等腰三角形的性质练习题及答案.
等腰三角形性质定理(基础)巩固练习含答案

【巩固练习】一.选择题1. 已知一个等腰三角形两边长分别为5,6,则它的周长为( )A.16 B.17C.16或17D.10或122.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()A.50°B.80° C.50°或80°D.40°或65°3. 将两个全等的且有一个角为30°的直角三角形拼成如图所示形状,两条长直角边在同一条直线上,则图中等腰三角形的个数是()A. 4个B. 3个C. 2个D. 1个4. 已知实数x,y满足|x−4|+(y−8)2=0,则以x,y的值为两边长的等腰三角形的周长是()A.20或16 B.20 C.16 D.以上答案均不对∆沿过D的直线折叠,使点A落在BC上F处,若5. 如图,D是AB边上的中点,将ABC∠度数是()∠=︒,则BDFB50A.60° B.70° C.80° D.不确定6. (2016•滨州)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50° B.51°C.51.5°D.52.5°二.填空题7.如图,△ABC中,D为AC边上一点,AD=BD=BC,若∠A=40°,则∠CBD=_____°.8.(2016•泰州)如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于.9. 如图,△ABC是等腰直角三角形,∠C=90°,BD平分∠CBA交AC于点D,DE⊥AB于E.若△ADE的周长为8cm,则AB =_________cm.10.在等腰△ABC中,AB=AC,中线BD将三角形的周长分成了15和18两个部分,则底边长BC= .11. 如图,AE∥BD,C是BD上的点,且AB=BC,∠ACD=110°,则∠EAB=______度.12. 如图,△ABC的周长为32,且AB=AC,AD⊥BC于D,△ACD的周长为24,那么AD的长为 .三.解答题13.已知:如图,ΔABC中,AB=AC,D是AB上一点,延长CA至E,使AE=AD.试确定ED与BC的位置关系,并证明你的结论.14. 如图,DE是△ABC边AB的垂直平分线,分别交AB、BC于D、E.AE平分∠BAC.设∠B=x(单位:度),∠C=y(单位:度).请讨论当△ABC为等腰三角形时,∠B为多少度?15.如图,在△ABC 中,AB=AC ,D 是BC 上任意一点,过D 分别向AB ,AC 引垂线,垂足分别为E ,F ,CG 是AB 边上的高.DE ,DF ,CG 的长之间存在着怎样的等量关系?并加以证明.【答案与解析】一.选择题1. 【答案】C ;【解析】注意分类讨论.2. 【答案】C ;【解析】解:如图所示,△ABC 中,AB=AC .有两种情况:①顶角∠A=50°;②当底角是50°时,∵AB=AC,∴∠B=∠C=50°,∵∠A+∠B+∠C=180°,∴∠A=180°﹣50°﹣50°=80°,∴这个等腰三角形的顶角为50°和80°.故选:C .3. 【答案】B ;4. 【答案】B ;【解析】根据题意得4080x y -⎧⎨-⎩==,解得48x y =⎧⎨=⎩. (1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.故选B .5. 【答案】C ;【解析】AD =DF =BD ,∠B =∠BFD =50°,BDF ∠=180°-50°-50°=80°.6. 【答案】D ;【解析】根据等腰三角形的性质推出∠A=∠CDA=50°,∠B=∠DCB ,∠BDE=∠BED ,根据三角形的外角性质求出∠B=25°,由三角形的内角和定理求出∠BDE ,根据平角的定义即可求出选项.二.填空题7. 【答案】20;【解析】∠A =∠ABD =40°,∠BDC =∠C =80°,所以∠CBD =20°.8.【答案】20°;【解析】解:过点A 作AD ∥l 1,如图,则∠BAD=∠β.∵l 1∥l 2,∴AD ∥l 2,∵∠DAC=∠α=40°.∵△ABC 是等边三角形,∴∠BAC=60°,∴∠β=∠BAD=∠BAC ﹣∠DAC=60°﹣40°=20°.故答案为20°.9. 【答案】8;【解析】DE =DC ,AC =BC =BE ,△ADE 的周长=AD +DE +AE =AC +AE =AB =8.10.【答案】9或13;【解析】解:设等腰三角形的底边长为x ,腰长为y ,则根据题意,得或,解得或,经检验,这两组解均能构成三角形,所以底边长为9或13.故答案为:9或13.11.【答案】40;【解析】解:∵AB=BC ,∴∠ACB=∠BAC∵∠ACD=110°∴∠ACB=∠BAC=70°∴∠B=∠40°,∵AE ∥BD ,∴∠EAB=40°,故答案为40.12.【答案】8;【解析】解:∵AB=AC ,AD ⊥BC ,∴BD=DC .∵AB+AC+BC=32,即AB+BD+CD+AC=32,∴AC+DC=16∴AC+DC+AD=24∴AD=8.故填8.三.解答题13.【解析】证明:ED ⊥BC ;延长ED ,交BC 边于H ,∵AB =AC ,AE =AD .∴设∠B =∠C =x ,则∠EAD =2x ,∴∠ADE =1802902xx ︒-=︒-即∠BDH =90°-x∴∠B +∠BDH =x +90°-x =90°,∴∠BHD =90°,ED ⊥BC.14.【解析】 解:由题意可知,AC ≠BC ,若 AB=AC ,此时,x=y ,即:180-3x=x ,得:x=45°;若 AB=BC ,此时,2x=y ,即:180-3x=2x ,得:x=36°.∴当△ABC 为等腰三角形时,∠B 分别为45°或36°.15.【解析】解:CG=DE+DF.理由如下:如图,连接AD,∵S△ABC=S△ABD+S△ACD,∴AB•CG=AC•DE+AB•DF,∴AB=AC,∴CG=DE+DF.。
等腰三角形练习题(含答案)

等腰三角形练习题(含答案)等腰三角形第1课时:等腰三角形的性质1.已知等腰三角形的一个底角为50°,则其顶角为80°。
2.如图,△ABC中,AB=AC,BC=6cm,AD平分∠BAC,则BD=3cm。
3.如图,△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为45°。
4.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为80°。
5.如图,在△ABC中,D是BC边上一点,且AB=AD=DC,∠BAD=40°,求∠C的度数为100°。
6.如图,△ABC中,AB=AC,D是BC的中点,E,F分别是AB,AC上的点,且AE=AF。
证明:DE=DF。
第2课时:等腰三角形的判定1.在△ABC中,∠A=40°,∠B=70°,则△ABC为钝角三角形。
2.已知△ABC中,∠B=50°,∠A=80°,AB=5cm,则AC=5cm。
3.如图,在△ABC中,AD⊥BC于点D,且BD=DC,则△ABC为等腰三角形。
4.如图,已知△ABC中,∠A=36°,AB=AC,BD为∠ABC的平分线,则图中共有2个等腰三角形。
5.如图,D是△XXX的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是E,F,且DE=DF。
证明:AB=AC。
6.如图,AB∥CD,直线l交AB于点E,交CD于点F,FG平分∠EFD交直线AB于点G。
证明:△EFG是等腰三角形。
等边三角形第1课时:等边三角形的性质与判定1.如图,a∥b,等边△ABC的顶点B,C在直线b上,则∠1的度数为60°。
2.在△ABC中,∠A=60°,现有下面三个条件:①AB=AC;②∠B=∠C;③∠A=∠B。
能判定△ABC为等边三角形的有条件①、②、③。
3.如图,在等边△ABC中,BD⊥AC于D,若AB=4,则AD=2.4.如图,△ABC是等边三角形,∠CBD=90°,BD=BC,连接AD交BC于点E,求∠BAD的度数为75°。
等腰三角形的性质练习(含答案)

等腰三角形的性质练习(含答案)等腰三角形的性质1.选择题:1) 等腰三角形的底角与相邻外角的关系是()A。
底角大于相邻外角 B。
底角小于相邻外角C。
底角大于或等于相邻外角 D。
底角小于或等于相邻外角2) 等腰三角形的一个内角等于100°,则另两个内角的度数分别为()A。
40°,40° B。
100°,20°C。
50°,50° D。
40°,40°或100°,20°3) 等腰三角形中的一个外角等于100°,则这个三角形的三个内角分别为()A。
50°,50°,80° B。
80°,80°,20°C。
100°,100°,20° D。
50°,50°,80°或80°,80°,20°4) 如果一个等腰三角形的一个底角比顶角大15°,那么顶角为()A。
45° B。
40° C。
55° D。
50°5) 等腰三角形一腰上的高与底边所成的角等于()A。
顶角 B。
顶角的一半C。
顶角的2倍 D。
底角的一半6) 已知:如图1所示,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A的度数为()A。
