等腰三角形的性质练习(含答案)
等腰三角形性质定理(基础)巩固练习含答案

【巩固练习】一.选择题1. 已知一个等腰三角形两边长分别为5,6,则它的周长为( )A.16 B.17C.16或17D.10或122.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()A.50°B.80° C.50°或80°D.40°或65°3. 将两个全等的且有一个角为30°的直角三角形拼成如图所示形状,两条长直角边在同一条直线上,则图中等腰三角形的个数是()A. 4个B. 3个C. 2个D. 1个4. 已知实数x,y满足|x−4|+(y−8)2=0,则以x,y的值为两边长的等腰三角形的周长是()A.20或16 B.20 C.16 D.以上答案均不对∆沿过D的直线折叠,使点A落在BC上F处,若5. 如图,D是AB边上的中点,将ABC∠度数是()∠=︒,则BDFB50A.60° B.70° C.80° D.不确定6. (2016•滨州)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50° B.51°C.51.5°D.52.5°二.填空题7.如图,△ABC中,D为AC边上一点,AD=BD=BC,若∠A=40°,则∠CBD=_____°.8.(2016•泰州)如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于.9. 如图,△ABC是等腰直角三角形,∠C=90°,BD平分∠CBA交AC于点D,DE⊥AB于E.若△ADE的周长为8cm,则AB =_________cm.10.在等腰△ABC中,AB=AC,中线BD将三角形的周长分成了15和18两个部分,则底边长BC= .11. 如图,AE∥BD,C是BD上的点,且AB=BC,∠ACD=110°,则∠EAB=______度.12. 如图,△ABC的周长为32,且AB=AC,AD⊥BC于D,△ACD的周长为24,那么AD的长为 .三.解答题13.已知:如图,ΔABC中,AB=AC,D是AB上一点,延长CA至E,使AE=AD.试确定ED与BC的位置关系,并证明你的结论.14. 如图,DE是△ABC边AB的垂直平分线,分别交AB、BC于D、E.AE平分∠BAC.设∠B=x(单位:度),∠C=y(单位:度).请讨论当△ABC为等腰三角形时,∠B为多少度?15.如图,在△ABC 中,AB=AC ,D 是BC 上任意一点,过D 分别向AB ,AC 引垂线,垂足分别为E ,F ,CG 是AB 边上的高.DE ,DF ,CG 的长之间存在着怎样的等量关系?并加以证明.【答案与解析】一.选择题1. 【答案】C ;【解析】注意分类讨论.2. 【答案】C ;【解析】解:如图所示,△ABC 中,AB=AC .有两种情况:①顶角∠A=50°;②当底角是50°时,∵AB=AC,∴∠B=∠C=50°,∵∠A+∠B+∠C=180°,∴∠A=180°﹣50°﹣50°=80°,∴这个等腰三角形的顶角为50°和80°.故选:C .3. 【答案】B ;4. 【答案】B ;【解析】根据题意得4080x y -⎧⎨-⎩==,解得48x y =⎧⎨=⎩. (1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.故选B .5. 【答案】C ;【解析】AD =DF =BD ,∠B =∠BFD =50°,BDF ∠=180°-50°-50°=80°.6. 【答案】D ;【解析】根据等腰三角形的性质推出∠A=∠CDA=50°,∠B=∠DCB ,∠BDE=∠BED ,根据三角形的外角性质求出∠B=25°,由三角形的内角和定理求出∠BDE ,根据平角的定义即可求出选项.二.填空题7. 【答案】20;【解析】∠A =∠ABD =40°,∠BDC =∠C =80°,所以∠CBD =20°.8.【答案】20°;【解析】解:过点A 作AD ∥l 1,如图,则∠BAD=∠β.∵l 1∥l 2,∴AD ∥l 2,∵∠DAC=∠α=40°.∵△ABC 是等边三角形,∴∠BAC=60°,∴∠β=∠BAD=∠BAC ﹣∠DAC=60°﹣40°=20°.故答案为20°.9. 【答案】8;【解析】DE =DC ,AC =BC =BE ,△ADE 的周长=AD +DE +AE =AC +AE =AB =8.10.【答案】9或13;【解析】解:设等腰三角形的底边长为x ,腰长为y ,则根据题意,得或,解得或,经检验,这两组解均能构成三角形,所以底边长为9或13.故答案为:9或13.11.【答案】40;【解析】解:∵AB=BC ,∴∠ACB=∠BAC∵∠ACD=110°∴∠ACB=∠BAC=70°∴∠B=∠40°,∵AE ∥BD ,∴∠EAB=40°,故答案为40.12.【答案】8;【解析】解:∵AB=AC ,AD ⊥BC ,∴BD=DC .∵AB+AC+BC=32,即AB+BD+CD+AC=32,∴AC+DC=16∴AC+DC+AD=24∴AD=8.故填8.三.解答题13.【解析】证明:ED ⊥BC ;延长ED ,交BC 边于H ,∵AB =AC ,AE =AD .∴设∠B =∠C =x ,则∠EAD =2x ,∴∠ADE =1802902xx ︒-=︒-即∠BDH =90°-x∴∠B +∠BDH =x +90°-x =90°,∴∠BHD =90°,ED ⊥BC.14.【解析】 解:由题意可知,AC ≠BC ,若 AB=AC ,此时,x=y ,即:180-3x=x ,得:x=45°;若 AB=BC ,此时,2x=y ,即:180-3x=2x ,得:x=36°.∴当△ABC 为等腰三角形时,∠B 分别为45°或36°.15.【解析】解:CG=DE+DF.理由如下:如图,连接AD,∵S△ABC=S△ABD+S△ACD,∴AB•CG=AC•DE+AB•DF,∴AB=AC,∴CG=DE+DF.。
等腰三角形练习题(含答案)

等腰三角形练习题(含答案)等腰三角形第1课时:等腰三角形的性质1.已知等腰三角形的一个底角为50°,则其顶角为80°。
2.如图,△ABC中,AB=AC,BC=6cm,AD平分∠BAC,则BD=3cm。
3.如图,△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为45°。
