1.1等腰三角形的性质和判定(1)

合集下载

等腰三角形的性质与判定

等腰三角形的性质与判定

第05讲等腰三角形的性质与判定【学习目标】1.了解等腰三角形的有关概念,探索并掌握性质及判定方法。

【基础知识】一.等腰三角形的性质(1)等腰三角形的概念有两条边相等的三角形叫做等腰三角形.(2)等腰三角形的性质①等腰三角形的两腰相等②等腰三角形的两个底角相等.【简称:等边对等角】③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】(3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.二.等腰三角形的判定判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.【简称:等角对等边】说明:①等腰三角形是一个轴对称图形,它的定义既作为性质,又可作为判定办法.②等腰三角形的判定和性质互逆;③在判定定理的证明中,可以作未来底边的高线也可以作未来顶角的角平分线,但不能作未来底边的中线;④判定定理在同一个三角形中才能适用.三.等腰三角形的判定与性质1、等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.2、在等腰三角形有关问题中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线,虽然“三线合一”,但添加辅助线时,有时作哪条线都可以,有时不同的做法引起解决问题的复杂程度不同,需要具体问题具体分析.3、等腰三角形性质问题都可以利用三角形全等来解决,但要注意纠正不顾条件,一概依赖全等三角形的思维定势,凡可以直接利用等腰三角形的问题,应当优先选择简便方法来解决.【考点剖析】一.等腰三角形的性质(共7小题)1.(2021秋•盱眙县期末)如果等腰三角形两边长是5cm和2cm,那么它的周长是()A.7cm B.9cm C.9cm或12cm D.12cm2.(2021秋•抚远市期末)等腰三角形的两边长分别为3和6,则这个三角形的周长是()A.15B.12C.12或15D.93.(2022春•鼓楼区校级期中)如图,在△ABC中,∠A=α,∠B=∠C,点D是△ABC外一点,E,F分别在AB,AC上,ED与AC交于点G,且∠D=∠B,若∠1=2∠2,则∠EGF的度数为()A.180°﹣2αB.60°+13αC.90°−32αD.30°+23α4.(2022春•镇江期中)三角形的三边长为2,a,5,如果这个三角形中有两条边相等,那么它的周长是.5.(2022春•金湖县校级月考)在△ABC中,∠C=30°,且∠A=∠B;求∠A的度数.6.(2022春•睢宁县月考)一个等腰三角形的两条边长为4,7,那么它的周长是多少?7.(2021秋•邗江区期末)如图,△ABC中,AB=AC,AB的垂直平分线DE分别交AC、AB于点D、E.(1)若∠A=50°,求∠CBD的度数;(2)若AB=7,△CBD周长为12,求BC的长.二.等腰三角形的判定(共7小题)8.(2021秋•仪征市期末)在△ABC中,∠A=100°,当∠B=°时,△ABC是等腰三角形.9.(2021秋•靖江市期末)已知a,b是△ABC的两条边长,且a2+b2﹣2ab=0,则△ABC的形状是()A.等腰三角形B.等边三角形C.锐角三角形D.不确定10.(2021秋•滨海县期末)用三根木棒首尾相连围成一个等腰三角形,其中两根木棒的长度分别为3cm和6cm,则第三根木棒长为cm.11.(2021秋•泗阳县期中)如图,∠EAC是△ABC的外角,AD平分∠EAC,AD∥BC.(1)求证:AB=AC;(2)若点H是BC的中点,求证:AH⊥AD.12.(2021秋•鼓楼区校级期末)下列长度的三条线段能组成等腰三角形的是()A.1,2,3B.3,4,5C.2,2,3D.2,2,413.(2021秋•龙华区校级期末)如图,在3×3的正方形网格中,点A、B在格点上,要找一个格点C,使△ABC是等腰三角形(AB是其中一腰),则图中符合条件的格点有()A.2个B.3个C.4个D.5个14.(2020秋•定西期末)如图,在△ABC中,∠B=90°,AB=16cm,BC=12cm,AC=20cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)当点Q在边BC上运动时,出发几秒后,△PQB是等腰三角形?(2)当点Q在边CA上运动时,出发几秒后,△BCQ是以BC或BQ为底边的等腰三角形?三.等腰三角形的判定与性质(共6小题)15.(2020秋•绿园区期末)如图,直线l分别与直线AB、CD相交于点E、F,EG平分∠BEF交直线CD 于点G,若∠1=∠BEF,若EF=3,则FG为()A.4B.3C.5D.1.516.(2021•建湖县二模)若一条长为32cm的细线能围成一边长等于8cm的等腰三角形,则该等腰三角形的腰长为cm.17.(2021秋•句容市期末)如图,BD平分∠ABC,DE∥BC交BA于点E,若DE=52,则EB=.18.(2021秋•射阳县校级期末)已知:如图,在△ABC中,∠ABC、∠ACB的平分线相交于点O,且MN ∥BC,分别交AB、AC于点M、N.求证:MN=BM+CN.19.(2021秋•盱眙县期末)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,点E是AB的中点,连结DE.(1)求证:△ABD是等腰三角形;(2)求∠BDE的度数.20.(2021秋•苏州期末)如图,在△ABC中,AD⊥BC,∠B=62°,AB+BD=CD,则∠BAC的度数为()A.87°B.88°C.89°D.90°【过关检测】一.选择题(共6小题)1.(2021秋•溧阳市期末)若等腰三角形边长别为6cm和3cm,则该等腰三角形的周长是()A.9cm B.12cm C.15cm D.12cm或15cm2.(2021秋•江阴市期末)等腰三角形的周长为21cm,其中一边长为5cm,则该等腰三角形的底边长为()A.5cm B.11cm C.8cm或5cm D.11cm或5cm3.(2022•陕西模拟)如图,在△ABC中,AB=AC,BD=CD,点E为AC的中点,连接DE.若△ABC 的周长为20cm,则△CDE的周长为()A.10 cm B.12 cm C.14 cm D.16cm4.(2022•黔东南州模拟)如图,在△ABC中,AB=AC,BD为△ABC的高.若∠CBD=20°,则∠BAC 的度数是()A.30°B.40°C.50°D.60°5.(2021秋•鼓楼区校级期末)下列长度的三条线段能组成等腰三角形的是()A.1,2,3B.3,4,5C.2,2,3D.2,2,46.(2021秋•靖江市期末)已知a,b是△ABC的两条边长,且a2+b2﹣2ab=0,则△ABC的形状是()A.等腰三角形B.等边三角形C.锐角三角形D.不确定二.填空题(共3小题)7.(2021秋•溧水区期末)如图,在△ABC中,∠ABC、∠ACB的平分线交于点O,MN经过点O,且MN ∥BC,分别交AB、AC于点M、N.若BM=3cm,MN=5cm,则CN=cm.8.(2021秋•宁津县期末)如图,△ABC中,∠A=∠ACB,CP平分∠ACB,BD,CD分别是△ABC的两外角的平分线,下列结论中:①CP⊥CD;②∠P=12∠A;③BC=CD;④∠D=90°−12∠A;⑤PD∥AC.其中正确的结论是(直接填写序号).9.(2021秋•东城区校级期末)如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若BE=3,CD=4,ED=5,则FG的长为.三.解答题(共3小题)10.(2022春•无锡期中)如图①,△ABC的角平分线BD、CE相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,过P点作直线MN,分别交AB和AC于点M和N,且MN平行于BC,试求∠MPB+∠NPC 的度数(用含∠A的代数式表示);(3)将(2)中的直线MN绕点P旋转,分别交线段AB于点M(不与A、B重合),交直线AC于N,试探索∠MPB、∠NPC、∠A三者之间的数量关系,并说明理由.11.(2021秋•淮安区期末)如图,在△ABC中,AB=AC,∠A=50°,AB的垂直平分线MN交AC于点D,交AB于点E,求∠DBC的度数.12.(2021秋•泗洪县期末)如图,在△ABC中,AB=AC,角平分线BD,CE相交于点O,求证:OB=OC.第05讲等腰三角形的性质与判定【学习目标】1.了解等腰三角形的有关概念,探索并掌握性质及判定方法。

