水泵在相应流量 下工作时,水泵做允许的最大限度的吸上真空高 度值。不表示水泵在某点(Q,H)点工作的实际 吸水真空值。实际的Hs必须小于Q—Hs曲线上的 相应值。
水泵特性曲线的关系

主要是由三条特性曲线组成,分别是:H-qv曲线,表示泵的扬程与流量关系。
P-qv曲线,表示泵的轴功率与流量的关系。
n qv曲线,表示泵的效率与流量的关系。
扬程随流量的增加而减少,轴功率随流量的增加而增加;流量为零时,效率为零;流量增加,效率增加,但当流量增大到某一标准值时,流量在增大,效率反而下降1、特性曲线主要是用于选泵使用,不同曲线会极大影响泵的效率,泵并联运行也需要性能曲线,合理配备水泵的台数。
2、关闭阀门的原因从试验数据上分析:开阀门意味着扬程极小,这意味着电机功率极大,会烧坏电机。
3、离心泵不灌水很难排掉泵内的空气,导致泵空转而不能排水;泵不启动可能是电路问题或是泵本身已损坏,即使电机的三相电接反了,泵也会启动的。
4、用出口阀门调解流量而不用崩前阀门调解流量保证泵内始终充满水,用泵前阀门调节过度时会造成泵内出现负压,使叶轮氧化,腐蚀泵。
还有的调节方式就是增加变频装置,很好用的。
5、当泵不被损坏时,真空表和压力表读数会恒定不变,水泵不排水空转不受外网特性曲线影响造成的。
6、合理,主要就是检修,否则可以不用阀门。
7、这个问题的条件不充分,如果选用的是同一台水泵,同样的电机功率,外网不变的情况下,那么压力不会变化,轴功率会增加。
&问题的本身就是错误的,有效压头并不一定随着流量的增加而下降,这与叶轮安装角有关,还有可能增加。
但就通常使用的泵而言这个问题也是有问题的,扬程随着流量的增加可以大幅度降低的,这与泵的种类,也就是泵的性能曲线有关。
离心泵的特性曲线是将由实验测定的Q、H、N、n等数据标绘而成的一组曲线。
此图由泵的制造厂家提供,供使用部门选泵和操作时参考。
不同型号泵的特性曲线不同,但均有以下三条曲线:(1) H-Q线表示压头和流量的关系;(2)N-Q线表示泵轴功率和流量的关系;(3)n线表示泵的效率和流量的关系;(4)泵的特性曲线均在一定转速下测定,故特性曲线图上注出转速n值。
离心泵特性曲线上的效率最高点称为设计点,泵在该点对应的压头和流量下工作最为经济。
水泵扬程曲线

水泵扬程曲线 水泵的性能参数如流量Q扬程H轴功率N转速n效率η之间存在的一定的关系。
他们之间的量值变化关系用曲线来表示,这种曲线就称为水泵的性能曲线。
水泵的性能参数之间的相互变化关系及相互制约性:首先以该水泵的额顶转速为先决条件的。
水泵性能曲线主要有三条曲线:流量—扬程曲线,流量—功率曲线,流量—效率曲线。
A、流量—扬程特性曲线 它是离心泵的基本的性能曲线。
比转速小于80的离心泵具有上升和下降的特点(既中间凸起,两边下弯),称驼峰性能曲线。
比转速在80~150之间的离心泵具有平坦的性能曲线。
比转数在150以上的离心泵具有陡降性能曲线。
一般的说,当流量小时,扬程就高,随着流量的增加扬程就逐渐下降。
B、流量—功率曲线 轴功率是随着流量而增加的,当流量Q=0时,相应的轴功率并不等于零,而为一定值(约正常运行的60%左右)。
这个功率主要消耗于机械损失上。
此时水泵里是充满水的,如果长时间的运行,会导致泵内温度不断升高,泵壳,轴承会发热,严重时可能使泵体热力变形,我们称为“闷水头”,此时扬程为最大值,当出水阀逐渐打开时,流量就会逐渐增加,轴功率亦缓慢的增加。
C、流量—效率曲线 它的曲线象山头形状,当流量为零时,效率也等于零,随着流量的增大,效率也逐渐的增加,但增加到一定数值之后效率就下降了,效率有一个最高值,在最高效率点附近,效率都比较高,这个区域称为高效率区 氟塑料离心泵的最佳工作点是泵特性曲线与系统管网特性曲线的交点。
但由于各种原因,系统的实际流量总是大于设计时流量,其结果是设计氟塑料泵工作点沿氟塑料离心泵特性曲线向右偏移。
在氟塑料离心泵工作点向右偏移时,所产生的扬程降低,这对系统的正常运行是极其不利的,尤其是系统中最不利环路,将促使该环路的流量进一步减少,影响正常使用功能。
造成氟塑料离心泵工作点右移的原因主要有两个方面:首先是设计中水力计算采用过大的安全系数及不实际的压降计算方法,其次是设计的系统未进行认真的水力平衡计算,而施工后又未进行严格的系统调试。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我们把这些方程关系用曲线来表示, 我们把这些方程关系用曲线来表示,就称这些曲线为离 心泵的特性曲线。
一、理论特性曲线的定性分析
1、理论扬程特性曲线的定性分析 、理论扬程特性曲线的定性分析 uC 由 HT = 2 2U中,
g