4.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为80°。
5.如图,在△ABC中,D是BC边上一点,且AB=AD=DC,∠BAD=40°,求∠C的度数为100°。
6.如图,△ABC中,AB=AC,D是BC的中点,E,F分别是AB,AC上的点,且AE=AF。
证明:DE=DF。
第2课时:等腰三角形的判定1.在△ABC中,∠A=40°,∠B=70°,则△ABC为钝角三角形。
2.已知△ABC中,∠B=50°,∠A=80°,AB=5cm,则AC=5cm。
3.如图,在△ABC中,AD⊥BC于点D,且BD=DC,则△ABC为等腰三角形。
4.如图,已知△ABC中,∠A=36°,AB=AC,BD为∠ABC的平分线,则图中共有2个等腰三角形。
5.如图,D是△XXX的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是E,F,且DE=DF。
证明:AB=AC。
6.如图,AB∥CD,直线l交AB于点E,交CD于点F,FG平分∠EFD交直线AB于点G。
证明:△EFG是等腰三角形。
等边三角形第1课时:等边三角形的性质与判定1.如图,a∥b,等边△ABC的顶点B,C在直线b上,则∠1的度数为60°。
2.在△ABC中,∠A=60°,现有下面三个条件:①AB=AC;②∠B=∠C;③∠A=∠B。
能判定△ABC为等边三角形的有条件①、②、③。
3.如图,在等边△ABC中,BD⊥AC于D,若AB=4,则AD=2.4.如图,△ABC是等边三角形,∠CBD=90°,BD=BC,连接AD交BC于点E,求∠BAD的度数为75°。
等腰三角形的性质练习(含答案)

等腰三角形的性质练习(含答案)等腰三角形的性质1.选择题:1) 等腰三角形的底角与相邻外角的关系是()A。
底角大于相邻外角 B。
底角小于相邻外角C。
底角大于或等于相邻外角 D。
底角小于或等于相邻外角2) 等腰三角形的一个内角等于100°,则另两个内角的度数分别为()A。
40°,40° B。
100°,20°C。
50°,50° D。
40°,40°或100°,20°3) 等腰三角形中的一个外角等于100°,则这个三角形的三个内角分别为()A。
50°,50°,80° B。
80°,80°,20°C。
100°,100°,20° D。
50°,50°,80°或80°,80°,20°4) 如果一个等腰三角形的一个底角比顶角大15°,那么顶角为()A。
45° B。
40° C。
55° D。
50°5) 等腰三角形一腰上的高与底边所成的角等于()A。
顶角 B。
顶角的一半C。
顶角的2倍 D。
底角的一半6) 已知:如图1所示,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A的度数为()A。
30° B。
45° C。
36° D。
72°2.填空题:1) 如图2所示,在△ABC中,①因为AB=AC,所以∠A=∠C;②因为AB=AC,∠1=∠2,所以BD=BC,BD⊥AC.2) 若等腰三角形的顶角与一个底角之和为110°,则顶角的度数为70°.3) 已知等腰三角形的一个角是80°,则顶角为20°.4) 在等腰三角形ABC中,一腰上的高是1cm,这条高与底边的夹角是45°,则△ABC的面积为1/2 cm².5) 如图3所示,O为△ABC内一点,且OA=OB=OC,∠ABO=20°,∠BCO=30°,则∠CAO=30°.3.等腰三角形两个内角的度数比为4:1,求其各个角的度数.设两个内角的度数为4x和x,则三角形的第三个角的度数为180°-5x.因为三角形内角和为180°,所以4x+4x+180°-5x=180°,解得x=36°,因此两个内角的度数分别为144°和36°,第三个角的度数为100°.4.如图,已知线段a和c,用圆规和直尺作等腰三角形ABC,使等腰三角形△ABC以a和c为两边,这样的三角形能作无数个.5.如图,在△ABC中,D是BC边上一点,AD=BD,AB=AC=CD,求∠BAC的度数.连接AD和AC,因为AD=BD,AB=AC,所以△ABD≌△ACD,故∠ABD=∠ACD.又因为AB=CD,所以△ABC为等腰三角形,所以∠BAC=180°-∠ABC=180°-2∠ABD=80°.6.如图所示,AB=AE,∠ABC=∠AED,BC=ED,点F是CD的中点.1) AF与CD不垂直.因为∠ABC=∠AED,所以△ABC≌△AED,故AB=AE,又因为BC=ED,所以AC=AD,所以AF垂直于BC的中点,而CD的中点是F,所以AF与CD不垂直.二、拓展延伸训练右下图是人字型层架的设计图,由AB、AC、BC、AD四根钢条焊接而成,其中A、B、C、D均为焊接点,且AB=AC,D为BC的中点,现在焊接所需的四根钢条已截好,且已标出BC的中点D。
初二数学等腰三角形的性质试题答案及解析

初二数学等腰三角形的性质试题答案及解析1.如图,△ABC中,∠B,∠C的平分线相交于O点,作MN∥BC,EF∥AB,GH∥AC,BC=a,AC=b,AB=c,则△GMO的周长+△ENO的周长-△FHO的周长= .【答案】b+c-a【解析】由角平分线及平行线可得等腰三角形,进而得边长相等,再通过转化,即可得出结论.∵OB、OC分别平分∠ABC、∠ACB,MN∥BC,EF∥AB,GH∥AC,∴OM=BM,ON=NC,OG=AE,OE=AG,∴△GMO周长+△ENO的周长-△FHO的周长=OG+OM+GM+OE+ON+EN-OH-OF-FH=AE+EN+NC+BM+GM+AG-HC-FH-BF=b+c-a,故应填b+c-a.【考点】本题主要考查角平分线的性质,平行线的性质点评:解答本题的关键是掌握由角平分线及平行线可得等腰三角形,再通过转化求解。
2.△ABC中,AB=AC,∠A=∠C,则∠B=_______.【答案】60°【解析】由AB=AC根据等边对等角可得∠B=∠C,即可得到∠A=∠B=∠C,再根据三角形的内角和180°即可求得结果。
