优选物理化学第九章胶体
9第九章 胶体分散系

医学化学
上页
下页
回主目录
返回
二、高分子化合物溶液的性质
•
高分子化合物溶液中,溶质和溶剂有较强的亲和力 ,两者之间有没有界面存在,属均相分散系。由于 在高分子溶液中,分散质粒子已进入胶体范围(1100nm),因此,高分子化合物溶液也被列入胶体 体系。它具有胶体体系的某些性质,如扩散速度小 ,分散质粒子不能透过半透膜等,但同时也具有自 己的特征。
•
医学化学
上页
下页
回主目录
返回
C:溶剂化的稳定作用 溶胶的吸附层和扩散层的离子都是水化的(如为非 水溶剂,则是溶剂化的),在水化膜保护下,胶粒 较难因碰撞聚集变大而聚沉。水化膜越厚,胶粒就 越稳定。 (2)溶胶的聚沉 胶体具有巨大的表面积,体系界面能高,胶粒间的 碰撞有使其自发聚集的趋势。减弱或消除胶粒的电 荷,可以促使胶粒聚集成较大的颗粒,这个过程称 为凝聚,当分散相粒子增大到布朗运动克服不了的 重力的作用时,最后从介质中沉淀析出的现象称聚 沉。
医学化学
上页
下页
回主目录
返回
Fe(OH)3胶粒包括胶核(设为m个Fe(OH)3分子组 成)和吸附层。胶粒和扩散层合称为胶团,胶团 分散在介质中乃是胶体体系。
医学化学
上页
下页
回主目录
返回
2. 溶胶的稳定与沉降
(1)影响溶胶稳定性的因素 • A:溶胶动力稳定因素 • Brown 运动:溶胶的胶粒的直径很小,Brown 运动 剧烈,能克服重力引起的沉降作用。 • B:溶胶的电学稳定作用 同一种溶胶的胶粒带有相同电荷,当彼此接近时, 由于静电作用相互排斥而分开。胶粒荷电量越多, 胶粒之间静电斥力就越大,溶胶就越稳定。胶粒带 电是大多数溶胶能稳定存在的主要原因。
《物理化学第4版》第九章9-12 溶胶的稳定性和聚沉 PPT课件

UR
Umax
势垒
b
a F
极小值F,发生粒子的聚集 称为聚凝(可逆的)。 极小值C,发生粒子间的聚 沉(不可逆)。
C UA
{x}
3
三、溶胶的聚沉
1. 电解质对聚沉的影响
使一定量溶胶在一定时间内完全聚沉所需最小电解 质的浓度,称为电解质对溶胶的聚沉值。
反离子对溶胶的聚沉起主要作用,聚沉值与反离子 价数的 6 次方成反比。
胶粒的水化外壳
1
(阻碍胶核间键连;添加适宜的表面活性剂保护)
二、 溶胶稳定理论
DLVO理论
由德查金(Darjaguin)、朗道(Landau)和维韦(Verwey)、奥弗 比可(Overbeek)提出的理论。 在胶粒之间,存在着两种相反作用力所产生的势能。 斥力势能UR —由扩散双电层相互重叠时产生。维持溶胶稳定
+
+ +
+ ++ ++ + ++ +
++ +
--
-
+ +
-
-
-
-
-
-
-
+
-- -
- ---
δ
扩散层
斯特恩层(紧密5 层)
价数相同的离子聚沉能力有所不同。
H
Cs
Rb
NH
4
K
Na
Li
F Cl Br NO3 I SCN OH
感胶离子序
在相同反离子的情况下,与溶胶同电性离子的价数 愈高,电解质的聚沉能力愈低,聚沉值愈大。
聚沉值比例
100
:1.6
:0.14
胶体的制备和性质物理化学

沉淀
粒子大小
溶胶
凝胶
浓度
BaSO4颗粒大小与反应物浓度的关系
2.1 胶体的制备和净化
➢ 根据Weimarn理论,要制备胶体,必须v1大、v2小。而 要使v1大,必须过饱和度高,也即生成的盐的溶解度要 尽可能得小。反之v2大、 v1小,溶液的过饱和度低,则 形成大的晶体。
➢ 此外,温度、溶液pH值、杂质含量、搅拌条件等对成 核和晶核成长速度都有影响。
1、渗析 ➢ 渗析是利用羊皮纸或由火棉胶制成的半透膜,将
溶胶与纯分散介质隔开。 ➢ 膜的孔隙很小,它仅能让小分子或离子通过,而
胶粒不能通过。
2.1 胶体的制备和净化
渗析
2.1 胶体的制备和净化