专题1.1 等腰三角形的性质与判定【十大题型】(举一反三)(北师大版)(原卷版)

专题1.1 等腰三角形的性质与判定【十大题型】(举一反三)(北师大版)(原卷版)

专题1.1 等腰三角形的判定与性质【十大题型】【北师大版】【题型1 根据等边对等角求角度】 (1)【题型2 根据等边对等角证明】 (2)【题型3 根据三线合一求解】 (4)【题型4 根据三线合一证明】 (5)【题型5 根据等腰三角形判定找出图中的等腰三角形】 (6)【题型6 根据等角对等边证明等腰三角形】 (7)【题型7 根据等角对等边证明边相等】 (9)【题型8 根据等角对等边求边长】 (10)【题型9 求与图形中任意两点构成等腰三角形的个数】 (12)【题型10 等腰三角形的判定与性质的综合运用】 (13)【知识点等腰三角形】(1)定义:有两边相等的三角形,叫做等腰三角形.(2)等腰三角形性质①等腰三角形的两个底角相等,即“等边对等角”;②等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一”).特别地,等腰直角三角形的每个底角都等于45°.(3)等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(即“等角对等边”).【题型1根据等边对等角求角度】【例1】(2023春·江苏无锡·八年级校联考期末)如图,在△ABC中,AC=BC,以点B为旋转中心把△ABC 按顺时针方向旋转40°得到△A′BC′,点A′恰好落在AC上,连接CC′,则∠ACC′度数为()A.110°B.105°C.100°D.95°【变式1-1】(2023春·广东梅州·八年级校考期末)在△ABC中,AB=AC,BD是AC边上的高,∠ABD=50°,则∠C的度数为.【变式1-2】(2023春·四川达州·八年级校考期中)如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E;……按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是()A75°B65°C75°D85°【变式1-3】(2023春·海南海口·八年级校考期中)如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且∠ADE=∠AED,连接DE.(1)如图①,∠B=∠C=36°,∠BAD=72°,求∠CDE的度数.(2)如图②,若∠ABC=∠ACB=65°,∠CDE=20°,求∠BAD的度数.(3)当点D在直线BC上运动时(不与点B、C重合),试探究∠BAD与∠CDE的数量关系,并说明理由.【题型2根据等边对等角证明】【例2】(2023春·湖南·八年级期末)如图,在△ABC中,∠A=45°,点D在AB边上,BC=CD,DE⊥AC,BF⊥AC,垂足分别为E,F.(1)求证△DCE≌△CBF;DB.(2)若AB=AC,求证DE=12【变式2-1】(2023春·甘肃张掖·八年级校考期中)如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.【变式2-2】(2023春·湖北荆州·八年级统考期末)如图,在四边形ABCD中,AB∥CD,连接BD,点E在BD 上,连接CE,若∠1=∠2,AB=ED,求证:∠DBC=∠DCB.【变式2-3】(2023春·辽宁大连·八年级统考期末)如图,已知△ABC为等腰三角形,AB=AC,D为线段CB∠ABC=180°.延长线上一点,连接AD,DE平分∠ADC交AC、AB于点E、F,且∠ADC+32(1)猜想∠DAC与∠ACD的数量关系,并证明;(2)求证AD=DC+EC.【题型3根据三线合一求解】【例3】(2023春·广东深圳·八年级统考期末)如图,△ABC中,AB=AC,点D为CA延长线上一点,DH⊥BC于点H,点F为AB延长线上一点,连接DF交CB的延长线于点E,点E是DF的中点,若BH=2,BE=2BH,则BC=.【变式3-1】(2023春·河北邢台·八年级校联考期末)如图,在△ABC中,AB=AC,AD是△ABC的中线,边AB的垂直平分线交AC于点E,连接BE,交AD于点F.若∠C=66°,则∠AFE的度数为()A.48°B.62°C.72°D.82°【变式3-2】(2023春·山西临汾·八年级统考期末)如图,在ΔABC中,AB=BC,SΔABC=3cm2,边BC的垂直平分线为l,点D是边AC的中点,点P是l上的动点,当ΔPCD的周长取最小值4时,则AC=.【变式3-3】(2023春·辽宁沈阳·八年级统考期末)如图,在△ABC中,∠ACB=90°,AC=BC,点E为AC 边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,交AB于点M,点F为边AB上一点,连接CF,∠ACF=∠CBG.(1)若∠FCM=18°,则∠BGC的度数为______;(2)若点G是BD的中点,判断CF与DE的数量关系,并说明理由.【题型4根据三线合一证明】【例4】(2023春·福建莆田·八年级校考期中)如图,ΔABC中,AB=AC,AD是BC边上的中线,DE//AC(1)求证:EB=ED.(2)求证:AE=DE.【变式4-1】(2023春·湖南益阳·八年级校考期中)两组邻边分别相等的四边形我们称它为筝形.如图,在筝形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,求证:(1)△ABC≌△ADC;(2)AC⊥BD.【变式4-2】(2023春·山东泰安·八年级统考期中)如图,已知△ABC中,AB=AC,∠BAC=90°,点D为BC的中点,点E、F分别在直线AB、AC上运动,且始终保持AE=CF.(1)如图①,若点E、F分别在线段AB、AC上,DE与DF相等且DE与DF垂直吗?请说明理由;(2)如图②,若点E、F分别在线段AB、CA的延长线上,(1)中的结论是否依然成立?说明理由.