30° B。
45° C。
36° D。
72°2.填空题:1) 如图2所示,在△ABC中,①因为AB=AC,所以∠A=∠C;②因为AB=AC,∠1=∠2,所以BD=BC,BD⊥AC.2) 若等腰三角形的顶角与一个底角之和为110°,则顶角的度数为70°.3) 已知等腰三角形的一个角是80°,则顶角为20°.4) 在等腰三角形ABC中,一腰上的高是1cm,这条高与底边的夹角是45°,则△ABC的面积为1/2 cm².5) 如图3所示,O为△ABC内一点,且OA=OB=OC,∠ABO=20°,∠BCO=30°,则∠CAO=30°.3.等腰三角形两个内角的度数比为4:1,求其各个角的度数.设两个内角的度数为4x和x,则三角形的第三个角的度数为180°-5x.因为三角形内角和为180°,所以4x+4x+180°-5x=180°,解得x=36°,因此两个内角的度数分别为144°和36°,第三个角的度数为100°.4.如图,已知线段a和c,用圆规和直尺作等腰三角形ABC,使等腰三角形△ABC以a和c为两边,这样的三角形能作无数个.5.如图,在△ABC中,D是BC边上一点,AD=BD,AB=AC=CD,求∠BAC的度数.连接AD和AC,因为AD=BD,AB=AC,所以△ABD≌△ACD,故∠ABD=∠ACD.又因为AB=CD,所以△ABC为等腰三角形,所以∠BAC=180°-∠ABC=180°-2∠ABD=80°.6.如图所示,AB=AE,∠ABC=∠AED,BC=ED,点F是CD的中点.1) AF与CD不垂直.因为∠ABC=∠AED,所以△ABC≌△AED,故AB=AE,又因为BC=ED,所以AC=AD,所以AF垂直于BC的中点,而CD的中点是F,所以AF与CD不垂直.二、拓展延伸训练右下图是人字型层架的设计图,由AB、AC、BC、AD四根钢条焊接而成,其中A、B、C、D均为焊接点,且AB=AC,D为BC的中点,现在焊接所需的四根钢条已截好,且已标出BC的中点D。
初二数学等腰三角形的性质试题答案及解析

初二数学等腰三角形的性质试题答案及解析1.如图,△ABC中,∠B,∠C的平分线相交于O点,作MN∥BC,EF∥AB,GH∥AC,BC=a,AC=b,AB=c,则△GMO的周长+△ENO的周长-△FHO的周长= .【答案】b+c-a【解析】由角平分线及平行线可得等腰三角形,进而得边长相等,再通过转化,即可得出结论.∵OB、OC分别平分∠ABC、∠ACB,MN∥BC,EF∥AB,GH∥AC,∴OM=BM,ON=NC,OG=AE,OE=AG,∴△GMO周长+△ENO的周长-△FHO的周长=OG+OM+GM+OE+ON+EN-OH-OF-FH=AE+EN+NC+BM+GM+AG-HC-FH-BF=b+c-a,故应填b+c-a.【考点】本题主要考查角平分线的性质,平行线的性质点评:解答本题的关键是掌握由角平分线及平行线可得等腰三角形,再通过转化求解。
2.△ABC中,AB=AC,∠A=∠C,则∠B=_______.【答案】60°【解析】由AB=AC根据等边对等角可得∠B=∠C,即可得到∠A=∠B=∠C,再根据三角形的内角和180°即可求得结果。
∵AB=AC,∴∠B=∠C,∵∠A=∠C,∴∠A=∠B=∠C,∵∠A+∠B+∠C=180°,∴∠A=∠B=∠C=60°,故答案为60°.【考点】本题考查的是等腰三角形的性质,三角形的内角和定理点评:解答本题的关键是根据等边对等角得到∠A=∠B=∠C.3.如图,Rt△ACB中,∠ACB=90°,点D、E在AB上,AC=AD,BE=BC,则∠DCE等于()A、45°B、60°C、50°D、65°【答案】A【解析】根据等腰三角形的性质可得到几组相等的角,再根据三角形内角和定理可分别表示出∠ACD,∠BCE,再根据角之间的关系,不难求得∠DCE的度数.∵AC=AD,BC=BE∴∠ACD=∠ADC,∠BCE=∠BEC∴∠ACD=(180°-∠A),∠BCE=(180°-∠B)∴∠DCE=∠ACD+∠BCE-∠ACB=90°-(∠A+∠B)∵∠A+∠B=90°∴∠DCE=45°故选A.【考点】此题主要考查等腰三角形的性质及三角形内角和定理的综合运用点评:解答本题的关键是熟练掌握等腰三角形的性质及三角形内角和定理的综合运用。
等腰三角形的性质及判定含答案

等腰三角形的性质及判定一.选择题(共30小题)1.如图,已知AB=AC=BD,那么()A.∠1=∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1﹣∠2=180°2.如图,△ABC中,CA=CB,∠A=20°,则三角形的外角∠BCD的度数是()A.20°B.40°C.50°D.140°3.若C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有()个.A.2个B.3个C.4个D.5个4.如果某等腰三角形的两条边长分别为4和8,那么它的周长为()A.16B.20C.20或16D.不确定5.△ABC中,AB=AC,顶角是120°,则一个底角等于()A.120°B.90°C.60°D.30°6.已知等腰三角形ABC的两边满足+|6﹣BC|=0,则此三角形的周长为()A.12B.15C.12或15D.不能确定7.如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上(不含端点B,C)的动点.若线段AD长为正整数,则点D的个数共有()A.5个B.3个C.2个D.1个8.已知等腰三角形的两边长分别为6和1,则这个等腰三角形的周长为()A.13B.8C.10D.8或139.若等腰三角形的周长为26cm,底边为11cm,则腰长为()A.11cm B.11cm或7.5cmC.7.5cm D.以上都不对10.若实数m、n满足|m﹣3|+(n﹣6)2=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12B.15C.12或15D.911.已知△ABC中,∠ACB=90°,AC=8,BC=6.在射线BC上取一点D,使得△ABD 为等腰三角形,这样的等腰三角形有几个?()A.2个B.3个C.4个D.5个12.若等腰三角形的一边长等于6,另一边长等于4,则它的周长等于()A.15或17B.16C.14D.14或1613.若等腰三角形的顶角为70°,则它的一个底角度数为()A.70°或55°B.55°C.70°D.65°14.如图,在3×3的正方形网格中,点A、B在格点上,要找一个格点C,使△ABC是等腰三角形(AB是其中一腰),则图中符合条件的格点有()A.2个B.3个C.4个D.5个15.等腰三角形的一个角是30°,则这个等腰三角形的底角为()A.75°B.30°C.75°或30°D.不能确定16.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于E,CD平分∠ACB 交BE于D,图中等腰三角形的个数是()A.3个B.4个C.5个D.6个17.如图,直线l1,l2相交于点A,点B是直线外一点,在直线l1,l2上找一点C,使△ABC 为一个等腰三角形,满足条件的点C有()A.2个B.4个C.6个D.8个18.如图,已知OA=OB=OC,BC∥AO,若∠A=36°,则∠B等于()A.54°B.60°C.72°D.76°19.如图,△ABC中,∠B=∠C,BD=CD,则下列判断不一定正确的是()A.AB=AC B.AD⊥BCC.∠BAD=∠CAD D.△ABC是等边三角形20.等腰三角形的边长为2和3,那么它的周长为()A.8B.7C.8或7D.以上都不对21.等腰三角形的顶角是40°,则它的底角是()A.55°B.70°C.40°或70°D.55°或70°22.如图所示,在三角形ABC中,AB=AC,∠BAC=108°,在BC上分别取点D,E使∠BAD=∠B,∠CAE=∠C,则图中的等腰三角形有()A.3个B.4个C.5个D.6个23.三角形三个内角的比是∠A:∠B:∠C=1:1:2,则△ABC是()A.等腰三角形B.等腰直角三角形C.等边三角形D.不能确定24.小方画了一个有两边长为3和5的等腰三角形,则这个等腰三角形的周长为()A.11B.13C.8D.11或1325.如图钢架中,∠A=a,焊上等长的钢条P1P2,P2P3,P3P4,P4P5…来加固钢架.若P1A =P1P2,且恰好用了4根钢条,则α的取值范围是()A.15°≤a<18°B.15°<a≤18°C.18°≤a<22.5°D.18°<a≤22.5°26.已知等腰△ABC中,∠A=120°,则底角的大小为()A.60°B.30°或120°C.120°D.30°27.如图,在△ABC中,AB=AC=13,该三角形的面积为65,点D是边BC上任意一点,则点D分别到边AB,AC的距离之和等于()A.5B.6.5C.9D.1028.如图,直线L1∥L2,点A、B在L1上,点C在L2上,若AB=AC、∠ABC=70°,则∠1的大小为()A.20°B.40°C.35°D.70°29.若等腰△ABC中有一个内角为40°,则这个等腰三角形的一个底角的度数为()A.40°B.100°C.40°或100°D.40°或70°30.