➢ 电渗析:为了加快渗析 速度,在装有溶胶的半 透膜两侧外加一个电场 ,使多余的电解质离子 向相应的电极作定向移 动。溶剂水不断自动更 换,这样可以提高净化 速度。
2.1 胶体的制备和净化
➢ 胶体颗粒的大小在1~100nm之间,故原则上可由分子或 离子凝聚而成胶体,也可由大块物质分散成胶体。
➢ 用第一种方法制备胶体称凝聚法; ➢ 用第二种方法制备胶体称分散法。
离子 分子
凝聚 有新相生成
粗粒子
分散 比表面增加
胶体形成示意图
2.1 胶体的制备和净化
一、胶体制备的一般条件
1、分散相在介质中的溶解度须极小 ➢ 硫在乙醇中的溶解度较大,能形成真溶液。但硫在水中
的溶解度极小,故以硫磺的乙醇溶液滴加入水中,便可 获得硫磺水溶胶。 ➢ 分散相在介质中有极小的溶解度,是形成溶胶的必要条 件之一。此外,还要具备反应物浓度很稀、生成的难溶 物晶粒很小而又无长大条件时才能得到胶体。
物理化学表面现象及胶体化学总结

1.压缩因子任何温度下第七章表面现象1.在相界面上所发生的物理化学现象陈称为表面现象。
产生表面现象的主要原因是处在表面层中的物质分子与系统内部的分子存在着力场上的差异。
2.通常用比表面来表示物质的分散度。
其定义为:每单位体积物质所具有的表面积。
3.任意两相间的接触面,通常称为界面(界面层)。
物质与(另一相为气体)真空、与本身的饱和蒸气或与被其蒸汽饱和了的空气相接触的面,称为表面。
4.表面张力:在与液面相切的方向上,垂直作用于单位长度线段上的紧缩力。
5.在恒温恒压下,可逆过程的非体积功等于此过程系统的吉布斯函数变。
6.影响表面及界面张力的因素:表面张力与物质的本性有关、与接触相的性质有关(分子间作用力)、温度的影响、压力的影响。
7.润湿现象:润湿是固体(或液体)表面上的气体被液体取代的过程。
铺展:液滴在固体表面上迅速展开,形成液膜平铺在固体表面上的现象。
8.亚稳状态与新相生成:a.过饱和蒸汽:按通常相平衡条件应当凝结而未凝结的蒸汽。
过热液体:按通常相平衡条件应当沸腾而仍不沸腾的液体。
过冷液体:按相平衡条件应当凝固而未凝固的液体。
过饱和溶液:按相平衡条件应当有晶体析出而未能析出的溶液。
上述各种过饱和系统都不是真正的平衡系统,都是不稳定的状态,故称为亚稳(或介安)状态。
亚稳态所以能长期存在,是因为在指定条件下新相种子难以生成。
9.固体表面的吸附作用:吸附:在一定条件下一种物质的分子、原子或离子能自动地粘附在固体表面的现象。
或者说,在任意两相之间的界面层中,某种物质的浓度可自动发生变化的现象。
吸附分为物理吸附(范德华力)和化学吸附(化学键力)。
具有吸附能力的物质称为吸附剂或基质,被吸附的物质称为吸附质。
吸附的逆过程,即被吸附的物质脱离吸附层返回到介质中的过程,称为脱附(或解吸)。
10.吸附平衡:对于一个指定的吸附系统,当吸附速率等于脱附速率时所对应的状态。
当吸附达到平衡时的吸附量,称为吸附量。
气体在固体表面的吸附量与气体的平衡压力及系统的温度有关。
生物胶体的物理化学性质及其应用

生物胶体的物理化学性质及其应用胶体是介于溶液和悬浮液之间的一种分散体系,它的特殊性质使得它在工业生产和科学研究中得到广泛应用。
生物胶体作为一种特殊的胶体,它的物理化学性质和应用也具有独特性。
本文将从生物胶体的基本概念入手,论述其物理化学性质及其应用。
一、生物胶体的基本概念生物胶体是指由生物高分子在水相中形成的胶体。
这些高分子通常是蛋白质、多糖和核酸等。
与其他胶体相比,生物胶体具有一些特殊的物理化学性质:(1)生物胶体具有较高的分子量。
生物高分子的分子量通常在百万量级以上,因此生物胶体的分子量也很大。
(2)生物胶体具有强烈的水合作用。
生物高分子中的许多官能团能与水分子形成氢键和离子键,从而使得生物胶体具有强烈的水合作用。
(3)生物胶体具有较高的黏滞度。
由于生物高分子的分子量很大,因此生物胶体通常具有较高的黏滞度,这也是生物胶体在实际应用中的一个重要问题。