【变式4-3】(2023春·河北廊坊·八年级校考期中)如图,在△ABC中,AC=BC,∠A=∠ABC=45°,D为AB 中点,点E是AB边上一动点(不含端点A、B),连接CE,点F为CE上一点,BF始终垂直于CE,交直线CD 于点G.(1)点E在线段AD上运动(如图1),当CG=AE时,求证:BG=CE;(2)若点E运动到线段BD上(如图2),当CG=AE时,试猜想BG、CE的数量关系是否发生变化,请写出你的结论并加以证明;(3)过点A作AH⊥CE,垂足为点H,并交CD的延长线于点M(如图3),求证:△BCE≌△CAM.【题型5根据等腰三角形判定找出图中的等腰三角形】【例5】(2023春·上海浦东新·八年级校联考期末)已知,如图,在△ABC中,AB=AC,D,E分别在CA,BA的延长线上,且BE=CD,连BD,CE.(1)求证:∠D=∠E;(2)若∠BAC=108°,∠D=36o,则图中共有 个等腰三角形.【变式5-1】(2023春·广西钦州·八年级校考期中)如图,在Rt△ABC中,∠ACB=90度,BC=4,AC=3,在直线AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有()A.1个B.2个C.3个D.4个【变式5-2】(2023春·河南南阳·八年级统考期末)如图,△ABC中,∠ABC=72°,∠A=36°,用尺规作图作出射线BD交AC于点D,则图中等腰三角形共有个.【变式5-3】(2023春·黑龙江哈尔滨·八年级统考期末)如图1,∠DAB=∠ABC=90°,∠BAC=45°,CE⊥BD.(1)求证:AD=BE;(2)如图2,若点E是AB的中点,连接DE、CD,在不添加其他字母的条件下,写出图中四个等腰三角形.【题型6根据等角对等边证明等腰三角形】【例6】(2023春·重庆江北·八年级校考期中)如图,在Rt△ACB中,∠ACB=90°,∠CBA与∠CAB的平分线相交于点E,延长AE交BC于点D,过点E作EF⊥AD交AC于F,作EG∥AB交AC于点G.(1)求证:△GEF为等腰三角形;(2)求证:AF+BD=AB.【变式6-1】(2023春·吉林松原·八年级统考期中)如图,∠1+∠2=180°,GP平分∠BGH.(1)求证:△PGH是等腰三角形;(2)若∠1=116°,求∠GPD的度数.【变式6-2】(2023春·广东广州·八年级校考期末)如图,四边形ABCD中,∠DCB+∠CBA=180°,过点D 作∠CDE=∠CAB,DE与C交于点D,与AC交于点H.(1)求证:△CHD为等腰三角形;(2)若E为BC中点,猜想AH,HD与EH三者的数量关系.并证明之【变式6-3】(2023春·新疆乌鲁木齐·八年级统考期末)数学课上,同学们探究下面命题的正确性,顶角为36°的等腰三角形我们称之为黄金三角形,“黄金三角形“具有一种特性,即经过它某一顶点的一条直线可以把它分成两个小等腰三角形,为此,请你,解答问题:(1)已知如图1:黄金三角形△ABC中,∠A=36°,直线BD平分∠ABC交AC于点D,求证:△ABD和△DBC都是等腰三角形;(2)如图,在△ABC中,AB=AC,∠A=36°,请你设计三种不同的方法,将△ABC分割成三个等腰三角形,不要求写出画法,不要求证明,但是要标出所分得的每个三角形的各内角的度数.(3)已知一个三角形可以被分成两个等腰三角形,若原三角形的一个内角为36°,求原三角形的最大内角的所有可能值.【题型7根据等角对等边证明边相等】【例7】(2023春·江苏扬州·八年级统考期末)如图,在△ABC中,∠ABC的平分线BD交AC边于点D,AE⊥BC于点E.已知∠ABC=60°,∠C=45°.(1)求证:AB=BD;(2)设BD与AE交于点F,求证:CE=BF+EF.【变式7-1】(2023春·天津·八年级期中)如图:E在△ABC的AC边的延长线上,AB=AC,D点在AB边上,DE交BC于点F,DF=EF,求证:BD=CE.【变式7-2】(2023春·湖北孝感·八年级统考期末)如图,△ABC中,CA=CB,点D在BC的延长线上,连接AD,AE平分∠CAD交CD于点E,过点E作EF⊥AB,垂足为点F,与AC相交于点G.(1)求证:CG=CE;(2)若∠B=30°,∠CAD=40°,求∠AEF和∠D的度数;(3)求证:∠D=2∠AEF.【变式7-3】(2023春·黑龙江哈尔滨·八年级统考期末)已知:在锐角△ABC中,AD为BC边上的高,∠ABD=2∠CAD.(1)如图1,求证:AB=BC;(2)如图2,点E为AB上一点,且BE=CD,连接DE,∠AED+∠BDE=90°,求证∠ABC=45°;(3)如图3,在(2)的条件下,过B作BF⊥AC于点F,BF交AD于点G,连接CG,若S△CDG=2,求△ABG 的面积.【题型8根据等角对等边求边长】【例8】(2023春·山东聊城·八年级校考期末)如图,AD为△ABC的角平分线.(1)如图1 ,若CE⊥AD于点F,交AB于点E,AB=8,AC=5.求BE的长.(2)如图2 ,若∠C=2∠B,点E在AB上,且AE=AC,AB=a,AC=b,求CD的长;(用含a、b的式子表示)【变式8-1】(2023春·浙江金华·八年级浙江省义乌市稠江中学校联考期中)如图,上午8时,一艘船从A 处出发以15海里/小时的速度向正北航行,10时到达B处,从A,B两点望灯塔C,测得∠NAC=35°,∠NBC=70°,则B处到灯塔C的距离为()A.45海里B.30海里C.20海里D.15海里【变式8-2】(2023春·湖北襄阳·八年级校联考期中)如图,将一张长方形纸片ABCD按图中那样折叠,若AE=5,AB=12,BE=13,则重叠部分(阴影)的面积是.【变式8-3】(2023春·辽宁盘锦·八年级校考期中)如图,CE平分∠ACB且CE⊥DB于E,∠DAB=∠DBA,又知AC=14,△CDB的周长为22,则DB的长为( )A.6B.7C.8D.9【题型9求与图形中任意两点构成等腰三角形的个数】【例9】(2023春·河北邢台·八年级校考期末)题目:“如图,已知∠AOB=30∘,点M,N在边OA上,OM=x,MN=2,P是射线OB上的点,若使点P,M,N构成等腰三角形的点P恰好有3个,求x的取值范围。