∵AB=AC,∴∠B=∠C,∵∠A=∠C,∴∠A=∠B=∠C,∵∠A+∠B+∠C=180°,∴∠A=∠B=∠C=60°,故答案为60°.【考点】本题考查的是等腰三角形的性质,三角形的内角和定理点评:解答本题的关键是根据等边对等角得到∠A=∠B=∠C.3.如图,Rt△ACB中,∠ACB=90°,点D、E在AB上,AC=AD,BE=BC,则∠DCE等于()A、45°B、60°C、50°D、65°【答案】A【解析】根据等腰三角形的性质可得到几组相等的角,再根据三角形内角和定理可分别表示出∠ACD,∠BCE,再根据角之间的关系,不难求得∠DCE的度数.∵AC=AD,BC=BE∴∠ACD=∠ADC,∠BCE=∠BEC∴∠ACD=(180°-∠A),∠BCE=(180°-∠B)∴∠DCE=∠ACD+∠BCE-∠ACB=90°-(∠A+∠B)∵∠A+∠B=90°∴∠DCE=45°故选A.【考点】此题主要考查等腰三角形的性质及三角形内角和定理的综合运用点评:解答本题的关键是熟练掌握等腰三角形的性质及三角形内角和定理的综合运用。
等腰三角形的性质及判定含答案

等腰三角形的性质及判定一.选择题(共30小题)1.如图,已知AB=AC=BD,那么()A.∠1=∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1﹣∠2=180°2.如图,△ABC中,CA=CB,∠A=20°,则三角形的外角∠BCD的度数是()A.20°B.40°C.50°D.140°3.若C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有()个.A.2个B.3个C.4个D.5个4.如果某等腰三角形的两条边长分别为4和8,那么它的周长为()A.16B.20C.20或16D.不确定5.△ABC中,AB=AC,顶角是120°,则一个底角等于()A.120°B.90°C.60°D.30°6.已知等腰三角形ABC的两边满足+|6﹣BC|=0,则此三角形的周长为()A.12B.15C.12或15D.不能确定7.如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上(不含端点B,C)的动点.若线段AD长为正整数,则点D的个数共有()A.5个B.3个C.2个D.1个8.已知等腰三角形的两边长分别为6和1,则这个等腰三角形的周长为()A.13B.8C.10D.8或139.若等腰三角形的周长为26cm,底边为11cm,则腰长为()A.11cm B.11cm或7.5cmC.7.5cm D.以上都不对10.若实数m、n满足|m﹣3|+(n﹣6)2=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12B.15C.12或15D.911.已知△ABC中,∠ACB=90°,AC=8,BC=6.在射线BC上取一点D,使得△ABD 为等腰三角形,这样的等腰三角形有几个?()A.2个B.3个C.4个D.5个12.若等腰三角形的一边长等于6,另一边长等于4,则它的周长等于()A.15或17B.16C.14D.14或1613.若等腰三角形的顶角为70°,则它的一个底角度数为()A.70°或55°B.55°C.70°D.65°14.如图,在3×3的正方形网格中,点A、B在格点上,要找一个格点C,使△ABC是等腰三角形(AB是其中一腰),则图中符合条件的格点有()A.2个B.3个C.4个D.5个15.等腰三角形的一个角是30°,则这个等腰三角形的底角为()A.75°B.30°C.75°或30°D.不能确定16.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于E,CD平分∠ACB 交BE于D,图中等腰三角形的个数是()A.3个B.4个C.5个D.6个17.如图,直线l1,l2相交于点A,点B是直线外一点,在直线l1,l2上找一点C,使△ABC 为一个等腰三角形,满足条件的点C有()A.2个B.4个C.6个D.8个18.如图,已知OA=OB=OC,BC∥AO,若∠A=36°,则∠B等于()A.54°B.60°C.72°D.76°19.如图,△ABC中,∠B=∠C,BD=CD,则下列判断不一定正确的是()A.AB=AC B.AD⊥BCC.∠BAD=∠CAD D.△ABC是等边三角形20.等腰三角形的边长为2和3,那么它的周长为()A.8B.7C.8或7D.以上都不对21.等腰三角形的顶角是40°,则它的底角是()A.55°B.70°C.40°或70°D.55°或70°22.如图所示,在三角形ABC中,AB=AC,∠BAC=108°,在BC上分别取点D,E使∠BAD=∠B,∠CAE=∠C,则图中的等腰三角形有()A.3个B.4个C.5个D.6个23.三角形三个内角的比是∠A:∠B:∠C=1:1:2,则△ABC是()A.等腰三角形B.等腰直角三角形C.等边三角形D.不能确定24.小方画了一个有两边长为3和5的等腰三角形,则这个等腰三角形的周长为()A.11B.13C.8D.11或1325.如图钢架中,∠A=a,焊上等长的钢条P1P2,P2P3,P3P4,P4P5…来加固钢架.若P1A =P1P2,且恰好用了4根钢条,则α的取值范围是()A.15°≤a<18°B.15°<a≤18°C.18°≤a<22.5°D.18°<a≤22.5°26.已知等腰△ABC中,∠A=120°,则底角的大小为()A.60°B.30°或120°C.120°D.30°27.如图,在△ABC中,AB=AC=13,该三角形的面积为65,点D是边BC上任意一点,则点D分别到边AB,AC的距离之和等于()A.5B.6.5C.9D.1028.如图,直线L1∥L2,点A、B在L1上,点C在L2上,若AB=AC、∠ABC=70°,则∠1的大小为()A.20°B.40°C.35°D.70°29.若等腰△ABC中有一个内角为40°,则这个等腰三角形的一个底角的度数为()A.40°B.100°C.40°或100°D.40°或70°30.等腰三角形的周长为18,其中一条边的长为8,则另两条边的长是()A.5、5B.2、8C.5、5或2、8D.以上结果都不对二.填空题(共15小题)31.等腰三角形的一个内角为30°,那么其它两个角的度数为______.32.已知AD是△ABC的高,若AB=AC,BC=4,则CD=______,33.如图,在平面直角坐标系中,点A,B分别在y轴和x轴上,∠ABO=60°,在y轴上找一点P,使△P AB是等腰三角形,则符合条件的P点共有______个.34.如图,直线a、b相交于点O,∠1=50°,点A在直线a上,直线b上存在点B,使以点O、A、B为顶点的三角形是等腰三角形,这样的B点有______.35.若等腰三角形的两边的长分别为3和10,则它的周长为______.36.