等腰三角形的周长为18,其中一条边的长为8,则另两条边的长是()A.5、5B.2、8C.5、5或2、8D.以上结果都不对二.填空题(共15小题)31.等腰三角形的一个内角为30°,那么其它两个角的度数为______.32.已知AD是△ABC的高,若AB=AC,BC=4,则CD=______,33.如图,在平面直角坐标系中,点A,B分别在y轴和x轴上,∠ABO=60°,在y轴上找一点P,使△P AB是等腰三角形,则符合条件的P点共有______个.34.如图,直线a、b相交于点O,∠1=50°,点A在直线a上,直线b上存在点B,使以点O、A、B为顶点的三角形是等腰三角形,这样的B点有______.35.若等腰三角形的两边的长分别为3和10,则它的周长为______.36.如果等腰三角形的两边长分别是6、8,那么它的周长是______.37.如图,Rt△ABC中,AC⊥BC,AE=AO,BF=BO,则∠EOF的度数是______.38.等腰△ABC的边长分别为6和8,则△ABC的周长为______.39.已知等腰三角形中顶角的度数是底角的3倍,那么底角的度数是______.40.已知等腰三角形的周长为20,底长为x,则x的取值范围是______.41.用一条长为20cm的细绳围成一个等腰三角形,已知一边长是另一边长的2倍,则腰长为______cm.42.如图,△ABC中,AB=AC,D、E是BC边上两点,AD=AE,BE=6,DE=4,则EC =______.43.如图,△ABC中,AB=AC,∠C═30°,DA⊥BA于点A,BC=16cm,则AD=______.44.如图,AB=AC=CD,∠BAC=56°,则∠B=______,∠D=______.45.如图,已知每个小方格的边长为1,A,B两点都在小方格的顶点上,请在图中找一个顶点C,使△ABC为等腰三角形,则这样的顶点C有______个.三.解答题(共5小题)46.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.47.在△ABC中,AD平分∠BAC,E是BC上一点,BE=CD,EF∥AD交AB于F点,交CA的延长线于P,CH∥AB交AD的延长线于点H,①求证:△APF是等腰三角形;②猜想AB与PC的大小有什么关系?证明你的猜想.48.如图,在△ABC中,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA.(1)若∠BAC=90°(图1),求∠DAE的度数;(2)若∠BAC=120°(图2),求∠DAE的度数;(3)当∠BAC>90°时,探求∠DAE与∠BAC之间的数量关系,直接写出结果.49.已知等腰三角形的周长为24cm,其中两边之差为6cm,求这个等腰三角形的腰长.50.如图,在△ABC中,AB=AC,CE平分∠ACB,EC=EA.(1)求∠A的度数;(2)若BD⊥AC,垂足为D,BD交EC于点F,求∠1的度数.等腰三角形的性质及判定参考答案与试题解析一.选择题(共30小题)1.解:∵AB=AC=BD,∴∠B=∠C,∠BAD=∠1,∵∠1=∠C+∠2,∴∠BAD=∠1=∠C+∠2,∵∠B+∠1+∠BAD=180°,∴∠C+2∠1=180°,∵∠C=∠1﹣∠2,∴∠1﹣∠2+2∠1=180°,即3∠1﹣∠2=180°.故选:D.2.解:∵CA=CB,∠A=20°,∴∠B=∠A=20°,∴∠BCD=∠A+∠B=40°,故选:B.3.解:如图:分情况讨论.①AB为等腰△ABC底边时,符合条件的C点有2个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有2个.故选:C.4.解:若4为腰,8为底边,此时4+4=8,不能构成三角形,故4不能为腰;若4为底边,8为腰,此时三角形的三边分别为4,8,8,周长为4+8+8=20,综上三角形的周长为20.故选:B.5.解:∵△ABC中,AB=AC,顶角是120°,∴∠B=∠C,∠A=120°∵∠A+∠B+∠C=180°,∴∠B=∠C==30°,故选:D.6.解:∵+|6﹣BC|=0,∴AB﹣3=0,6﹣BC=0,解得AB=3,BC=6,(1)若AB是腰长,BC为底,则三角形的三边长为:3、3、6,不能能组成三角形,(2)若AB是底边长,BC为腰,则三角形的三边长为:3、6、6,能组成角形,周长为3+6+6=15.故此三角形的周长为15.故选:B.7.解:过A作AE⊥BC,∵AB=AC,∴EC=BE=BC=4,∴AE==3,∵D是线段BC上的动点(不含端点B、C).∴3≤AD<5,∴AD=3或4,∵线段AD长为正整数,∴AD的可以有三条,长为4,3,4,∴点D的个数共有3个,故选:B.8.解:当等腰三角形的腰为1时,三边为1,1,6,1+1=2<6,三边关系不成立,当等腰三角形的腰为6时,三边为1,6,6,三边关系成立,周长为1+6+6=13.故选:A.9.解:∵11cm是底边,∴腰长=(26﹣11)=7.5cm,故选:C.10.解:|m﹣3|+(n﹣6)2=0,∴m﹣3=0,n﹣6=0,解得m=3,n=6,当m=3作腰时,三边为3,3,6,不符合三边关系定理;当n=6作腰时,三边为3,6,6,符合三边关系定理,周长为:3+6+6=15.故选:B.11.解:在Rt△ABC中,AB==10,①如图1,当AB=AD=10时,CD=CB=6时,CD=CB=6,得△ABD的等腰三角形.②如图2,当AB=BD=10时,△ABD是等腰三角形;③如图3,当AB为底时,AD=BD时,△ABD是等腰三角形.故选:B.12.解:当4为底边时,腰长为6,则这个等腰三角形的周长=4+6+6=16;当6为底边时,腰长为4,则这个等腰三角形的周长=4+4+6=14;故选:D.13.解:∵等腰三角形的顶角为70°,∴它的一个底角度数为(180°﹣70°)=55°,故选:B.14.解:如图所示:由勾股定理得:AB==,①若AB=BC,则符合要求的有:C1,C2,C3共4个点;②若AB=AC,则符合要求的有:C4,C5共2个点;若AC=BC,则不存在这样格点.∴这样的C点有5个.故选:D.15.解:①当这个角为顶角时,底角=(180°﹣30°)÷2=75°;②当这个角是底角时,底角=30°;故选:C.16.解:∵AB=AC,∠A=36°,∴△ABC是等腰三角形.∴∠C=∠ABC=72°.∵BD平分∠ABC交AC于E,∴∠ABE=∠EBC=36°,∵∠A=∠ABE=36°,∴△ABE是等腰三角形.∵∠BEC=∠A+∠ABE=72°=∠C,∴△BEC是等腰三角形.∵∠DBC=∠DCB=36°,∴△BCD是等腰三角形,∵∠EDC=∠DBC+∠DCB=72°=∠DEC,∴△CDE是等腰三角形,∴共有5个等腰三角形.故选:C.17.解:以A为圆心,AB长为半径画弧,交l1、l2于4个点;以B为圆心,AB长为半径画弧交l1、l2于2个点,再作AB的垂直平分线交l1、l2于2个点,共有8个点,故选:D.18.解:∵OA=OC,∴∠ACO=∠A=36°,∵BC∥AO,∴∠BCA=∠A=36°,∴∠BCO=72°,∵OB=OC,∴∠B=72°.故选:C.19.解:∵∠B=∠C,∴AB=AC,∴选项A不符合题意;∵∠B=∠C,∴AB=AC,BD=CD,∴AD⊥BC,∠BAD=∠CAD,∴选项B、选项C不符合题意;当△ABC中有一个角为60°时,△ABC是等边三角形,∴选项D符合题意;故选:D.20.解:分两种情况讨论:当这个三角形的底边是2时,三角形的三边分别是2、3、3,能够组成三角形,则三角形的周长是8;当这个三角形的底边是3时,三角形的三边分别是2、2、3,能够组成三角形,则三角形的周长是7.故等腰三角形的周长为8或7.故选:C.21.解:因为等腰三角形的两个底角相等,又因为顶角是40°,所以其底角为=70°.故选:B.22.解:∵AB=AC,∠BAC=108°,∴∠B=∠C=36°,△ABC是等腰三角形,∵∠BAD=∠B=36°,∴△ABD是等腰三角形,∵∠CAE=∠C=36°,∴△AEC是等腰三角形,∴∠ADC=∠DAC=72°,∴△ADC是等腰三角形,同理,△ABE是等腰三角形,∴∠ADE=∠AED=72°,∴△ADE是等腰三角形,故选:D.23.解:∵∠A+∠B+∠C=180°,∠A:∠B:∠C=1:1:2,∴∠A=∠B=45°,∠C=90°.则该三角形的等腰直角三角形.故选:B.24.解:由题意知,应分两种情况:(1)当腰长为3时,能构成三角形,周长=2×3+5=11;(2)当腰长为5时,能构成三角形,周长=2×5+3=13.故选:D.25.解:∵AP1=P1P2,P1P2=P2P3,P3P4=P2P3,P3P4=P4P5,∴∠A=∠P1P2A,∠P2P1P3=∠P2P3P1,∠P3P2P4=∠P3P4P2,∠P4P3P5=∠P4P5P3,∴∠P3P5P4=4∠A=4α°,∵要使得这样的钢条只能焊上4根,∴∠P5P4B=5α°,由题意,∴18°≤α<22.5°.故选:C.26.解:∵在等腰△ABC中,∵∠A=120°,∴∠A为等腰三角形的顶角,∴∠B=∠C,∵∠A=120°,∴∠B=∠C=30°;故选:D.27.