二、生物胶体的物理化学性质生物胶体的物理化学性质包括以下几个方面:(1)溶胀性生物胶体的溶胀性是指在不同温度、pH值和离子强度等条件下,生物胶体对溶剂的吸水能力。
生物胶体的溶胀性与生物高分子的结构和特性密切相关。
例如,酸性多糖的溶胀性受到pH值的影响较大。
(2)凝胶性生物胶体在一定条件下能够形成凝胶。
凝胶是由一些高分子链交联而成的三维聚合物网络。
这种结构赋予了生物凝胶一些特殊的物理化学性质,如黏弹性和过滤性。
(3)表面活性生物胶体在水/油界面处会表现出一些特殊的表面活性,如乳化和稳定液滴的能力。
这些表面活性与蛋白质和多糖的表面结构和电荷密切相关。
(4)生物胶体的黏滞度生物胶体的黏滞度是指流体通过生物胶体时所遇到的阻力。
生物胶体的黏滞度随分子量和溶液浓度的增加而增加。
此外,温度、pH值和离子强度等因素也会影响生物胶体的黏滞度。
三、生物胶体的应用生物胶体在医药、食品、化妆品等领域都有广泛应用。
(1)医药领域生物胶体在医药领域有着重要的应用。
例如,血浆蛋白是一种生物胶体,它在体内起到了运输和调节物质浓度的作用。
胶体化学物理化学优秀课件

冷却法:用冰骤冷苯在水中的饱和溶液, 得到苯在水中的溶胶
2021/4/24
8
(2)化学凝聚法:利用生成不溶性物质的化学反应,控制析
晶过程,使其停留在胶核尺度的阶段,而得到溶胶。所谓控 制析晶过程,系指采用有利于大量形成晶核,减缓于晶体生 长的条件,例:采用较大的过饱和浓度,较低的操作温度。
胶体化学物理化学优秀课件
概论
胶 体是一种分散中, 所 构成的系统;
分散相:被分散的物质;
分散介质:另一种连续分布的物质;
2021/4/24
1
粗分散系统 ( d > 10-6m )
分
散
胶体系统( 10-9~10-6m)
系
统
真溶液(d < 10-9m )
1869年 Tyndall发现胶体系统有光散射现象
丁铎尔效应:在暗室里,将一束聚集的光投射到胶体系统 上,在与入射光垂直的方向上,可观察到一个发亮的光柱, 其中并有微粒闪烁。
2021/4/24
11
2021/4/24
12
丁达尔现象的实质是溶胶对光的散射作用。
入射光波长 < 分散粒子尺寸——反射
入射光波长 = 分子固有尺寸—— 吸收 无作用 ——— 透过
罗常数的测定。
2021/4/24
18
2. 扩散
定义:在有浓度梯度存在时,物质粒子因热运动而发 生宏观上的定向迁移,称为扩散。
浓度梯度的存在,是扩散的推动力
2021/4/24
19
胶体系统的扩散与溶液中溶质扩散一样,可用Fick 扩散第 一定律来描述:
dn
dc
dt -DAS dx
单位时间通过某一截面的物质的量dn/dt与该处的浓度梯度dc/dx
胶体化学--简明物理化学课件

8.2.1 溶胶的制备
(1) (2) (3) (4)
12
8. 胶体化学
(1) 研磨法 用机械粉碎的方法将固体磨细。
通常可以先在球磨机内对分散相粒子进行粗 磨,粒子大小一般大于1m,然后再用胶体磨等 进行细磨,将粒子粉碎到1 m左右。
胶体磨的形式很多,其粉碎能力因构造和转 速不同而不同。
2013-7-11
Fe(OH ) 3 (新鲜沉淀 加FeCl3 ( Fe(OH ) 3 (溶胶) ) 稀)
稀 AgCl(新鲜沉淀 加AgNO3 ) AgCl(溶胶) ) 或KCl ( Shenming 2013-7-11 19
8. 胶体化学
2. 凝聚法
(1)化学凝聚法
(a)复分解反应
(b)水解反应 (c)氧化还原反应
2013-7-11Leabharlann Shenming18
8. 胶体化学
(4) 胶溶法 把暂时聚集在一起的胶体粒子重新分散而形 成溶胶。许多新鲜的沉淀经洗涤除去过多的电解 质,再加入少量的稳定剂(此处又称胶溶剂,应 选用与胶体粒子有相同组分的离子)后,则又可 制成溶胶,利用这种方法使沉淀转化成溶胶的过 程称为胶溶作用.