如果等腰三角形的两边长分别是6、8,那么它的周长是______.37.如图,Rt△ABC中,AC⊥BC,AE=AO,BF=BO,则∠EOF的度数是______.38.等腰△ABC的边长分别为6和8,则△ABC的周长为______.39.已知等腰三角形中顶角的度数是底角的3倍,那么底角的度数是______.40.已知等腰三角形的周长为20,底长为x,则x的取值范围是______.41.用一条长为20cm的细绳围成一个等腰三角形,已知一边长是另一边长的2倍,则腰长为______cm.42.如图,△ABC中,AB=AC,D、E是BC边上两点,AD=AE,BE=6,DE=4,则EC =______.43.如图,△ABC中,AB=AC,∠C═30°,DA⊥BA于点A,BC=16cm,则AD=______.44.如图,AB=AC=CD,∠BAC=56°,则∠B=______,∠D=______.45.如图,已知每个小方格的边长为1,A,B两点都在小方格的顶点上,请在图中找一个顶点C,使△ABC为等腰三角形,则这样的顶点C有______个.三.解答题(共5小题)46.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.47.在△ABC中,AD平分∠BAC,E是BC上一点,BE=CD,EF∥AD交AB于F点,交CA的延长线于P,CH∥AB交AD的延长线于点H,①求证:△APF是等腰三角形;②猜想AB与PC的大小有什么关系?证明你的猜想.48.如图,在△ABC中,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA.(1)若∠BAC=90°(图1),求∠DAE的度数;(2)若∠BAC=120°(图2),求∠DAE的度数;(3)当∠BAC>90°时,探求∠DAE与∠BAC之间的数量关系,直接写出结果.49.已知等腰三角形的周长为24cm,其中两边之差为6cm,求这个等腰三角形的腰长.50.如图,在△ABC中,AB=AC,CE平分∠ACB,EC=EA.(1)求∠A的度数;(2)若BD⊥AC,垂足为D,BD交EC于点F,求∠1的度数.等腰三角形的性质及判定参考答案与试题解析一.选择题(共30小题)1.解:∵AB=AC=BD,∴∠B=∠C,∠BAD=∠1,∵∠1=∠C+∠2,∴∠BAD=∠1=∠C+∠2,∵∠B+∠1+∠BAD=180°,∴∠C+2∠1=180°,∵∠C=∠1﹣∠2,∴∠1﹣∠2+2∠1=180°,即3∠1﹣∠2=180°.故选:D.2.解:∵CA=CB,∠A=20°,∴∠B=∠A=20°,∴∠BCD=∠A+∠B=40°,故选:B.3.解:如图:分情况讨论.①AB为等腰△ABC底边时,符合条件的C点有2个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有2个.故选:C.4.解:若4为腰,8为底边,此时4+4=8,不能构成三角形,故4不能为腰;若4为底边,8为腰,此时三角形的三边分别为4,8,8,周长为4+8+8=20,综上三角形的周长为20.故选:B.5.解:∵△ABC中,AB=AC,顶角是120°,∴∠B=∠C,∠A=120°∵∠A+∠B+∠C=180°,∴∠B=∠C==30°,故选:D.6.解:∵+|6﹣BC|=0,∴AB﹣3=0,6﹣BC=0,解得AB=3,BC=6,(1)若AB是腰长,BC为底,则三角形的三边长为:3、3、6,不能能组成三角形,(2)若AB是底边长,BC为腰,则三角形的三边长为:3、6、6,能组成角形,周长为3+6+6=15.故此三角形的周长为15.故选:B.7.解:过A作AE⊥BC,∵AB=AC,∴EC=BE=BC=4,∴AE==3,∵D是线段BC上的动点(不含端点B、C).∴3≤AD<5,∴AD=3或4,∵线段AD长为正整数,∴AD的可以有三条,长为4,3,4,∴点D的个数共有3个,故选:B.8.解:当等腰三角形的腰为1时,三边为1,1,6,1+1=2<6,三边关系不成立,当等腰三角形的腰为6时,三边为1,6,6,三边关系成立,周长为1+6+6=13.故选:A.9.解:∵11cm是底边,∴腰长=(26﹣11)=7.5cm,故选:C.10.解:|m﹣3|+(n﹣6)2=0,∴m﹣3=0,n﹣6=0,解得m=3,n=6,当m=3作腰时,三边为3,3,6,不符合三边关系定理;当n=6作腰时,三边为3,6,6,符合三边关系定理,周长为:3+6+6=15.故选:B.11.解:在Rt△ABC中,AB==10,①如图1,当AB=AD=10时,CD=CB=6时,CD=CB=6,得△ABD的等腰三角形.②如图2,当AB=BD=10时,△ABD是等腰三角形;③如图3,当AB为底时,AD=BD时,△ABD是等腰三角形.故选:B.12.解:当4为底边时,腰长为6,则这个等腰三角形的周长=4+6+6=16;当6为底边时,腰长为4,则这个等腰三角形的周长=4+4+6=14;故选:D.13.解:∵等腰三角形的顶角为70°,∴它的一个底角度数为(180°﹣70°)=55°,故选:B.14.解:如图所示:由勾股定理得:AB==,①若AB=BC,则符合要求的有:C1,C2,C3共4个点;②若AB=AC,则符合要求的有:C4,C5共2个点;若AC=BC,则不存在这样格点.∴这样的C点有5个.故选:D.15.解:①当这个角为顶角时,底角=(180°﹣30°)÷2=75°;②当这个角是底角时,底角=30°;故选:C.16.解:∵AB=AC,∠A=36°,∴△ABC是等腰三角形.∴∠C=∠ABC=72°.∵BD平分∠ABC交AC于E,∴∠ABE=∠EBC=36°,∵∠A=∠ABE=36°,∴△ABE是等腰三角形.∵∠BEC=∠A+∠ABE=72°=∠C,∴△BEC是等腰三角形.∵∠DBC=∠DCB=36°,∴△BCD是等腰三角形,∵∠EDC=∠DBC+∠DCB=72°=∠DEC,∴△CDE是等腰三角形,∴共有5个等腰三角形.故选:C.17.解:以A为圆心,AB长为半径画弧,交l1、l2于4个点;以B为圆心,AB长为半径画弧交l1、l2于2个点,再作AB的垂直平分线交l1、l2于2个点,共有8个点,故选:D.18.解:∵OA=OC,∴∠ACO=∠A=36°,∵BC∥AO,∴∠BCA=∠A=36°,∴∠BCO=72°,∵OB=OC,∴∠B=72°.故选:C.19.