解:连接AD,∵在△ABC中,AB=AC=13,该三角形的面积为65,∴三角形ABC的面积=△ABD的面积+△ACD的面积=AB•DN+AC•DM=AB•(DN+DM)=×13×(DN+DM)=65,解得:DN+DM=10.故选:D.28.解:∵AB=AC,∴∠ACB=∠ABC=70°,∵直线l1∥l2,∴∠1+∠ACB+∠ABC=180°,∴∠1=180°﹣∠ABC﹣∠ACB=180°﹣70°﹣70°=40°.故选:B.29.解:当40°的角为等腰三角形的顶角时,底角的度数==70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故选:D.30.解:当腰长为8时,底长为:18﹣8×2=2;2+8>8,能构成三角形;当底长为8时,腰长为:(18﹣8)÷2=5;5+5>8,能构成三角形.故另两条边的长是5、5或2、8.故选:C.二.填空题(共15小题)31.解:①30°是顶角,则底角=(180°﹣30°)=75°;②30°是底角,则顶角=180°﹣30°×2=120°.∴另两个角的度数分别是75°、75°或30°、120°.故答案为75°、75°或30°、120°.32.解:∵AD是△ABC的高,AB=AC,∴CD=BD=BC=4=2,故答案为:2.33.解:①当AB=AP时,在y轴上有2点满足条件的点P.②当AB=BP时,在y轴上有1点满足条件的点P.③当AP=BP时,在y轴上有一点满足条件的点P.综上所述:符合条件的点P共有4个.故答案为:434.解:要使△OAB为等腰三角形分三种情况讨论:①当OB=AB时,作线段OA的垂直平分线,与直线b的交点为B,此时有1个;②当OA=AB时,以点A为圆心,OA为半径作圆,与直线b的交点,此时有1个;③当OA=OB时,以点O为圆心,OA为半径作圆,与直线b的交点,此时有2个,1+1+2=4,故答案为:435.解:(1)若3为腰长,10为底边长,由于3+3<10,则三角形不存在;(2)若10为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为10+10+3=23.故答案为:23.36.解:当6是腰长时,周长=6+6+8=20;当8是腰长时,周长=6+8+8=22.故周长是20或22.故答案为:20或22.37.解:∵Rt△ABC中,AC⊥BC,∴∠A+∠B=90°,∵AE=AO,BF=BO,∴∠AOE=∠AEO=,∠BOF=∠BFO=,∴∠EOF=180°﹣∠AOE﹣∠BOF=180°﹣(+)=(∠A+∠B)=45°,故答案为45°.38.解:当6为底时,三角形的三边为6,8、8可以构成三角形,周长为6+8+8=22;当8为底时,三角形的三边为8,6、6可以构成三角形,周长为8+6+6=20.则△ABC的周长为22或20.故答案为:22或20.39.解:设底角为x°,则顶角为3x°,根据题意得:x+x+3x=180解得:x=36;故答案为:36°.40.解:根据三角形的三边关系,x<(20﹣x),解得x<10,∴x的取值范围是0<x<10.故答案为:0<x<10.41.解:设较短的边长为xcm,则较长的边长为2xcm,①若较短的边为底边,较长的边为腰,则x+2x+2x=20,解得x=4,此时三角形三边长分别为4cm,8cm,8cm,能组成三角形;②若较短的边为腰,较长的边为底边,则x+x+2x=20,解得x=5,此时三角形三边长分别为5cm,5cm,10cm,∵5+5=10,∴不满足三角形任意两边之和大于第三边,故不能围成三角形;综上所述,等腰三角形的腰长8cm,故答案为8.42.证明:∵BE=6,DE=4,∴BD=BE﹣DE=2,过A作AP⊥BC于P,∵AB=AC,AP⊥BC,∴BP=CP,同理有DP=EP,∴CE=BD=2,故答案为:2.43.解:∵AB=AC,∴∠B=∠C=30°,∴∠BAC=180°﹣2×30°=120°,∵DA⊥BA,∴∠BAD=90°,∴∠CAD=120°﹣90°=30°,∴∠CAD=∠C,∴AD=CD,在Rt△ABD中,∵∠B=30°,∠BAD=90°,∴BD=2AD,∴BC=BD+CD=2AD+AD=3AD,∵BC=16cm,∴AD=cm,故答案为:cm.44.解:∵AB=AC,∠BAC=56°∴∠B=∠ACB==62°,∵AC=CD,∴∠CAD=∠D,∵∠ACB=∠CAD+∠D,∴∠D=∠ACB=31°,故答案为:62°,31°.45.解:当AB为底时,作AB的垂直平分线,可找出格点C的个数有5个,当AB为腰时,分别以A、B点为顶点,以AB为半径作弧,可找出格点C的个数有3个;∴这样的顶点C有8个.故答案为:8.三.解答题(共5小题)46.解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.则∠C=∠ABC=2∠A=72°.又BD是AC边上的高,则∠DBC=90°﹣∠C=18°.47.①证明:∵EF∥AD,∴∠1=∠4,∠2=∠P,∵AD平分∠BAC,∴∠1=∠2,∴∠4=∠P,∴AF=AP,即△APF是等腰三角形;②AB=PC.理由如下:证明:∵CH∥AB,∴∠5=∠B,∠H=∠1,∵EF∥AD,∴∠1=∠3,∴∠H=∠3,在△BEF和△CDH中,∵,∴△BEF≌△CDH(AAS),∴BF=CH,∵AD平分∠BAC,∴∠1=∠2,∴∠2=∠H,∴AC=CH,∴AC=BF,∵AB=AF+BF,PC=AP+AC,∴AB=PC.48.解:(1)如图1,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵BD=BA,∴∠BAD=∠BDA=(180°﹣∠B)=67.5°,∵CE=CA∴∠CAE=∠E=∠ACB=22.5°,∴∠BAE=180°﹣∠B﹣∠E=112.5°,∴∠DAE=∠BAE﹣∠BAD=45°,(2)如图2,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=30°,∵BA=BD,∴∠BAD=∠BDA=75°,∴∠DAC=45°,∵CA=CE,∴∠E=∠CAE=15°,∴∠DAE=∠DAC+∠CAE=60°;(3)∠DAE=∠BAC,理由:设∠CAE=x,∠BAD=y,则∠B=180°﹣2y,∠E=∠CAE=x,∴∠BAE=180°﹣∠B﹣∠E=2y﹣x,∴∠DAE=∠BAE﹣∠BAD=2y﹣x﹣y=y﹣x,∠BAC=∠BAE﹣∠CAE=2y﹣x﹣x=2y﹣2x ∴∠DAE=∠BAC.49.解:设三角形的腰为x,底为y,根据题意得或,解得或,又知6+6<12,不能构成三角形,即等腰三角形的腰长为:10cm.50.解:(1)∵EA=EC,∴设∠A=∠2=x,∵EC平分∠ACB,∴∠ACB=2x,∵AB=AC,∴∠ABC=∠ACB=2x,在△ABC中,∴x+2x+2x=180°,∴x=36°,∴∠A=36°;(2)∵∠A=∠2,∴∠2=36°,∵BD⊥AC,∴∠DFC=90°﹣36°=54°,∴∠1=∠DFC=54°.第1页(共1页)。
八年级上2.3《等腰三角形的性质定理》同步练习题含答案

浙教版八年级数学上册第二章特殊三角形2.3《等腰三角形的性质定理》同步练习题一、选择题1.一个等腰三角形的顶角是底角的4倍,则其顶角的度数为()A.20° B.30° C.80° D.120°2.等腰三角形的一个外角为140°,则顶角的度数为()A.40° B.40°或70° C.70° D.40°或100°3.如图,在△ABC中,已知∠B和∠C的平分线交于点F,过点F作DE∥BC,交AB于点D,交AC于点E.若BD+CE=9,则线段DE的长为()A. 9B. 8C. 7D. 6(第3题)(第4题)4.如图,△ABC内有一点D,且DA=DB=DC.若∠DAB=20°,∠DAC=30°,则∠BDC的大小是()A.100° B.80° C.70° D.50°5.等腰三角形的“三线合一”指的是()A.中线、高线、角平分线互相重合 B.腰上的中线、腰上的高线、底角的平分线互相重合C.顶角的平分线、中线、高线互相重合D.顶角的平分线,底边上的高线、底边上的中线互相重合(第6题)6.如图是人字形屋架的设计图,由AB,AC,BC,AD四根钢条焊接而成,其中A,B,C,D均为焊接点,且AB=AC,D为BC的中点.现在焊接所需的四根钢条已截好,且已标出BC的中点D.如果焊接工身边只有可检验直角的角尺,那么为了准确快速地焊接,他首先应取的两根钢条及焊接的点是()A.AC和BC,焊接点C B.AB和AC,焊接点AC.AD和BC,焊接点D D.AB和AD,焊接点A二、填空题7.(1)在△ABC中,AB=AC,AD⊥BC于点D,若∠BAC=80°,则∠DAC=40°;若BC=6 cm,则CD=____cm;(2)在△ABC中,AB=AC,AD平分∠BAC,若BD=2.5 cm,则BC=5c m,∠ADB=;(3)在△ABC中,AB=AC,AD是BC边上的中线,若∠BAD=50°,则∠BAC=__,∠ADC=____.8. 如图,在△ABC中,AB=AC,BC=6,AD⊥BC于点D,则BD=____.9.如图,在△ABC中,AB=AC,E为BC的中点,延长BA至点D.