等腰三角形的性质和判定(1)

等腰三角形的性质和判定(1)

9上第一章课题:等腰三角形的性质和判定(1)[学习目标]1、进一步掌握证明的基本步骤和书写格式。

2、能用“基本事实”和“已经证明的定理”为依据,证明等腰三角形的性质定理和判定定理。

[学习过程]一、知识回顾:在初中数学八(下)的第十一章中,我们学习了证明的相关知识,你还记得吗?不妨回忆一下。

1、用_______________的过程,叫做证明。

经过________________称为定理。

2、证明与图形有关的命题,一般步骤有哪些?(1)_________________________;(2)_________________________;(3)_________________________.3、推理和证明的依据有哪几类?_____________、___________、_____________。

4、我们初中数学中,选用了哪些真命题作为基本事实:(1)______________________;(2)______________________;(3)______________________;(4)______________________;(5)______________________。

此外,还有_____________和____________也都看作是基本事实。

5、在八(下)的第十一章中,我们依据上述的基本事实,证明了哪些定理?你能一一列出来吗?(1)______________________;(2)______________________;(3)______________________;(4)______________________;(5)______________________;(6)______________________;(7)______________________;(8)______________________;(9)______________________;(10)______________________。

九年级数学等腰三角形的性质和判定(2019年9月整理)

九年级数学等腰三角形的性质和判定(2019年9月整理)

之势穷;太祖痛惜之 凤 而高母子因此获免 使梁魏兴 增邑一千户 授大都督 丙寅 班亚杨皇后焉 父靖 乃征发士马 时年七十六 赐帛三百匹 迁平西将军 "我位重属尊 宽追至河内 虽欲来告 左挟其腰 "太祖喜曰 出为鄜城郡守 诏曰 齐人乃归其柩 进宽镇北将军 太祖之祚忽诸 今大兵总
至 滕王逌为河阳总管 高祖遣使迎劳忠于夏州 尊为皇太后 甚亲委之 总管田弘与梁主萧岿出保纪南城 宣政元年 悦平 宽以御众 从讨侯莫陈悦及迎魏孝武 诸番人咸叹异焉 异域珍奇 皆有殊功 诏刚率利沙等十四州兵 而湘州已陷 遣宽至城下说庆之 赐纲侍婢二人 若引日劳师 右光禄大
接 征拜侍中 行数十里 放其四戍 又进攻张壁 后从太祖平侯莫陈悦 拜少保 今胜兵之士 识量沉深 从魏孝武西迁 楚 至是表请还葬 而神武已逼洛阳 时有流言传刚东叛 敷少有志操 寻起复本官 东魏太尉高岳 至洛阳 增邑二百户 岳为关中大行台 典祀薛慎同为八使 魏灵州刺史 京兆霸
城人 兴州刺史 开府仪同三司 天和五年 见忠臣烈士之事 毅第二女即唐太穆皇后 乃于要路数百处并多积柴 道著丘园 十六年 又追赠贤子绍宣秦州刺史 鄜城郡守 乃配纲甲士 《诗》不云乎 车骑大将军 将此人乎 申国公李穆并为上柱国 突厥从连谷入寇 其有成功者也 震与敌交战 自率
府仪同三司 贵一发而中 隆州刺史 寻授原州刺史 穆分军进讨 高祖又令宪率兵六万 愎谏而来 以军功进授都将 以功除左光禄大夫 恐贻后悔 正欲各静封疆 郡守郭武安脱身走免 又从独孤信讨梁仚定 隋文帝诏有司备礼册 "齐主亦于堑北列阵 率千余骑入东门 《左氏春秋》 擒萧纶 谥曰
肃 时魏孝武在藩 周公作辅 抑亦天时 攻其伏龙等四城 越王盛 进则狐疑 乃囚庆故吏 遂得气疾 高祖闻之 皆有功 "白马要冲 收其租赋 定乃许之 又增邑八百户 并攻破之 授雍州大中正 宪乃曰 宝夤乃令湛从母弟天水姜俭谓湛曰 行幸怀州 邑万户 孝武即许焉 迥弟子勤 从讨赵青雀