解:∵∠B=∠C,∴AB=AC,∴选项A不符合题意;∵∠B=∠C,∴AB=AC,BD=CD,∴AD⊥BC,∠BAD=∠CAD,∴选项B、选项C不符合题意;当△ABC中有一个角为60°时,△ABC是等边三角形,∴选项D符合题意;故选:D.20.解:分两种情况讨论:当这个三角形的底边是2时,三角形的三边分别是2、3、3,能够组成三角形,则三角形的周长是8;当这个三角形的底边是3时,三角形的三边分别是2、2、3,能够组成三角形,则三角形的周长是7.故等腰三角形的周长为8或7.故选:C.21.解:因为等腰三角形的两个底角相等,又因为顶角是40°,所以其底角为=70°.故选:B.22.解:∵AB=AC,∠BAC=108°,∴∠B=∠C=36°,△ABC是等腰三角形,∵∠BAD=∠B=36°,∴△ABD是等腰三角形,∵∠CAE=∠C=36°,∴△AEC是等腰三角形,∴∠ADC=∠DAC=72°,∴△ADC是等腰三角形,同理,△ABE是等腰三角形,∴∠ADE=∠AED=72°,∴△ADE是等腰三角形,故选:D.23.解:∵∠A+∠B+∠C=180°,∠A:∠B:∠C=1:1:2,∴∠A=∠B=45°,∠C=90°.则该三角形的等腰直角三角形.故选:B.24.解:由题意知,应分两种情况:(1)当腰长为3时,能构成三角形,周长=2×3+5=11;(2)当腰长为5时,能构成三角形,周长=2×5+3=13.故选:D.25.解:∵AP1=P1P2,P1P2=P2P3,P3P4=P2P3,P3P4=P4P5,∴∠A=∠P1P2A,∠P2P1P3=∠P2P3P1,∠P3P2P4=∠P3P4P2,∠P4P3P5=∠P4P5P3,∴∠P3P5P4=4∠A=4α°,∵要使得这样的钢条只能焊上4根,∴∠P5P4B=5α°,由题意,∴18°≤α<22.5°.故选:C.26.解:∵在等腰△ABC中,∵∠A=120°,∴∠A为等腰三角形的顶角,∴∠B=∠C,∵∠A=120°,∴∠B=∠C=30°;故选:D.27.解:连接AD,∵在△ABC中,AB=AC=13,该三角形的面积为65,∴三角形ABC的面积=△ABD的面积+△ACD的面积=AB•DN+AC•DM=AB•(DN+DM)=×13×(DN+DM)=65,解得:DN+DM=10.故选:D.28.解:∵AB=AC,∴∠ACB=∠ABC=70°,∵直线l1∥l2,∴∠1+∠ACB+∠ABC=180°,∴∠1=180°﹣∠ABC﹣∠ACB=180°﹣70°﹣70°=40°.故选:B.29.解:当40°的角为等腰三角形的顶角时,底角的度数==70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故选:D.30.解:当腰长为8时,底长为:18﹣8×2=2;2+8>8,能构成三角形;当底长为8时,腰长为:(18﹣8)÷2=5;5+5>8,能构成三角形.故另两条边的长是5、5或2、8.故选:C.二.填空题(共15小题)31.解:①30°是顶角,则底角=(180°﹣30°)=75°;②30°是底角,则顶角=180°﹣30°×2=120°.∴另两个角的度数分别是75°、75°或30°、120°.故答案为75°、75°或30°、120°.32.解:∵AD是△ABC的高,AB=AC,∴CD=BD=BC=4=2,故答案为:2.33.解:①当AB=AP时,在y轴上有2点满足条件的点P.②当AB=BP时,在y轴上有1点满足条件的点P.③当AP=BP时,在y轴上有一点满足条件的点P.综上所述:符合条件的点P共有4个.故答案为:434.解:要使△OAB为等腰三角形分三种情况讨论:①当OB=AB时,作线段OA的垂直平分线,与直线b的交点为B,此时有1个;②当OA=AB时,以点A为圆心,OA为半径作圆,与直线b的交点,此时有1个;③当OA=OB时,以点O为圆心,OA为半径作圆,与直线b的交点,此时有2个,1+1+2=4,故答案为:435.解:(1)若3为腰长,10为底边长,由于3+3<10,则三角形不存在;(2)若10为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为10+10+3=23.故答案为:23.36.解:当6是腰长时,周长=6+6+8=20;当8是腰长时,周长=6+8+8=22.故周长是20或22.故答案为:20或22.37.解:∵Rt△ABC中,AC⊥BC,∴∠A+∠B=90°,∵AE=AO,BF=BO,∴∠AOE=∠AEO=,∠BOF=∠BFO=,∴∠EOF=180°﹣∠AOE﹣∠BOF=180°﹣(+)=(∠A+∠B)=45°,故答案为45°.38.解:当6为底时,三角形的三边为6,8、8可以构成三角形,周长为6+8+8=22;当8为底时,三角形的三边为8,6、6可以构成三角形,周长为8+6+6=20.则△ABC的周长为22或20.故答案为:22或20.39.解:设底角为x°,则顶角为3x°,根据题意得:x+x+3x=180解得:x=36;故答案为:36°.40.解:根据三角形的三边关系,x<(20﹣x),解得x<10,∴x的取值范围是0<x<10.故答案为:0<x<10.41.解:设较短的边长为xcm,则较长的边长为2xcm,①若较短的边为底边,较长的边为腰,则x+2x+2x=20,解得x=4,此时三角形三边长分别为4cm,8cm,8cm,能组成三角形;②若较短的边为腰,较长的边为底边,则x+x+2x=20,解得x=5,此时三角形三边长分别为5cm,5cm,10cm,∵5+5=10,∴不满足三角形任意两边之和大于第三边,故不能围成三角形;综上所述,等腰三角形的腰长8cm,故答案为8.42.证明:∵BE=6,DE=4,∴BD=BE﹣DE=2,过A作AP⊥BC于P,∵AB=AC,AP⊥BC,∴BP=CP,同理有DP=EP,∴CE=BD=2,故答案为:2.43.解:∵AB=AC,∴∠B=∠C=30°,∴∠BAC=180°﹣2×30°=120°,∵DA⊥BA,∴∠BAD=90°,∴∠CAD=120°﹣90°=30°,∴∠CAD=∠C,∴AD=CD,在Rt△ABD中,∵∠B=30°,∠BAD=90°,∴BD=2AD,∴BC=BD+CD=2AD+AD=3AD,∵BC=16cm,∴AD=cm,故答案为:cm.44.解:∵AB=AC,∠BAC=56°∴∠B=∠ACB==62°,∵AC=CD,∴∠CAD=∠D,∵∠ACB=∠CAD+∠D,∴∠D=∠ACB=31°,故答案为:62°,31°.45.