将 C2u = u2 - C2rctgβ2 代入, 代入, 可得: 可得: u2 u - C ctgβ ) HT = ( 2 2r 2 g
后弯式,上倾直线,扬程随流量的增加而减小。 后弯式,上倾直线,扬程随流量的增加而减小。
β2= 90º时,径向式,是一条水平直线,扬程不 时 径向式,是一条水平直线,
随理论流量的变化。 随理论流量的变化。
β2< 90º时,HT = A – B QT
前弯式,是一条下倾直线, 前弯式,是一条下倾直线,理论扬程随理论流量的 增加而增加。 增加而增加。
综上所述,从能量的传递角度来看, 综上所述,从能量的传递角度来看,对 于水泵特性曲线 中任意一点A的各项纵坐标值 可归纳如下: 的各项纵坐标值, 中任意一点 的各项纵坐标值,可归纳如下: 扬程( 表示:当水泵流量为Q时 扬程( HA )表示:当水泵流量为 时, 水通过水泵后其能量的增值为H 每1kg水通过水泵后其能量的增值为 A, 水通过水泵后其能量的增值为 或者说,当水泵的流量为Q 或者说,当水泵的流量为 A时,水泵能够 供给每1kg水的能量为 A。 水的能量为H 供给每 水的能量为 功率( 表示:当水泵的流量为Q 功率(NA)表示:当水泵的流量为 A 泵轴上所消耗的功率( )。 时,泵轴上所消耗的功率(kW)。 效率( 表示:当水泵的流量为Q 效率(ηA)表示:当水泵的流量为 A 水泵的有效功率占其轴功率的百分数 时,水泵的有效功率占其轴功率的百分数 (%)。 )。
第六节 离心泵的特性曲线
离心泵的特性曲线定义 离心泵的特性曲线定义 一、理论特性曲线的定性分 析二、实测特性曲线的讨论
离心泵的特性曲线定义 离心泵的特性曲线定义
当转速n为常量时,列出 以及Hs等随流 当转速 为常量时,列出H 、N、η以及 等随流 为常量时 、 以及 量变化的函数关系, 量变化的函数关系,即: H = f(Q) N = F(Q) ( ) ( ) Hs = Ψ(Q) η=φ (Q) ( ) )
所以: 所以: HT
=
u2 g
(u2 -
Q T F 2
ctgβ2 )
式中β2 、F2 均为常数。当水泵转速一定时, u2也 式中 均为常数。当水泵转速一定时, 为常数。 为常数。
HT = A – B QT 故: 是一个直线方程。其斜率是用β 是一个直线方程。其斜率是用 2来反映的
β2> 90º时,HT = A + B QT
4、Q—Hs曲线 、 曲线 该曲线上各点的纵坐标, 该曲线上各点的纵坐标,表示水泵在相应流量 下工作时,水泵做允许 允许的最大限度的吸上真空高 下工作时,水泵做允许的最大限度的吸上真空高 度值。不表示水泵在某点( , ) 度值。不表示水泵在某点(Q,H)点工作的实际 吸水真空值。实际的Hs必须小于 必须小于Q—Hs曲线上的 吸水真空值。实际的 必须小于 曲线上的 相应值。 相应值。 5、被输送液体的重力密度和粘度等对特性曲线的影 、 所输送的液体粘度愈大, 液体粘度愈大 响。所输送的液体粘度愈大,泵内的能量损失愈 水泵的扬程和流量都要减小,效率要下降, 大,水泵的扬程和流量都要减小,效率要下降, 而轴功率增大。因此, 而轴功率增大。因此,如果被输送液体的粘度与 试验条件不符时, 试验条件不符时, 则Q-H,Q-N,Q- η , - , - , - Q-Hs要进行换算后才能使用,不能直接套用。 - 要进行换算后才能使用,不能直接套用。
3、Q—N曲线 、 曲线
N随着 的增大而增大, 随着Q的增大而增大 随着
闭闸启动:水泵启动前, 闭闸启动:水泵启动前,压水管路闸阀是 全闭的,待电动机运转正常后, 全闭的,待电动机运转正常后,压力表读 达到预定数值时,再逐步打开闸阀, 数达到预定数值时,再逐步打开闸阀,使 水泵工作正常运行。 水泵工作正常运行。 Q—N曲线,指的是水或某种特定液体时 曲线, 曲线 的轴功率与流量之间的关系, 的轴功率与流量之间的关系,抽升的液 体容重不同时, 体容重不同时,要换算
H
β2
90º 90º
β2 = 90º 90º β2 < 90º 90º
Q
二、实测特性曲线的讨论
它反映泵的基本性能的变化规律,可做为选泵和用 它反映泵的基本性能的变化规律, η H泵的依据。各种型号离心泵的特性曲线不同,但都 泵的依据。各种型号离心泵的特性曲线不同, 有共同的变化趋势。 有共同的变化趋势。 η
叶轮中通过的水量可用下式表示: 叶轮中通过的水量可用下式表示: QT = F2C2r 也即: Q T C2r =
F 2
泵理论流量( 式中 QT ——泵理论流量( m3/s ) ; 泵理论流量 F2 ——叶轮的出口面积(m2); 叶轮的出口面积( 叶轮的出口面积 C2r —叶轮出口处水流绝对速度的径向( m/s )。 叶轮出口处水流绝对速度的径向( 叶轮出口处水流绝对速度的径向