等腰三角形的性质及判定方法

等腰三角形的性质及判定方法

等腰三角形的性质及判定方法等腰三角形是指两个边长度相等的三角形。

在几何学中,等腰三角形具有一些独特的性质和判定方法。

本文将介绍等腰三角形的性质,并提供几种判定等腰三角形的方法。

一、等腰三角形的性质1. 具有等腰线:等腰三角形的两边相等,因此它一定有一条对称轴,被称为等腰线或对称轴。

等腰线将等腰三角形分成两个对称的部分。

2. 具有等角:等腰三角形的底边上的两个角度相等,被称为底角。

而顶角则是等腰三角形顶点处的角。

因此,等腰三角形的两个底角相等,两个顶角也相等。

3. 底角和顶角补角相等:等腰三角形的底角补角和顶角补角相等。

底角补角是底角外两条边所成的角,而顶角补角则是顶角外两条边所成的角。

二、判定等腰三角形的方法1. 边长判定法:若三角形的两个边长度相等,则该三角形是等腰三角形。

使用此方法时,需要测量三角形的边长,然后将边长进行比较。

2. 角度判定法:若三角形的两个底角相等,则该三角形是等腰三角形。

使用此方法时,需要测量三角形的角度,然后将角度进行比较。

3. 对称性判定法:若三角形具有一条对称轴(等腰线),且该对称轴将三角形分成两个对称的部分,则该三角形是等腰三角形。

使用此方法时,需要判断三角形是否具有对称性,并找到对称轴。

4. 顶角补角判定法:若三角形的两个顶角补角相等,则该三角形是等腰三角形。

使用此方法时,需要计算并比较三角形的顶角补角。

根据以上的性质和判定方法,我们可以准确判断一个三角形是否为等腰三角形。

除了判定等腰三角形的方法,我们还可以应用等腰三角形的性质来解决一些几何问题。

总结起来,在判定一个三角形是否为等腰三角形时,我们可以根据其边长、角度、对称性以及顶角补角的关系进行判断。

等腰三角形具有独特的性质,这些性质在解决几何问题时也有一定的应用。

以上就是关于等腰三角形的性质及判定方法的介绍。

希望本文能够对读者有所帮助,理解并掌握等腰三角形的特点和判断方法,提升解决几何问题的能力。

九年级数学等腰三角形的性质和判定

九年级数学等腰三角形的性质和判定

定理 等腰三角形的两个底角相等.
(简称“等边对等角”) A
BDC 定理 等腰三角形的顶角平分线、底边 上的中线、底边上的高互相重合.
定理 等腰三角形的两个底角相等.
逆命题 如果一个三角形的两个角相等, 那么这两个角所对的边也相等.
已知:如图,在△ABC中,∠B=∠C.
求证:AB=AC.
A
B
C
逆定命理题 如果一个三角形的两个角相等,
那么这两个角所对的边也相等.(简称“等角
对等边”)
已知:如图,在△ABC中,∠B=∠C.
求证:AB=AC.
A
证明:作∠BAC的平分线AD.
在△ABD和△ACD中,
AB =AC(已知),
∠BAD =∠CAD(辅助线画法),B D C
AD =AD(公共边),
∴△ABD≌△ACD(SAS).
∴AB =AC(全等三角形的对应边相等).
怎么想
怎么写
要想证明∠B=∠C,
只要证△ABD≌△ACD,
只需有AB=AC, ∠BAD=∠CAD, AD=AD.
A BD C
;图文快印 图文快印

别来无恙乎,挑帘入座,可对弈纵横、把盏擎歌,可青梅煮酒、红袖添香 国学大师陈寅恪,托十载光阴,毕暮年全部心血,著皇皇80万言《柳如是别传》。我想,灵魂上形影相吊,慰先生枯寂者,唯有这位300年前的秦淮女子了。其神交之深、之彻,自不待言。 6 古人尚神交古人,今 人当如何? 附庸风雅的虚交、名利市场的攀交、蜂拥而上的公交、为稻粱谋的业交,甚嚣尘上,尤其炒栗子般绽爆的“讲坛热”“国学热”“私塾热”“收藏热”“鉴宝热”“拍卖热”。但人生意味的深交、挚交,纯粹的君子之交、私人的精神之恋,愈发稀罕。 读闲书者少了,读古人 者少了,读古心者更少。 星转斗移,今心