Shenming
24
电渗析法
电渗析 为了加快 渗析速度,在装有 溶胶的半透膜两侧 外加一个电场,使 多余的电解质离子 向相应的电极作定 向移动。溶剂水不 断自动更换,这样 可以提高净化速度。 这种方法称为电渗 析法。 Shenming 2013-7-11
25
8. 胶体化学
超过滤装置
2013-7-11
在布朗以前,也就是约160年以前,科学家从理论上导 出分子有无规则热运动,但没有人能直接观察到分子热运 动,而布朗的发现是一个了不起的成就,他用实验证明了 分子运动论,从此分子运动论才被普遍接受。 Shenming 2013-7-11 34
物理化学(第九章)胶体

• 分散法
– 使固体粒子变小
原级粒子
聚集
次级粒子
• 凝聚法
– 使分子或离子聚结成胶粒
多级分散体系
分散相在介质中的溶解度必须极小 必须有稳定剂的存在才能使溶胶体系稳定
Page 9
目录
绪论
第一章
第二章
第三章
第四章
第五章
第六章
第五章
第六章
第七章
第八章
第九章
§9-3 胶体系统的光学性质
蓬莱仙境——海市蜃楼
Page 20
目录
绪论
第一章
第二章
第三章
第四章
第五章
第六章
第七章
第八章
第九章
§9-4 溶胶的动力学性质
一、Brown运动
Brown运动是分散介质的分子由于热运动不断地由各个方向 同时冲击胶粒时,其合力未被相互抵消所引起的结果,因此在 不同时间,指向不同的方向,形成曲折运动。 布朗运动是分子热运动的必然结果,是胶体粒子的热运动。
Page 12
目录
绪论
第一章
第二章
第三章
第四章
第五章
第六章
第七章
第八章
第九章
§9-2 胶体系统的制备
水 搅拌机 半 透 膜
水 搅拌器 水
水 溶 胶
+
-
水 水
溶胶 半透膜
水 水
连续渗析装置
电渗析装置
Page 13
目录
绪论
第一章
第二章
第三章
第四章
第五章
第六章
第七章
第八章
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4)憎液溶胶的特性
特有的分散程度
粒子的大小在10-9~10-7 m之间,因而扩散较慢,不能透 过半透膜,渗透压低但有较强的动力稳定性 和乳光现象。
❖多相不均匀性
具有纳米级的粒子是由许多离子或分子聚结而成,结构 复杂,有的保持了该难溶盐的原有晶体结构,而且粒子大小 不一,与介质之间有明显的相界面,比表面很大。
|___胶__粒__(__带 ___负__电__)________________| 胶团(电中性)
胶核 胶粒
胶团
胶粒的结构
例2:AgNO3 + KI→KNO3 + AgI↓
过量的 AgNO3 作稳定剂 胶团的结构表达式:
胶团的图示式:
[(AgI)m n Ag+ (n-x)NO3–]x+ x NO3–
质点为球形的,流动性较好;若为带状的, 则流动性较差,易产生触变现象。
胶粒的形状
例如:(1)聚苯乙烯胶乳是球形质点 (2) V2O5 溶胶是带状的质点 (3) Fe(OH)3 溶胶是丝状的质点
二、ห้องสมุดไป่ตู้溶胶的制备与净化
溶胶的制备
(1)分散法 1.研磨法 2.胶溶法 3.超声波分散法 4.电弧法
(2)凝聚法 1.化学凝聚法 2.物理凝聚法
然后胶核选择性的吸附稳定剂中的一种离子,形 成紧密吸附层;由于正、负电荷相吸,在紧密层外形 成反号离子的包围圈,从而形成了带与紧密层相同电 荷的胶粒; 胶粒与扩散层中的反号离子,形成一个电中性的胶团。
胶粒的结构
胶核吸附离子是有选择性的,首先吸附与胶核中 相同的某种离子,用同离子效应使胶核不易溶解。
热力学不稳定性
因为粒子小,比表面大,表面自由能高,是热力学不 稳定体系,有自发降低表面自由能的趋势,即小粒子会自 动聚结成大粒子。
5)胶粒的结构
形成憎液溶胶的必要条件是:
分散相的溶解度要小; ❖ 还必须有稳定剂存在,否则胶粒易聚结而
聚沉。
胶粒的结构
胶粒的结构比较复杂,先有一定量的难溶物分子 聚结形成胶粒的中心,称为胶核;