解:当AB为底时,作AB的垂直平分线,可找出格点C的个数有5个,当AB为腰时,分别以A、B点为顶点,以AB为半径作弧,可找出格点C的个数有3个;∴这样的顶点C有8个.故答案为:8.三.解答题(共5小题)46.解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.则∠C=∠ABC=2∠A=72°.又BD是AC边上的高,则∠DBC=90°﹣∠C=18°.47.①证明:∵EF∥AD,∴∠1=∠4,∠2=∠P,∵AD平分∠BAC,∴∠1=∠2,∴∠4=∠P,∴AF=AP,即△APF是等腰三角形;②AB=PC.理由如下:证明:∵CH∥AB,∴∠5=∠B,∠H=∠1,∵EF∥AD,∴∠1=∠3,∴∠H=∠3,在△BEF和△CDH中,∵,∴△BEF≌△CDH(AAS),∴BF=CH,∵AD平分∠BAC,∴∠1=∠2,∴∠2=∠H,∴AC=CH,∴AC=BF,∵AB=AF+BF,PC=AP+AC,∴AB=PC.48.解:(1)如图1,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵BD=BA,∴∠BAD=∠BDA=(180°﹣∠B)=67.5°,∵CE=CA∴∠CAE=∠E=∠ACB=22.5°,∴∠BAE=180°﹣∠B﹣∠E=112.5°,∴∠DAE=∠BAE﹣∠BAD=45°,(2)如图2,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=30°,∵BA=BD,∴∠BAD=∠BDA=75°,∴∠DAC=45°,∵CA=CE,∴∠E=∠CAE=15°,∴∠DAE=∠DAC+∠CAE=60°;(3)∠DAE=∠BAC,理由:设∠CAE=x,∠BAD=y,则∠B=180°﹣2y,∠E=∠CAE=x,∴∠BAE=180°﹣∠B﹣∠E=2y﹣x,∴∠DAE=∠BAE﹣∠BAD=2y﹣x﹣y=y﹣x,∠BAC=∠BAE﹣∠CAE=2y﹣x﹣x=2y﹣2x ∴∠DAE=∠BAC.49.解:设三角形的腰为x,底为y,根据题意得或,解得或,又知6+6<12,不能构成三角形,即等腰三角形的腰长为:10cm.50.解:(1)∵EA=EC,∴设∠A=∠2=x,∵EC平分∠ACB,∴∠ACB=2x,∵AB=AC,∴∠ABC=∠ACB=2x,在△ABC中,∴x+2x+2x=180°,∴x=36°,∴∠A=36°;(2)∵∠A=∠2,∴∠2=36°,∵BD⊥AC,∴∠DFC=90°﹣36°=54°,∴∠1=∠DFC=54°.第1页(共1页)。
八年级上2.3《等腰三角形的性质定理》同步练习题含答案

浙教版八年级数学上册第二章特殊三角形2.3《等腰三角形的性质定理》同步练习题一、选择题1.一个等腰三角形的顶角是底角的4倍,则其顶角的度数为()A.20° B.30° C.80° D.120°2.等腰三角形的一个外角为140°,则顶角的度数为()A.40° B.40°或70° C.70° D.40°或100°3.如图,在△ABC中,已知∠B和∠C的平分线交于点F,过点F作DE∥BC,交AB于点D,交AC于点E.若BD+CE=9,则线段DE的长为()A. 9B. 8C. 7D. 6(第3题)(第4题)4.如图,△ABC内有一点D,且DA=DB=DC.若∠DAB=20°,∠DAC=30°,则∠BDC的大小是()A.100° B.80° C.70° D.50°5.等腰三角形的“三线合一”指的是()A.中线、高线、角平分线互相重合 B.腰上的中线、腰上的高线、底角的平分线互相重合C.顶角的平分线、中线、高线互相重合D.顶角的平分线,底边上的高线、底边上的中线互相重合(第6题)6.如图是人字形屋架的设计图,由AB,AC,BC,AD四根钢条焊接而成,其中A,B,C,D均为焊接点,且AB=AC,D为BC的中点.现在焊接所需的四根钢条已截好,且已标出BC的中点D.如果焊接工身边只有可检验直角的角尺,那么为了准确快速地焊接,他首先应取的两根钢条及焊接的点是()A.AC和BC,焊接点C B.AB和AC,焊接点AC.AD和BC,焊接点D D.AB和AD,焊接点A二、填空题7.(1)在△ABC中,AB=AC,AD⊥BC于点D,若∠BAC=80°,则∠DAC=40°;若BC=6 cm,则CD=____cm;(2)在△ABC中,AB=AC,AD平分∠BAC,若BD=2.5 cm,则BC=5c m,∠ADB=;(3)在△ABC中,AB=AC,AD是BC边上的中线,若∠BAD=50°,则∠BAC=__,∠ADC=____.8. 如图,在△ABC中,AB=AC,BC=6,AD⊥BC于点D,则BD=____.9.如图,在△ABC中,AB=AC,E为BC的中点,延长BA至点D.若∠CAE=36°,则∠B=_-_,∠CAD=______.10. 在等腰三角形A BC中,AB=AC,AD是角平分线,有下列结论:①AD⊥BC,②BD=DC,③∠B=∠C,④∠BA D=∠CAD.其中正确的是________ (填序号).三、解答题11.如图,在△ABC中,AB=AC,直线AE交BC于点D,O是AE上一动点(不与A重合),且OB=OC,试猜想AE与BC的关系,并说明理由.12.如图,在△ABC中,PM,QN分别是AB,AC的垂直平分线,∠BAC=110°,求∠P AQ的度数.(第13题)13.如图,已知等腰△ABC的周长为16 cm,AD是顶角∠BAC的平分线,AB∶AD=5∶4,且△ABD的周长为12 cm.求△ABC各边的长.(第14题)14.如图,已知D是等腰三角形ABC的底边BC上一点,它到两腰AB,AC的距离分别为DE,DF,请指出当D在什么位置时,DE=DF,并加以证明.(第15题)15.如图,已知△ABC和△ADE都是等腰三角形,AB=AC,AD=AE且∠DAB=∠EAC,则DE∥BC吗?为什么?(第16题)16.如图,在△ABC 中,∠BCA =90°,∠BAC =30°,分别以AB ,AC 为边做等边△ABE 和△ACD ,连结ED 交AB 于点F .求证:(1)BC =12AB ; (2)EF =FD .参考答案:1.D2.D3.A4.A5.D6.C7.3; 90°;100°, 90° 8. 39. ∠B =54°,∠CAD =108°.10. ①②③④11.【解】 猜想:AE 垂直平分BC ,即AE ⊥BC ,BD =CD.