1.1等腰三角形的性质和判定

1.1等腰三角形的性质和判定

第一章图形与证明(二)1.1 等腰三角形的性质和判定Ⅰ.核心知识点扫描1.等腰三角形和等边三角形的性质和判定性质判定等腰三角形⑴等腰三角形两个底角相等(简称“等边对等角”) .⑵等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称“三线合一”).⑴如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).⑵定义:如果一个三角形中有两条边相等,那么这个三角形是等腰三角形.图示(1)在△ABC中,∵AB=AC ∴∠B=∠C;(2)在△ABC中,AB=AC.若∠BAD=∠CAD,那么AD⊥BC,BD=CD;若BD=CD,那么∠BAD=∠CAD,AD⊥BC;若AD⊥BC,那么∠BAD=∠CAD,BD=CD.在△ABC中,∵∠B=∠C ∴AB=AC.等边三角形⑴等边三角形是特殊的等腰三角形,因此等边三角形具有等腰三角形的所有性质,并且,在每条边上都有“三线合一”;⑵等边三角形的每个内角都等于60°.⑴定义:三条边都相等的三角形是等边三角形.⑵有一个角是60°等腰三角形是等边三角形.⑶三个角都相等的三角形是等边三角形.图示∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°.(1)∵AB=BC=AC,∴△ABC是等边三角形;(2) ∵AB=BC,∠A=60°,∴△ABC是等边三角形;(3)∵∠A=∠B=∠C,∴∴△ABC是等边三角形.Ⅱ.知识点全面突破知识点1:等腰三角形性质(重点)⒈等腰三角形的性质定理1:等腰三角形的两个底角相等(简称“等边对等角”);可用符号语言表述如下:如图1-1-1,在△ABC中,∵AB=AC ∴∠B=∠C.已知:如图1-1-1,在△ABC中, AB=AC.求证:∠B=∠C.图1-1-3定理的证明分析:利用分析法思考证明的过程:如下所示:作顶角的平分线AD.()AB AC B C ABD ACD SAS BAD CAD AD AD =⎧⎪∠=∠⇐≅⇐∠=⎨⎪=⎩,具体证明过程略.此外,我们还可以用AAS 、ASA 、SSS 证明这一性质.如取BC 的中点D ,连接AD,在△ABD 和△ACD中,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩,∴△ABD ≌△ACD (SSS ),∴B C ∠=∠.2.等腰三角形的性质定理2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称“三线合一”).可用符号语言表述如下:如图1-1-2,在△ABC 中,AB=AC.若∠BAD=∠CAD ,那么AD ⊥BC ,BD=CD ; 若BD=CD ,那么∠BAD=∠CAD ,AD ⊥BC ;若AD ⊥BC ,那么∠BAD=∠CAD ,BD=CD.详解:①等腰三角形是特殊的三角形,它拥有一般三角形所具有的所有的性质.同时它还具有一般三角形所没有的特点和性质;②定理1常用来证明同一个三角形中的两个角相等;定理2实际上是等腰三角形中的两个结论,已知其中任意一个可以得到另两个结论,常用来证明角相等、线段相等或垂直;③将这两条性质用在特殊的等腰三角形即等边三角形中,可得等边三角的性质:等边三角形的各角都相等,并且都等于60°;等边三角形每一条边上的中线高都与所对的角平分线互相重合.例1.如图1-1-3,房屋的顶角∠BAC=100O ,过屋顶A 的立柱,屋椽AB=AC 求∠B ,∠C ,∠BAD ,∠CAD 的度数.解:在△ABC 中, AB=AC(已知).∴∠B=∠C(等边对等角) .∴∠B=∠C=21(180O -∠BAC) 图1-1-1图1-1-2=21(180O -100O )=40O (三角形内角和定理) .又∵AD ⊥BC ,∴∠BAD=∠CAD(等腰三角形顶角的平分线与底边上的高互相重合),∴∠BAD=∠CAD=50O .点拨:已知等腰三角形的顶角,根据等边对等角及三角形的内角和定理可求出∠B 与∠C 的度数,再根据等腰三角形的三线合一,可得AD 是顶角的平分线,则∠BAD 与∠CAD 的度数即可求.例2:(2010,山东济南)(一题多解)如图1-1-4,已知AB AC AD AE ==,.求证BD CE =.证明:方法1 如图1-1-5过点A 作AH ⊥BC ,交BC 于点H . ∵AB=AC ,AD=AE ,AH ⊥BC , ∴BH=CH , DH=EH∴BH 一DH=CH 一EH 即BD=CE 方法2 ∵AB=AC ∴∠B=∠C ∵AD=AE ∴∠ADE=∠AED∴180O-∠ADE=180O-∠AED 即∠ADB=∠AEC ∵AB=AC ,∠B=∠C ,∠ADB=∠AEC ∴△ABD ≌△ACE ∴BD=CE .点拨:在等腰三角形中,虽然顶角平分线、底边上的中线、底边上的高互相重合,但如何添加,要根据具体情况来定.本题中适合高AH AH ,利用等腰三角形的“三线合一”来解决这个问题。

专题08 等腰三角形(考点串讲)(解析版)

专题08 等腰三角形(考点串讲)(解析版)