若∠CAE=36°,则∠B=_-_,∠CAD=______.10. 在等腰三角形A BC中,AB=AC,AD是角平分线,有下列结论:①AD⊥BC,②BD=DC,③∠B=∠C,④∠BA D=∠CAD.其中正确的是________ (填序号).三、解答题11.如图,在△ABC中,AB=AC,直线AE交BC于点D,O是AE上一动点(不与A重合),且OB=OC,试猜想AE与BC的关系,并说明理由.12.如图,在△ABC中,PM,QN分别是AB,AC的垂直平分线,∠BAC=110°,求∠P AQ的度数.(第13题)13.如图,已知等腰△ABC的周长为16 cm,AD是顶角∠BAC的平分线,AB∶AD=5∶4,且△ABD的周长为12 cm.求△ABC各边的长.(第14题)14.如图,已知D是等腰三角形ABC的底边BC上一点,它到两腰AB,AC的距离分别为DE,DF,请指出当D在什么位置时,DE=DF,并加以证明.(第15题)15.如图,已知△ABC和△ADE都是等腰三角形,AB=AC,AD=AE且∠DAB=∠EAC,则DE∥BC吗?为什么?(第16题)16.如图,在△ABC 中,∠BCA =90°,∠BAC =30°,分别以AB ,AC 为边做等边△ABE 和△ACD ,连结ED 交AB 于点F .求证:(1)BC =12AB ; (2)EF =FD .参考答案:1.D2.D3.A4.A5.D6.C7.3; 90°;100°, 90° 8. 39. ∠B =54°,∠CAD =108°.10. ①②③④11.【解】 猜想:AE 垂直平分BC ,即AE ⊥BC ,BD =CD.理由如下:∵AB =AC ,OB =OC ,AO =AO ,∴△ABO ≌△ACO(SSS),∴∠BAO =∠CAO.∴AE⊥BC,BD=CD(等腰三角形三线合一).12.【解】∵PM垂直平分AB,∴P A=PB,∴∠P AB=∠B.同理,∠QAC=∠C.∵∠B+∠C+∠BAC=180°,∴∠B+∠C=180°-110°=70°,∴∠P AB+∠QAC=70°.∵∠P AQ=110°-(∠P AB+∠QAC),∴∠P AQ=110°-70°=40°.13.【解】设AB=5x,则AD=4x,AC=5x,BC=16-10x.∵AB=AC,AD平分∠BAC,∴BD=DC=12BC=8-5x,∴5x+4x+(8-5x)=12,解得x=1.∴AB=5x=5,AC=5x=5,BC=16-10x=6.14.【解】当D在BC的中点时,DE=DF.证明:当BD=CD时,∵∠B=∠C,∠DEB=∠DFC=90°,∴△DBE≌△DCF(AAS),∴DE=DF.15.【解】DE∥BC.理由如下:∵AB=AC,AD=AE,∴∠B =∠C ,∠D =∠E.∵∠DAB =∠EAC ,∴∠B +∠DAB =∠C +∠EAC , ∴∠AFG =∠AGF ,∴∠AFG =12(180°-∠EAD ). 又∵∠D =12(180°-∠EAD ), ∴∠AFG =∠D ,16.【解】 (1)过点E 作EG ⊥AB 于点G . ∵△ABE 为等边三角形,∴BG =12AB ,∠BEG =12∠AEB =30°,BA =BE . ∵∠BCA =90°,∠BAC =30°,∴∠BGE =∠BCA =90°,∠BAC =∠BEG . 在△ACB 和△EGB 中,∵⎩⎪⎨⎪⎧∠BGE =∠BCA ,∠BEG =∠BAC ,BE =BA ,∴△ACB ≌△EGB (AAS ),∴BC =BG .∴BC =12AB . (2)∵△ACB ≌△EGB ,∴AC =EG .∵△ACD 为等边三角形,∴∠CAD =60°,AC =AD ,∴EG =DA .∵∠BAC =30°,∴∠DAF =∠CAD +∠BAC =90°. ∴∠EGF =∠DAF .在△EGF 和△DAF 中, ∵⎩⎪⎨⎪⎧∠EFG =∠DF A ,∠EGF =∠DAF ,EG =DA ,∴△EGF ≌△DAF (AAS ), ∴EF =FD .。
2021-2022学年人教版八年级数学上册等腰三角形的性质练习含答案

等腰三角形的性质一、选择题1.如图,已知线段AB,分别以A,B为圆心,大于AB同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A.AB平分∠CAD B.CD平分∠ACB C.AB⊥CD D.AB=CD2.如图,在△ABC中,AB=AC,∠A=40°,CD∥AB,则∠BCD=()A.40°B.50°C.60°D.70°3.如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A.50°B.40°C.30°D.20°4.等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°5.如图,在△ABC中,AB=AC,BD平分∠ABC,BD=BE,∠A=100°,则∠DEC=()A.90°B.100°C.105°D.110°6.如图,AD是等腰三角形ABC的顶角平分线,BD=5,则CD等于()A.10B.5C.4D.37.如图,将一张长方形纸按图中虚线AD对折,再沿直线l剪开,再把它展开后得到△ABC,则下列结论错误的是()A.AD⊥BC B.BD=CD C.∠B=∠C D.AB=CB8.如图,AB=AC,AB的垂直平分线MN交AC于点D,若∠C=65°,则∠DBC的度数是()A.25°B.20°C.30°D.15°9.如图,在△ABC中,AB=AC,点D在CA的延长线上,DE⊥BC于点E,∠BAC=100°,则∠D=()A.40°B.50°C.60°D.80°10.等腰三角形一腰上的高与另一腰的夹角为30°,它的顶角为()A.30°B.60°C.120°D.60°或120°二、非选择题11.已知:如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=度.12.如图,在△ABC中,AB=AC,D是BC边上的中点,连接AD,BE平分∠ABC交AC 于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.13.问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA =EC.若∠BAE=90°,∠B=45°,求∠DAC的度数.答案:∠DAC=45°.思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由.(2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.14.如图,在△ABC中,AB=AC,D是BC边上任意一点,过点D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当点D在BC的什么位置时,DE=DF?请加以证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?请加以证明.(3)若点D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?请说明理由.15.如图,∠ACB=90°,D、E在AB上,AD=AC,BE=BC,求∠DCE的度数.参考答案与试题解析一、选择题1.如图,已知线段AB,分别以A,B为圆心,大于AB同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A.AB平分∠CAD B.CD平分∠ACB C.AB⊥CD D.AB=CD【分析】根据作图判断出四边形ACBD是菱形,再根据菱形的性质:菱形的对角线平分一组对角、菱形的对角线互相垂直平分可得出答案.【解答】解:由作图知AC=AD=BC=BD,∴四边形ACBD是菱形,∴AB平分∠CAD、CD平分∠ACB、AB⊥CD,不能判断AB=CD,故选:D.2.如图,在△ABC中,AB=AC,∠A=40°,CD∥AB,则∠BCD=()A.40°B.50°C.60°D.70°【分析】根据等腰三角形的性质可求∠ACB,再根据平行线的性质可求∠BCD.【解答】解:∵在△ABC中,AB=AC,∠A=40°,∴∠ACB=70°,∵CD∥AB,∴∠ACD=180°﹣∠A=140°,∴∠BCD=∠ACD﹣∠ACB=70°.故选:D.3.如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A.50°B.40°C.30°D.20°【分析】根据三角形的内角和和等腰三角形的性质即可得到结论.【解答】解:∵在Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=40°,∵BC=BD,∴∠BCD=∠BDC=(180°﹣40°)=70°,∴∠ACD=90°﹣70°=20°,故选:D.4.等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°【分析】分80°角是顶角与底角两种情况讨论求解.