理由如下:∵AB =AC ,OB =OC ,AO =AO ,∴△ABO ≌△ACO(SSS),∴∠BAO =∠CAO.∴AE⊥BC,BD=CD(等腰三角形三线合一).12.【解】∵PM垂直平分AB,∴P A=PB,∴∠P AB=∠B.同理,∠QAC=∠C.∵∠B+∠C+∠BAC=180°,∴∠B+∠C=180°-110°=70°,∴∠P AB+∠QAC=70°.∵∠P AQ=110°-(∠P AB+∠QAC),∴∠P AQ=110°-70°=40°.13.【解】设AB=5x,则AD=4x,AC=5x,BC=16-10x.∵AB=AC,AD平分∠BAC,∴BD=DC=12BC=8-5x,∴5x+4x+(8-5x)=12,解得x=1.∴AB=5x=5,AC=5x=5,BC=16-10x=6.14.【解】当D在BC的中点时,DE=DF.证明:当BD=CD时,∵∠B=∠C,∠DEB=∠DFC=90°,∴△DBE≌△DCF(AAS),∴DE=DF.15.【解】DE∥BC.理由如下:∵AB=AC,AD=AE,∴∠B =∠C ,∠D =∠E.∵∠DAB =∠EAC ,∴∠B +∠DAB =∠C +∠EAC , ∴∠AFG =∠AGF ,∴∠AFG =12(180°-∠EAD ). 又∵∠D =12(180°-∠EAD ), ∴∠AFG =∠D ,16.【解】 (1)过点E 作EG ⊥AB 于点G . ∵△ABE 为等边三角形,∴BG =12AB ,∠BEG =12∠AEB =30°,BA =BE . ∵∠BCA =90°,∠BAC =30°,∴∠BGE =∠BCA =90°,∠BAC =∠BEG . 在△ACB 和△EGB 中,∵⎩⎪⎨⎪⎧∠BGE =∠BCA ,∠BEG =∠BAC ,BE =BA ,∴△ACB ≌△EGB (AAS ),∴BC =BG .∴BC =12AB . (2)∵△ACB ≌△EGB ,∴AC =EG .∵△ACD 为等边三角形,∴∠CAD =60°,AC =AD ,∴EG =DA .∵∠BAC =30°,∴∠DAF =∠CAD +∠BAC =90°. ∴∠EGF =∠DAF .在△EGF 和△DAF 中, ∵⎩⎪⎨⎪⎧∠EFG =∠DF A ,∠EGF =∠DAF ,EG =DA ,∴△EGF ≌△DAF (AAS ), ∴EF =FD .。
2021-2022学年人教版八年级数学上册等腰三角形的性质练习含答案

等腰三角形的性质一、选择题1.如图,已知线段AB,分别以A,B为圆心,大于AB同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A.AB平分∠CAD B.CD平分∠ACB C.AB⊥CD D.AB=CD2.如图,在△ABC中,AB=AC,∠A=40°,CD∥AB,则∠BCD=()A.40°B.50°C.60°D.70°3.如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A.50°B.40°C.30°D.20°4.等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°5.如图,在△ABC中,AB=AC,BD平分∠ABC,BD=BE,∠A=100°,则∠DEC=()A.90°B.100°C.105°D.110°6.如图,AD是等腰三角形ABC的顶角平分线,BD=5,则CD等于()A.10B.5C.4D.37.如图,将一张长方形纸按图中虚线AD对折,再沿直线l剪开,再把它展开后得到△ABC,则下列结论错误的是()A.AD⊥BC B.BD=CD C.∠B=∠C D.AB=CB8.如图,AB=AC,AB的垂直平分线MN交AC于点D,若∠C=65°,则∠DBC的度数是()A.25°B.20°C.30°D.15°9.如图,在△ABC中,AB=AC,点D在CA的延长线上,DE⊥BC于点E,∠BAC=100°,则∠D=()A.40°B.50°C.60°D.80°10.等腰三角形一腰上的高与另一腰的夹角为30°,它的顶角为()A.30°B.60°C.120°D.60°或120°二、非选择题11.已知:如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=度.12.如图,在△ABC中,AB=AC,D是BC边上的中点,连接AD,BE平分∠ABC交AC 于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.13.问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA =EC.若∠BAE=90°,∠B=45°,求∠DAC的度数.答案:∠DAC=45°.思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由.(2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.14.如图,在△ABC中,AB=AC,D是BC边上任意一点,过点D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当点D在BC的什么位置时,DE=DF?请加以证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?请加以证明.(3)若点D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?请说明理由.15.如图,∠ACB=90°,D、E在AB上,AD=AC,BE=BC,求∠DCE的度数.参考答案与试题解析一、选择题1.如图,已知线段AB,分别以A,B为圆心,大于AB同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A.AB平分∠CAD B.CD平分∠ACB C.AB⊥CD D.AB=CD【分析】根据作图判断出四边形ACBD是菱形,再根据菱形的性质:菱形的对角线平分一组对角、菱形的对角线互相垂直平分可得出答案.【解答】解:由作图知AC=AD=BC=BD,∴四边形ACBD是菱形,∴AB平分∠CAD、CD平分∠ACB、AB⊥CD,不能判断AB=CD,故选:D.2.如图,在△ABC中,AB=AC,∠A=40°,CD∥AB,则∠BCD=()A.40°B.50°C.60°D.70°【分析】根据等腰三角形的性质可求∠ACB,再根据平行线的性质可求∠BCD.