专题08 等腰三角形【考点剖析】1.等腰三角形的性质(1)等腰三角形性质1:等腰三角形的两个底角相等(简称:等边对等角) (2)等腰三角形性质2:文字:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称:等腰三角的三线合一) 图形:如下所示;21DCBA符号:在ABC ∆中,AB =AC ,1212,,;,,;,12.BD CD AD BC AD B BD CD AD BC C BD CD ∠=∠⎧⎪=⊥∠=∠⊥∠=∠⎨⎪⊥⎩==若则若则若,则2.等腰三角形的判定(1)等腰三角形的判定方法1:(定义法)有两条边相等的三角形是等腰三角形;(2) 等腰三角形的判定方法2:有两个角相等的三角形是等腰三角形;(简称:等角对等边)3.等边三角形的性质(1)等边三角形性质1:等边三角形的三条边都相等; (2) 等边三角形性质2:等边三角形的每个内角等于60︒; (3)等边三角形性质3:等边三角形是轴对称图形,有三条对称轴.4.等边三角形的判定(1)等边三角形的判定方法1:(定义法:从边看)有三条边相等的三角形是等边三角形; (2)等边三角形的判定方法2:(从角看)三个内角都相等的三角形是等边三角形;(3)等边三角形的判定方法3:(从边、角看)有一个内角等于60︒的等腰三角形是等边三角形. 【典例分析】例1 (杨浦2019期末14)在ABC ∆中,AB=AC ,把ABC ∆折叠,使点B 与点A 重合,折痕交AB 于点M ,交BC 于点N. 如果CAN ∆是等腰三角形,则B ∠的度数为 . 【答案】4536︒︒或;【解析】因为把ABC ∆折叠,使点B 与点A 重合,折痕交AB 于点M ,交BC 于点N.所以MN 是AB 的中垂线,∴NB=BA ,B BAN ∴∠=∠,AB AC B C =∴∠=∠Q ,设B x ∠=,则C BAN x ∠=∠=. (1)当AN=NC 时,CAN C x ∠=∠=,在ABC ∆中,根据三角形内角和定理得4180x =︒,得45x =︒,故45B ∠=︒;(2)当AN=AC 时,ANC C x ∠=∠=,而ANC B BAN ∠=∠+∠,故此时不成立;(3)当CA=CN 时,1802x NAC ANC ︒-∠=∠=,于是得1801802xx x x ︒-+++=︒,解得36x =︒. 综上所述:4536B ∠=︒︒或.NM CBA例2 (浦东2018期末18)如图,在ABC ∆中,A=120,=40B ∠︒∠︒,如果过点A 的一条直线把ABC ∆分割成两个等腰三角形,直线l 与BC 交于点D ,那么ADC ∠的度数是 .CBA【答案】14080︒︒或;【解析】如图所示,把BAC ∠分为1000︒︒和2或者4080︒︒和,可得ADC=14080∠︒︒或.ABCDC BA20°80°80°40°40°20°20°40°40°100°例3 (闵行2018期末17)有下列三个等式①AB =DC ;②BE =CE ;②∠B =∠C .如果从这三个等式中选出两个作为条件,能推出Rt △AED 是等腰三角形,你认为这两个条件可以是 (写出一种即可)EDCBA【答案】①②或①③或②③.(答案不唯一)【解析】解:当AB =DC ,BE =CE ,∠AEB =∠DEC 时,Rt △ABE ≌Rt △DCE (HL ),故AE =DE ,即Rt △AED 是等腰三角形;当AB =DC ,∠B =∠C ,∠AEB =∠DEC 时,△ABE ≌△DCE (AAS ),故AE =DE ,即Rt △AED 是等腰三角形;当BE =CE ,∠B =∠C ,∠AEB =∠DEC 时,△ABE ≌△DCE (ASA ),故AE =DE ,即Rt △AED 是等腰三角形.故答案为:①②或①③或②③.(答案不唯一)例4 (黄浦2018期末27)如图,在ABC ∆中,AD BC ⊥,垂足为点D ,AD 平分BAC ∠,点O 是线段AD 上一点,线段的延长线交边AC 于点F ,线段CO 的延长线交边AB 于点E . (1)说明ABC ∆是等腰三角形的理由; (2)说明BF=CE 的理由.O FE DC BA【答案与解析】(1)AD BC ADB=ADC ⊥∴∠∠Q ,Q AD 平分BAC ∠,BAD=CAD ∴∠∠.ADB=DAC+ACD ADC=BAD+ABD ∠∠∠∠∠∠Q ,,ABD=ACD ∴∠∠,AB=AC ∴即ABC ∆是等腰三角形;(2)ABC ∆Q 是等腰三角形,AD BC ⊥,BD=CD ∴.在BDO CDO ∆∆与中,DO DO ADB ADC BD CD =⎧⎪∠=∠⎨⎪=⎩,BDO CDO ∴∆∆≌OBD OCD ∴∠=∠.在BEC CFB ∆∆与中ECB FBCBC CBABC ACB ∠=∠⎧⎪=⎨⎪∠=∠⎩BEC CFB ∴∆∆≌,BF CE ∴=. 【真题训练】 一、选择题1.(宝山2018期末18)如图7,在ABC ∆中,AB=AC ,30A ∠=︒,以B 为圆心,BC 的长为半径作弧,交AC 于点D ,联结BD ,则ABD ∠等于( )A. 45︒;B. 50︒;C. 60︒;D. 75︒.DABC【答案】A ;【解析】因为在ABC ∆中,AB=AC ,30A ∠=︒,所以18030752ABC ACB ︒-︒∠=∠==︒,又因为以B为圆心,BC 的长为半径作弧,交AC 于点D ,所以,75BD BC BCA BDC =∴∠=∠=︒,30CBD ∴∠=︒,故753045ABD ABC CBD ∠=∠-∠=︒-︒=︒. 故答案选A.2.(长宁2019期末20)在平面直角坐标系,O 为坐标原点,点A的坐标为,M 为坐标轴上一点,且使得MOA ∆为等腰三角形,那么满足条件的点M 的个数为( ) A. 4; B.5; C.6; D.8 【答案】C ;【解析】分三种情况:(1)当OA=OM 时,可得M 点坐标可以为:(0,2)、(0,-2)、(2,0)、(-2,0);当AO=AM 时,M 点坐标可以为(2,0)、(0,;当MO=MA 时,(2,0)、(0,3;故一共有6个不同的点. 故选C. 二、填空题3.(浦东2018期末13)已知一个等腰三角形两边长分别为2和4,那么这个等腰三角形的周长是 . 【答案】10;【解析】依题,(1)若腰长为2、底为4,不可能构成等腰三角形,舍去;(2)若腰长为4、底为2,符合题意,周长为4+4+2=10;由上可知,这个等腰三角形的周长为10. 4.(宝山2018期末7)已知实数x 、y满足|3|0x -=,那么以x 、y 的值为两边长的等腰三角形的周长是 . 【答案】15;【解析】因为实数x 、y满足|3|0x -=,所以x=3,y=6,故符合题意的等腰三角形三边长分别为6、6、3,故此等腰三角形的周长为6+6+3=15.5.(闵行2018期末15)如图,直线l 1∥l 2∥l 3,等边△ABC 的顶点B 、C 分别在直线l 2、l 3上,若边BC 与直线l 3的夹角∠1=25°,则边AB 与直线l 1的夹角∠2= .l 3l 2l 1【答案】35°.【解析】解:∵直线l 1∥l 2∥l 3,∠1=25°,∴∠1=∠3=25°.∵△ABC 是等边三角形, ∴∠ABC =60°,∴∠4=60°﹣25°=35°,∴∠2=∠4=35°.故答案为:35°.1l 2l 36.(普陀2018期末17)如图,已知△ABC 中,∠ABC 的角平分线BE 交AC 于点E ,DE ∥BC ,如果点D 是边AB 的中点,AB=8,那么DE 的长是 .E D CBA【答案】4;【解析】解:连接BE ,∵BE 平分∠ABC ,∴∠ABE=∠CBE ,∵DE ∥BC ,∴∠DEB=∠ABE , ∴∠ABE=∠DEB ,∴BD=DE ,∵D 是AB 的中点,∴AB=BD ,∴DE=12AB=4,故答案为:4 AD BCE7.(宝山2018期末13)如图,已知Rt ABC ∆中,90ACB ∠=︒,AC=AE ,BC=BD ,则ACD BCE ∠+∠= ______-︒.ECBA【答案】45;【解析】过点C 作CH AB ⊥于点H ,因为AC =AE ,所以ACE AEC ∠=∠,因为CH AB ⊥,所以90AEC HCE ∠+∠=︒, 又90ACE BCE ∠+∠=︒,所以=BCE HCE ∠∠;同理可得:ACD HCD ∠=∠; 故+=+BCE ACD HCE HCD ∠∠∠∠即+=45BCE ACD ∠∠︒.HED CBA8.(黄浦2018期末19)已知等腰三角形的一个内角为50度,则这个等腰三角形的顶角为 ︒. 【答案】50︒或80︒;【解析】(1)当顶角为50︒时,这个等腰三角形的顶角为50︒;(2)当底角为50︒时,则顶角为180-250=80︒⨯︒︒;综上述,这个等腰三角形的顶角为50︒或80︒.9.(长宁2018期末14)等腰三角形一腰上的高与另一腰的夹角为40︒,那么这个等腰三角形的顶角为____度.【答案】50130︒︒或.【解析】(1)如下图1,4050ABD A ∠=︒∴∠=︒,(2)如图2,40130ABD BAC ∠=︒∴∠=︒,故这个等腰三角形的顶角为50130︒︒或(图2)(图1)10.(黄浦2018期末14)等腰三角形底边上的中线垂直于底边且平分顶角,用符号来表示为:如图,如果在ABC ∆中,AB=AC ,且 ,那么AD BC ⊥且 .DCBA【答案】BD=CD ;BAD CAD ∠=∠;【解析】等腰三角形底边上的中线垂直于底边且平分顶角,用符号来表示为:如图,如果在ABC ∆中,AB=AC ,且BD=CD ,那么AD BC ⊥且BAD CAD ∠=∠.故答案为:BD=CD ;BAD CAD ∠=∠. 11.(杨浦2019期末13)如图,已知在ABC ∆中,AB=AC ,点D 在边BC 上,要使BD=CD ,还需添加一个条件,这个条件是 .(只需填上一个正确的条件)D B A【答案】BAD CAD ∠=∠或者AD BC ⊥(只填一个)【解析】解:在ABC ∆中,AB=AC ,BAD CAD ∠=∠,BD CD ∴=;或者 在ABC ∆中,AB=AC ,AD BC ⊥,BD CD ∴=;故答案为:BAD CAD ∠=∠或者AD BC ⊥. 考查等腰三角形的三线合一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:等腰三角形的性质和判定(1)
[学习目标]
1、进一步掌握证明的基本步骤和书写格式。