【解答】解:①80°角是顶角时,三角形的顶角为80°,②80°角是底角时,顶角为180°﹣80°×2=20°,综上所述,该等腰三角形顶角的度数为80°或20°.故选:B.5.如图,在△ABC中,AB=AC,BD平分∠ABC,BD=BE,∠A=100°,则∠DEC=()A.90°B.100°C.105°D.110°【分析】由在△ABC中,AB=AC,∠A=100°,根据等边对等角的性质,可求得∠ABC 的度数,又由BD平分∠ABC,即可求得∠DBE的度数,又由等边对等角的性质,可求得∠BED的度数,根据平角的定义就可求出∠DEC的度数.【解答】解:∵在△ABC中,AB=AC,∠A=100°,∴∠ABC=∠C=40°,∵BD平分∠ABC,∴∠DBE=∠ABC=20°,∴∠BDE=∠BED=80°,∴∠DEC=100°.故选:B.6.如图,AD是等腰三角形ABC的顶角平分线,BD=5,则CD等于()A.10B.5C.4D.3【分析】根据等腰三角形三线合一的性质即可求解.【解答】解:∵AD是等腰三角形ABC的顶角平分线,BD=5,∴CD=5.故选:B.7.如图,将一张长方形纸按图中虚线AD对折,再沿直线l剪开,再把它展开后得到△ABC,则下列结论错误的是()A.AD⊥BC B.BD=CD C.∠B=∠C D.AB=CB【分析】由图中操作可知:AD所在直线是△ABC的对称轴,即可得出结论.【解答】解:由图中操作可知:AD所在直线是△ABC的对称轴,∴AD⊥BC,BD=CD,∠B=∠C,AB=AC,∴A,B,C正确,D错误,故选:D.8.如图,AB=AC,AB的垂直平分线MN交AC于点D,若∠C=65°,则∠DBC的度数是()A.25°B.20°C.30°D.15°【分析】根据等腰三角形的性质得到∠ABC,再根据垂直平分线的性质求出∠ABD,从而可得结果.【解答】解:∵AB=AC,∠C=∠ABC=65°,∴∠A=180°﹣65°×2=50°,∵MN垂直平分AB,∴AD=BD,∴∠A=∠ABD=50°,∴∠DBC=∠ABC﹣∠ABD=15°,故选:D.9.如图,在△ABC中,AB=AC,点D在CA的延长线上,DE⊥BC于点E,∠BAC=100°,则∠D=()A.40°B.50°C.60°D.80°【分析】根据等腰三角形的性质和三角形内角和定理,求得∠C=40°,然后根据直角三角形两锐角互余,即可求得∠D=50°.【解答】解:∵AB=AC,∠BAC=100°,∴∠C=∠B=40°,∵DE⊥BC于点E,∴∠D=90°﹣∠C=50°,故选:B.10.等腰三角形一腰上的高与另一腰的夹角为30°,它的顶角为()A.30°B.60°C.120°D.60°或120°【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成立,因而可分两种情况进行讨论.【解答】解:分两种情况:①当高在三角形内部时(如图1),∵∠ABD=30°,∴顶角∠A=90°﹣30°=60°;②当高在三角形外部时(如图2),∵∠ABD=30°,∴顶角∠CAB=90°+30°=120°.故选:D.二、非选择题11.已知:如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=40度.【分析】根据等腰三角形的性质和三角形的内角和定理即可得到结论.【解答】解:∵AD=DC,∴∠DAC=∠C=35°,∴∠ADB=∠DAC+∠C=70°.∵AB=AD,∴∠B=∠ADB=70°,∴∠BAD=180°﹣∠B﹣∠ADB=180°﹣70°﹣70°=40°.故答案为:40.12.如图,在△ABC中,AB=AC,D是BC边上的中点,连接AD,BE平分∠ABC交AC 于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.【分析】(1)利用等腰三角形的三线合一的性质证明∠ADB=90°,再利用等腰三角形的性质求出∠ABC即可解决问题.(2)只要证明∠FBE=∠FEB即可解决问题.【解答】(1)解:∵AB=AC,∴∠C=∠ABC,∵∠C=36°,∴∠ABC=36°,∵BD=CD,AB=AC,∴AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣36°=54°.(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC,∵EF∥BC,∴∠FEB=∠CBE,∴∠FBE=∠FEB,∴FB=FE.13.问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA =EC.若∠BAE=90°,∠B=45°,求∠DAC的度数.答案:∠DAC=45°.思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由.(2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.【分析】(1)根据三角形外角的性质得到∠AED=2∠C,①求得∠DAE=90°﹣∠BAD =90°﹣(45°+∠C)=45°﹣∠C,②由①,②即可得到结论;(2)设∠ABC=m°,根据三角形的内角和定理和等腰三角形的性质即可得到结论.【解答】解:(1)∠DAC的度数不会改变;∵EA=EC,∴∠EAC=∠C,①,∵BA=BD,∴∠BAD=∠BDA,∵∠BAE=90°,∴∠B=90°﹣∠AED=90°﹣2∠C,∴∠BAD=(180°﹣∠B)=[180°﹣(90°﹣2∠C)]=45°+∠C,∴∠DAE=90°﹣∠BAD=90°﹣(45°+∠C)=45°﹣∠C,②由①,②得,∠DAC=∠DAE+∠CAE=45°﹣∠C+∠C=45°;(2)设∠ABC=m°,则∠BAD=(180°﹣m°)=90°﹣m°,∠AEB=180°﹣n°﹣m°,∴∠DAE=n°﹣∠BAD=n°﹣90°+m°,∵EA=EC,∴∠CAE=AEB=90°﹣n°﹣m°,∴∠DAC=∠DAE+∠CAE=n°﹣90°+m°+90°﹣n°﹣m°=n°.14.如图,在△ABC中,AB=AC,D是BC边上任意一点,过点D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当点D在BC的什么位置时,DE=DF?请加以证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?请加以证明.(3)若点D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?请说明理由.【分析】(1)当点D在BC的中点时,DE=DF,根据AAS证△BED≌△CFD,根据全等三角形的性质推出即可;(2)连接AD,根据三角形ABC的面积=三角形ABD的面积+三角形ACD的面积,进行分析证明;(3)类似(2)的思路,仍然用计算面积的方法来确定线段之间的关系.即三角形ABC 的面积=三角形ABD的面积﹣三角形ACD的面积.【解答】(1)解:当点D在BC的中点时,DE=DF.理由:如图1中,连接AD.∵D为BC的中点,∴BD=CD.∵AB=AC,∴∠B=∠ACB,∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°.在△BED和△CFD中,,∴△BED≌△CFD(AAS),∴DE=DF.(2)解:DE+DF=CG.证明如下:如图2,连接AD,则S△ABC=S△ABD+S△ACD,即AB•CG=AB•DE+AC•DF.∵AB=AC,∴DE+DF=CG.(3)解:当点D在BC的延长线上时,(2)中的结论不成立,但有DE﹣DF=CG.理由如下:如图3,延长BC至点D,连接AD,过点D作DF⊥AC,交AC的延长线于点F,则S△ABD=S△ABC+S△ACD,即AB•DE=AB•CG+AC•DF.∵AB=AC,∴DE=CG+DF,即DE﹣DF=CG.15.如图,∠ACB=90°,D、E在AB上,AD=AC,BE=BC,求∠DCE的度数.【分析】由AD=AC,BC=BE,根据等边对等角得出∠ACD=∠ADC,∠BEC=∠ECB,再利用三角形内角和定理得出∠A=180°﹣2∠ADC,∠B=180°﹣2∠DEC,而∠A+∠B=90°,那么求出∠ADC+∠DEC=135°,则∠DCE=180°﹣(∠ADC+∠DEC)=180°﹣135°=45°.【解答】解:∵AD=AC,∴∠ADC=∠ACD.∵BE=BC,∴∠BEC=∠ECB.∵∠ACB=90°,∴∠A+∠B=90°.在△ACD中,∠A=180°﹣2∠ADC,在△BCE中,∠B=180°﹣2∠DEC,∴∠A+∠B=180°﹣2∠ADC+180°﹣2∠DEC=90°.∴360°﹣2(∠ADC+∠DEC)=90°.∴∠ADC+∠DEC=135°.∴∠DCE=180°﹣(∠ADC+∠DEC)=180°﹣135°=45°.。
等腰三角形的性质练习题及答案