将液体作为分散介质所形成的溶胶。当分散 相为不同状态时,则形成不同的液溶胶:
A.液-固溶胶 如油漆,AgI溶胶 B.液-液溶胶 如牛奶,石油原油等乳状液 C.液-气溶胶 如泡沫
按分散相和介质聚集状态分类
❖固溶胶 将固体作为分散介质所形成的溶胶。当分散相为
不同状态时,则形成不同的固溶胶: A.固-固溶胶 如有色玻璃,不完全互溶的合金 B.固-液溶胶 如珍珠,某些宝石 C.固-气溶胶 如泡沫塑料,沸石分子筛
溶胶的净化
(1)渗析法 (2)超过滤法
三、溶胶的光学性质
光散射现象 Tyndall效应 Rayleigh公式 乳光计原理 浊度 超显微镜
1.光散射现象
当光束通过分散体系时,一部分自由地通过, 一部分被吸收、反射或散射。可见光的波长约在 400~700 nm之间。
(1)当光束通过粗分散体系,由于粒子大于入射 光的波长,主要发生反射,使体系呈现混浊。
按分散相粒子的大小分类:
•分子分散体系 •胶体分散体系 •粗分散体系
•液溶胶 按分散相和介质的聚集状态分类: •固溶胶
•气溶胶
•憎液溶胶 按胶体溶液的稳定性分类: •亲液溶胶
1)按分散相粒子的大小分类
分子分散体系 分散相与分散介质以分子或离子形式彼此混溶,
没有界面,是均匀的单相,分子半径大小在10-9 m以 下 。通常把这种体系称为真溶液,如CuSO4溶液。 ❖胶体分散体系
憎液溶胶的特性 胶粒的结构 胶粒的形状
分散相与分散介质
把一种或几种物 质分散在另一种物质 中就构成分散体系。 其中,被分散的物质 称为分散相 (dispersed phase), 另一种物质称为分散 介质(dispersing medium)。
例如:云,牛奶,珍珠
2.分散体系分类
分类体系通常有三种分类方法:
Physical Chemistry
物理化学第九章胶体
2020/9/4
上一内容 下一内容 回主目录
返回
1
乳状液 大分子概说 大分子的相对摩尔质量 Donnan平衡
一、胶体及其基本特性
1.分散相与分散介质 分散体系分类
(1)按分散相粒子的大小分类 (2)按分散相和介质的聚集状态分类 (3)按胶体溶液的稳定性分类
憎液溶胶 半径在1 nm~100 nm之间的难溶物固体粒子 分散在液体介质中,有很大的相界面,易聚沉,是 热力学上的不稳定体系。 一旦将介质蒸发掉,再加入介质就无法再形 成溶胶,是 一个不可逆体系,如氢氧化铁溶胶、 碘化银溶胶等。 这是胶体分散体系中主要研究的内容。
按胶体溶液的稳定性分类
❖亲液溶胶 半径落在胶体粒子范围内的大分子溶解在
按分散相和介质聚集状态分类
3.气溶胶 将气体作为分散介质所形成的溶胶。当分散相为 固体或液体时,形成气-固或气-液溶胶,但没有 气-气溶胶,因为不同的气体混合后是单相均一 体系,不属于胶体范围. A.气-固溶胶 如烟,含尘的空气 B.气-液溶胶 如雾,云
按胶体溶液的稳定性分类
3)按胶体溶液的稳定性分类
胶核
|______________________________|
|________胶__粒__(__带 ___正__电__)__________________| 胶团(电中性)
胶核 胶粒 胶团
胶粒的形状
6)胶粒的形状 作为憎液溶胶基本质点的胶粒并非都是球形,
而胶粒的形状对胶体性质有重要影响。
分散相粒子的半径在1 nm~100 nm之间的体系。目 测是均匀的,但实际是多相不均匀体系。也有的将1 nm ~ 1000 nm之间的粒子归入胶体范畴。 粗分散体系
当分散相粒子大于1000 nm,目测是混浊不均匀体 系,放置后会沉淀或分层,如黄河水。
按分散相和介质聚集状态分类
2)按分散相和介质聚集状态分类 液溶胶
若无相同离子,则首先吸附水化能力较弱的负 离子,所以自然界中的胶粒大多带负电,如泥浆水、 豆浆等都是负溶胶。
胶粒的结构
例1:AgNO3 + KI→KNO3 + AgI↓ 胶团的图示式:
过量的 KI 作稳定剂胶团的结构表
达式 :
[(AgI)m n I – (n-x)K+]x– xK+
胶核
|________________________|