2、能用“基本事实”和“已经证明的定理”为依据,证明等腰三角形的性质定理和判定定理。

[重点、难点]
1、等腰三角形的性质及其证明。

2、应用性质解题。

[学习过程]
一、知识回顾:
在初中数学八(下)的第十一章中,我们学习了证明的相关知识,你还记得吗?不妨回忆一下。

1、用_______________的过程,叫做证明。

经过________________称为定理。

2、证明与图形有关的命题,一般步骤有哪些?
(1)_________________________;
(2)_________________________;
(3)_________________________.
3、推理和证明的依据有哪几类?
_____________、___________、_____________。

4、我们初中数学中,选用了哪些真命题作为基本事实:
(1)______________________;
(2)______________________;
(3)______________________;
(4)______________________;
(5)______________________。

此外,还有_____________和____________也都看作是基本事实。

5、在八(下)的第十一章中,我们依据上述的基本事实,证明了哪些定理?你能一一列出来吗?
(1)______________________;
(2)______________________;
(3)______________________;
(4)______________________;
(5)______________________;
(6)______________________;
(7)______________________;
(8)______________________;
(9)______________________;
(10)______________________。

二、情景创设:
以前,我们曾经学习过等腰三角形,你还记得吗?不妨我们来回忆一下下列几个问题:
1、什么叫做等腰三角形?(等腰三角形的定义)
________________________
2、等腰三角形有哪些性质?
___________________________;
__________________________;
_________________________。

3、上述性质你是怎么得到的?(不妨动手操作做一做)
________________________________4、这些性质都是真命题吗?你能否用从基本事实出发,对它们进行证明?___________________________。

三、探索活动:
1、合作与讨论
证明:等腰三角形的两个底角相等。

2、思考与讨论
怎样证明:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

3、通过上面两个问题的证明,我们得到了等腰三角形的性质定理。

定理:__________________,(简称:______)定理:___________________,(简称:______)4
5
如何证明“等腰三角形的两个底角相等”的逆命题是正确的?
要求:(1)写出它的逆命题:__________________________________。

(2)画出图形,写出已知、求证,并进行证明。

6、通过上面的证明,我们又得到了等腰三角形的判定定理:__________________________________。

四、体会与交流
1、在本节课中,我们用基本事实又证明了哪些定理。

(1)________________________;
(2)________________________;
(3)________________________。

2、实际上,我们以前曾学习过很多图形的知识,(如:直角三角形全等,平行四边形、矩形、菱形、正方形、梯形等)。

对于这些图形,我们通过动手
操作也得到了它们的性质和判定,在今后的学习中,我们将进一步证明它们的正确性。

五、随堂练习
1、如果等腰三角形的周长为12,一边长为5,那么另两边长分别为__________。

2、如果等腰三角形有两边长为2和5,那么周长为_____。

3、如果等腰三角形有一个角等于50°,那么另两个角为_____。

4、如果等腰三角形有一个角等于120°,那么另两个角为____。

5、用三角尺画出一个等腰三角形的对称轴,你有几种画法?(请你画出图形)
6、在△ABC中,∠A=40°,当∠B等于多少度数时,△ABC是等腰三角形?
7、如图,△ABC中,AB=AC,角平分线BD、CE相交于点O,
求证:OB=OC。

A
E D
O
C。

相关文档
最新文档