等腰三角形的性质练习题及答案若按边(角)是否相等分类,两边(角)相等的三角形是等腰三角形.等腰三角形是一类特殊三角形,它的两底角相等;等腰三角形是轴对称图形,底边上的高、中线、顶角的平分线互相重合(简称三线合一),特别地,等边三角形的各边相等,各角都为60°.解与等腰三角形相关的问题,全等三角形依然是重要的工具,但更多的是思考运用等腰三角形的特殊性质,这些性质为角度的计算、线段相等的证明、直线位置关系的证明等问题提供了新的理论依据,因此,重视全等三角形的运用,又不囿于全等三角形,善于运用等腰三角形的性质探求新的解题途径.例题求解【例1】如图AOB是一钢架,且∠AOB=10°,为使钢架更加坚固,需在其内部添加一些钢管EF、FG、GH……添加的钢管长度都与OE相等,则最多能添加这样的钢管根.(山东省聊城市中考题)思路点拨通过角度的计算,确定添加钢管数的最大值.注角是几何中最活跃的元素,与角相关的知识异常丰富,在三角形中,角又有独特的等量关系,如三角形内角和定理、内外角关系定理.等腰三角形两底角相等,利用这些定理可以找到角与角之间的“和”、“差”、“倍”、“分”关系.随着知识的丰富,我们分析问题、解决问题的方法和工具随之增加,因此,在使用什么方法解决问题时,需要综合与选择.【例2】如图,若AB=AC,BG=BH,AK=KG,则∠BAC的度数为( )A.30° D.32° C 36° D.40°(武汉市选拔赛试题)思路点拨图中有很多相关的角,用∠BAC的代数式表示这些角,建立关于∠BAC的方程.【例3】如图,在△ABC中,已知∠A=90°,AB=AC,D为AC上一点,AE⊥BD于E,延长AE交BC于F,问:当点D满足什么条件时,∠ADB=∠CDF,请说明理由. (安徽省竞赛题改编题)思路点拨本例是探索条件的问题,可先假定结论成立,逐步逆推过去,找到相应的条件,若∠ADB=∠CDF,这一结论如何用?因∠ADB与∠CDF对应的三角形不全等,故需构造全等三角形,而作顶角的平分线或底边上的高(中线)是等腰三角形中一条常用辅助线.【例4】如图,在△ABC 中,AC =BC ,∠ACB=90°,D 是AC 上一点,AE ⊥BD 交BD 的延长线于E ,且AE=21BD .求证:BD 是∠ABC 的角平分线. (北京市竞赛题)思路点拨 AE 边上的高与∠ABC 的平分线重合,联想到等腰三角形,通过作辅助线构造全等三角形、等腰三角形.注 若巳知图形中不存在证题所需的全等三角形,我们需要添加辅助战,构造全等三角形,使欲证的线段或角转移位置,最终使问题得以解决.结论探索型、条件探索型、存在性判断是探索型问题的基本形式,相应的解题策略是:(1)通过对符合条件的特例或简单情形的分析、观察、猜想结果,再给出证明;(2)假设结论成立,逆推追寻相应的条件;(3)假设在题设条件下的某一数学对象存在,进行推理,若由此导出矛盾,则否定假设;否则,给出肯定的结论.【例5】如图,在△ABC 中,已知∠C =60°,AC>BC ,又△ABC ′、△BCA ′、△CAB ′都是△ABC 形外的等边三角形,而点D 在AC 上,且BC =DC(1)证明:△C ′BD ≌△B ′DC ;(2)证明:△AC ′D ≌△DB ′A ;(3)对△ABC 、△ABC ′、△BCA ′、△CAB ′,从面积大小关系上,你能得出什么结论? (江苏省竞赛题)思路点拨 (1)是基础,(2)是(1)的自然推论,(3) 由角的不等,导出边的不等关系,这是探索面积不等关系的关键.学力训练1.如图,△ABC 中,已知AD =AC ,要使AD=AE ,需要添加的一个条件是 . (济南市中考题)2.等腰三角形一腰上的中线把这个三角形的周长分成12cm 和21cm 两部分,则这个等腰三角形底边的长为 .3.△ABC 中,AB =AC ,∠A=40°,BP=CE ,BD=CP ,则∠DPF= 度.4.如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC 的大小是.(烟台市中考题)5.△ABC的一个内角的大小是40°,且∠A=∠B,那么∠C的外角的大小是( )A.140° B.80°或100° C .100°或140° D.80°或140°6.已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点F、F,给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形,③SAEPF四边形= 2 1SABC;④EF=AP.当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),上述结论中始终正确的是( )A.1个 B.2个 C.3个 D. 4个(苏州市中考题)7.如图,在△ABC中,∠ACB=90°,AC=AE,BC=BF,则∠ECF=( ) A.60° B.45° C.30° D.不确定8.如图,在等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是( )A.45° D.55° C.60° D.75°(菏泽市中考题)9.在△ABC中,已知AB=AC,且过△ABC某一顶点的直线可将△ABC分成两个等腰三角形,试求厶ABC各内角的度数.(广州市中考题)10.如图,已知A、D两点分别是正三角形DEF、正三角形ABC的中心,连结GH、AD,延长AD交BC于M,延长DA交EF于N,G是FD与AB的交点,H是ED与AC的交点.(1)请写出三个不同类型的、必须经过至少两步推理才能得到的正确结论(不要求写出证明过程);(2)问FE、GH、BC有何位置关系?试证明你的结论.(江西省中考题)11.如图,在Rt△ABC中,已知∠ACB=90°,AC=BC,D为DC的中点,CE⊥AD于E,BF∥AC 交CE的延长线于点F.求证:AB垂直平分DF.(河南省中考题)12.如图,O 为等边三角形ABC 内一点,BD =DA ,BE =AB ,∠DBE =∠DBC ,则∠BED 的度数是 . (河南省竞赛题)13.如图,AA ′、BB ′分别是∠EAO 、∠DBC 的平分线,若AA ′=BB ′=AB ,则∠BAC 的度数为 . (全国初中数学联赛题)14.周长为100,边长为整数的等腰三角形共有 种.( “华杯赛”试题)15.已知等腰三角形的两边a 、b 满足2)1332(532-+++-b a b a =0,则此等腰三角形的周长为 .16.如图,在△ABC 中,∠BAC=120°,AD ⊥BC 于D ,且AB+BD =DC ,则∠C 的大小是( )A .20°B .25°C .30°D .45°17.如图,在等腰直角△ABC 中,AD 为斜边上的高,以D 为端点任作两条互相垂直的射线与两腰相交于E 、F ,连结EF 与AD 相交于G ,则∠AED 与∠AGF 的关系为( )A .∠AED>∠AGFB .∠AED =∠AGFC .∠AED<∠AGFD .不能确定(“学习报)公开赛试题)18.如图,直线1l 、2l 、3l 表示三条相交的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A .一处B .两处C .三处D .四处(安徽省中考题)19.△ABC 的三边为a 、b 、c ,且满足25.1225.3222b a c b a +⨯=++,则△ABC 是( ) A .直角三角形 B .等腰三角形 C .等边三角形 D .以上答案都不对(河南省竞赛题)20.如图,在△ABC 中,AB=AC ,P 底边BC 上一点,PD ⊥AB 于D ,PE ⊥AC 于E ,CF ⊥AB 于F .(1)求证:PD+PE=CF ;(2)若P 点在BC 的延长线上,那么PD 、PE 、CF 存在什么关系?写出你的猜想并证明.21.如图,在等腰直角△ABC 中,∠BAC =90°,AD=AE ,AF ⊥BE 交BC 于点F ,过F 作FG ⊥CD 交BE 延长线于G ,求证:BG=AF+FG. (重庆市竞赛题)22.如图,在△ABC中,AB=AC,∠BAC=80°,O为△ABC内一点,且∠OBC=10°,∠OCA=20°,求∠BAO的度数. (天津市竞赛题)23.如图,等边△ABC中,AB=2,点P是AB边上的任意一点(点P可以与点A重合,但不与点B重合),过点P作PE⊥BC于E,过点E作EF⊥AC于F,过点F作FQ⊥AB于Q,设BP= x,AQ=y.(1)用x的代数式表示y;(2)当PB的长等于多少时,点P与点Q重合?(福州市中考题)24.如图,△ABC是边长为l的等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB于M,交AC于N,连结MN,形成一个三角形,求证:△AMN的周长等于2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等腰三角形的性质练习题及答案
若按边(角)是否相等分类,两边(角)相等的三角形是等腰三角形.等腰三角形是一类特殊三角形,它的两底角相等;等腰三角形是轴对称图形,底边上的高、中线、顶角的平分线互相重合(简称三线合一),特别地,等边三角形的各边相等,各角都为60°.解与等腰三角形相关的问题,全等三角形依然是重要的工具,但更多的是思考运用等腰三角形的特殊性质,这些性质为角度的计算、线段相等的证明、直线位置关系的证明等问题提供了新的理论依据,因此,重视全等三角形的运用,又不囿于全等三角形,善于运用等腰三角形的性质探求新的解题途径.
例题求解
【例1】如图AOB是一钢架,且∠AOB=10°,为使钢架更加坚固,需在其内部添加一些钢管EF、FG、GH……添加的钢管长度都与OE相等,则最多能添加这样的钢管根.(山东省聊城市中考题)
思路点拨通过角度的计算,确定添加钢管数的最大值.
注角是几何中最活跃的元素,与角相关的知识异常丰富,在三角形中,角又有独特的等量关系,如三角形内角和定理、内外角关系定理.等腰三角形两底角相等,利用这些定理可以找到角与角之间的“和”、“差”、“倍”、“分”关系.
随着知识的丰富,我们分析问题、解决问题的方法和工具随之增加,因此,在使用什么方法解决问题时,需要综合与选择.
【例2】如图,若AB=AC,BG=BH,AK=KG,则∠BAC的度数为( )
A.30° D.32° C 36° D.40°
(武汉市选拔赛试题)
思路点拨图中有很多相关的角,用∠BAC的代数式表示这些角,建立关于∠BAC的方程.
【例3】如图,在△ABC中,已知∠A=90°,AB=AC,D为AC上一点,AE⊥BD于E,延长AE交BC于F,问:当点D满足什么条件时,∠ADB=∠CDF,请说明理由. (安徽省竞赛题改编题)
思路点拨本例是探索条件的问题,可先假定结论成立,逐步逆推过去,找到相应的条件,若∠ADB=∠CDF,这一结论如何用?因∠ADB与∠CDF对应的三角形不全等,故需构造全等三角形,而作顶角的平分线或底边上的高(中线)是等腰三角形中一条常用辅助线.
【例4】如图,在△ABC 中,AC =BC ,∠ACB=90°,D 是AC 上一点,AE ⊥BD 交BD 的延长线于E ,且AE=21BD .求证:BD 是∠ABC 的角平分线. (北京市竞赛题)
思路点拨 AE 边上的高与∠ABC 的平分线重合,联想到等腰三角形,通过作辅助线构造全等三角形、等腰三角形.
注 若巳知图形中不存在证题所需的全等三角形,我们需要添加辅助战,构造全等三角形,使欲证的线段或角转移位置,最终使问题得以解决.
结论探索型、条件探索型、存在性判断是探索型问题的基本形式,相应的解题策略是:
(1)通过对符合条件的特例或简单情形的分析、观察、猜想结果,再给出证明;
(2)假设结论成立,逆推追寻相应的条件;
(3)假设在题设条件下的某一数学对象存在,进行推理,若由此导出矛盾,则否定假设;否则,给出肯定的结论.
【例5】如图,在△ABC 中,已知∠C =60°,AC>BC ,又△ABC ′、△BCA ′、△CAB ′都是△ABC 形外的等边三角形,而点D 在AC 上,且BC =DC
(1)证明:△C ′BD ≌△B ′DC ;
(2)证明:△AC ′D ≌△DB ′A ;
(3)对△ABC 、△ABC ′、△BCA ′、△CAB ′,从面积大小关系上,你能得出什么结论? (江苏省竞赛题)
思路点拨 (1)是基础,(2)是(1)的自然推论,(3) 由角的不等,导出边的不等关系,这是探索面积不等关系的关键.
学力训练
1.如图,△ABC 中,已知AD =AC ,要使AD=AE ,需要添加的一个条件是 . (济南市中考题)
2.等腰三角形一腰上的中线把这个三角形的周长分成12cm 和21cm 两部分,则这个等腰三角形底边的长为 .
3.△ABC 中,AB =AC ,∠A=40°,BP=CE ,BD=CP ,则∠DPF= 度.
4.如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC 的大小是.
(烟台市中考题)
5.△ABC的一个内角的大小是40°,且∠A=∠B,那么∠C的外角的大小是( )
A.140° B.80°或100° C .100°或140° D.80°或140°
6.已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别
交AB、AC于点F、F,给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形,③S
AEPF
四边形= 2 1
S
ABC
;④EF=AP.当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),上述结论中始终正确的是( )
A.1个 B.2个 C.3个 D. 4个
(苏州市中考题)
7.如图,在△ABC中,∠ACB=90°,AC=AE,BC=BF,则∠ECF=( ) A.60° B.45° C.30° D.不确定
8.如图,在等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是( )
A.45° D.55° C.60° D.75°
(菏泽市中考题)
9.在△ABC中,已知AB=AC,且过△ABC某一顶点的直线可将△ABC分成两个等腰三角形,试求厶ABC各内角的度数.
(广州市中考题)
10.如图,已知A、D两点分别是正三角形DEF、正三角形ABC的中心,连结GH、AD,延长AD交BC于M,延长DA交EF于N,G是FD与AB的交点,H是ED与AC的交点.
(1)请写出三个不同类型的、必须经过至少两步推理才能得到的正确结论(不要求写出证明过程);
(2)问FE、GH、BC有何位置关系?试证明你的结论.
(江西省中考题)
11.如图,在Rt△ABC中,已知∠ACB=90°,AC=BC,D为DC的中点,CE⊥AD于E,BF∥AC 交CE的延长线于点F.求证:AB垂直平分DF.
(河南省中考题)
12.如图,O 为等边三角形ABC 内一点,BD =DA ,BE =AB ,∠DBE =∠DBC ,则∠BED 的度数是 . (河南省竞赛题)
13.如图,AA ′、BB ′分别是∠EAO 、∠DBC 的平分线,若AA ′=BB ′=AB ,则∠BAC 的度数为 . (全国初中数学联赛题)
14.周长为100,边长为整数的等腰三角形共有 种.
( “华杯赛”试题)
15.已知等腰三角形的两边a 、b 满足2)1332(532-+++-b a b a =0,则此等腰三角形的周长为 .
16.如图,在△ABC 中,∠BAC=120°,AD ⊥BC 于D ,且AB+BD =DC ,则∠C 的大小是( )
A .20°
B .25°
C .30°
D .45°
17.如图,在等腰直角△ABC 中,AD 为斜边上的高,以D 为端点任作两条互相垂直的射线与两腰相交于E 、F ,连结EF 与AD 相交于G ,则∠AED 与∠AGF 的关系为( )
A .∠AED>∠AGF
B .∠AED =∠AGF
C .∠AED<∠AGF
D .不能确定
(“学习报)公开赛试题)
18.如图,直线1l 、2l 、3l 表示三条相交的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )
A .一处
B .两处
C .三处
D .四处
(安徽省中考题)
19.△ABC 的三边为a 、b 、c ,且满足2
5.1225.322
2b a c b a +⨯=++,则△ABC 是( ) A .直角三角形 B .等腰三角形 C .等边三角形 D .以上答案都不对
(河南省竞赛题)
20.如图,在△ABC 中,AB=AC ,P 底边BC 上一点,PD ⊥AB 于D ,PE ⊥AC 于E ,CF ⊥AB 于F .
(1)求证:PD+PE=CF ;
(2)若P 点在BC 的延长线上,那么PD 、PE 、CF 存在什么关系?写出你的猜想并证明.
21.如图,在等腰直角△ABC 中,∠BAC =90°,AD=AE ,AF ⊥BE 交BC 于点F ,过F 作FG ⊥CD 交BE 延长线于G ,求
证:BG=AF+FG. (重庆市竞赛题)
22.如图,在△ABC中,AB=AC,∠BAC=80°,O为△ABC内一点,且∠OBC=10°,∠OCA=20°,求∠BAO的度数. (天津市竞赛题)
23.如图,等边△ABC中,AB=2,点P是AB边上的任意一点(点P可以与点A重合,但不与点B重合),过点P作PE⊥BC于E,过点E作EF⊥AC于F,过点F作FQ⊥AB于Q,设BP= x,AQ=y.
(1)用x的代数式表示y;
(2)当PB的长等于多少时,点P与点Q重合?
(福州市中考题)
24.如图,△ABC是边长为l的等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB于M,交AC于N,连结MN,形成一个三角形,求证:△AMN的周长等于2.。