【解答】解:∵在△ABC中,AB=AC,∠A=40°,∴∠ACB=70°,∵CD∥AB,∴∠ACD=180°﹣∠A=140°,∴∠BCD=∠ACD﹣∠ACB=70°.故选:D.3.如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A.50°B.40°C.30°D.20°【分析】根据三角形的内角和和等腰三角形的性质即可得到结论.【解答】解:∵在Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=40°,∵BC=BD,∴∠BCD=∠BDC=(180°﹣40°)=70°,∴∠ACD=90°﹣70°=20°,故选:D.4.等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°【分析】分80°角是顶角与底角两种情况讨论求解.【解答】解:①80°角是顶角时,三角形的顶角为80°,②80°角是底角时,顶角为180°﹣80°×2=20°,综上所述,该等腰三角形顶角的度数为80°或20°.故选:B.5.如图,在△ABC中,AB=AC,BD平分∠ABC,BD=BE,∠A=100°,则∠DEC=()A.90°B.100°C.105°D.110°【分析】由在△ABC中,AB=AC,∠A=100°,根据等边对等角的性质,可求得∠ABC 的度数,又由BD平分∠ABC,即可求得∠DBE的度数,又由等边对等角的性质,可求得∠BED的度数,根据平角的定义就可求出∠DEC的度数.【解答】解:∵在△ABC中,AB=AC,∠A=100°,∴∠ABC=∠C=40°,∵BD平分∠ABC,∴∠DBE=∠ABC=20°,∴∠BDE=∠BED=80°,∴∠DEC=100°.故选:B.6.如图,AD是等腰三角形ABC的顶角平分线,BD=5,则CD等于()A.10B.5C.4D.3【分析】根据等腰三角形三线合一的性质即可求解.【解答】解:∵AD是等腰三角形ABC的顶角平分线,BD=5,∴CD=5.故选:B.7.如图,将一张长方形纸按图中虚线AD对折,再沿直线l剪开,再把它展开后得到△ABC,则下列结论错误的是()A.AD⊥BC B.BD=CD C.∠B=∠C D.AB=CB【分析】由图中操作可知:AD所在直线是△ABC的对称轴,即可得出结论.【解答】解:由图中操作可知:AD所在直线是△ABC的对称轴,∴AD⊥BC,BD=CD,∠B=∠C,AB=AC,∴A,B,C正确,D错误,故选:D.8.如图,AB=AC,AB的垂直平分线MN交AC于点D,若∠C=65°,则∠DBC的度数是()A.25°B.20°C.30°D.15°【分析】根据等腰三角形的性质得到∠ABC,再根据垂直平分线的性质求出∠ABD,从而可得结果.【解答】解:∵AB=AC,∠C=∠ABC=65°,∴∠A=180°﹣65°×2=50°,∵MN垂直平分AB,∴AD=BD,∴∠A=∠ABD=50°,∴∠DBC=∠ABC﹣∠ABD=15°,故选:D.9.如图,在△ABC中,AB=AC,点D在CA的延长线上,DE⊥BC于点E,∠BAC=100°,则∠D=()A.40°B.50°C.60°D.80°【分析】根据等腰三角形的性质和三角形内角和定理,求得∠C=40°,然后根据直角三角形两锐角互余,即可求得∠D=50°.【解答】解:∵AB=AC,∠BAC=100°,∴∠C=∠B=40°,∵DE⊥BC于点E,∴∠D=90°﹣∠C=50°,故选:B.10.等腰三角形一腰上的高与另一腰的夹角为30°,它的顶角为()A.30°B.60°C.120°D.60°或120°【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成立,因而可分两种情况进行讨论.【解答】解:分两种情况:①当高在三角形内部时(如图1),∵∠ABD=30°,∴顶角∠A=90°﹣30°=60°;②当高在三角形外部时(如图2),∵∠ABD=30°,∴顶角∠CAB=90°+30°=120°.故选:D.二、非选择题11.已知:如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=40度.【分析】根据等腰三角形的性质和三角形的内角和定理即可得到结论.【解答】解:∵AD=DC,∴∠DAC=∠C=35°,∴∠ADB=∠DAC+∠C=70°.∵AB=AD,∴∠B=∠ADB=70°,∴∠BAD=180°﹣∠B﹣∠ADB=180°﹣70°﹣70°=40°.故答案为:40.12.如图,在△ABC中,AB=AC,D是BC边上的中点,连接AD,BE平分∠ABC交AC 于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.【分析】(1)利用等腰三角形的三线合一的性质证明∠ADB=90°,再利用等腰三角形的性质求出∠ABC即可解决问题.(2)只要证明∠FBE=∠FEB即可解决问题.【解答】(1)解:∵AB=AC,∴∠C=∠ABC,∵∠C=36°,∴∠ABC=36°,∵BD=CD,AB=AC,∴AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣36°=54°.(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC,∵EF∥BC,∴∠FEB=∠CBE,∴∠FBE=∠FEB,∴FB=FE.13.问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA =EC.若∠BAE=90°,∠B=45°,求∠DAC的度数.答案:∠DAC=45°.思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由.(2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.【分析】(1)根据三角形外角的性质得到∠AED=2∠C,①求得∠DAE=90°﹣∠BAD =90°﹣(45°+∠C)=45°﹣∠C,②由①,②即可得到结论;(2)设∠ABC=m°,根据三角形的内角和定理和等腰三角形的性质即可得到结论.【解答】解:(1)∠DAC的度数不会改变;∵EA=EC,∴∠EAC=∠C,①,∵BA=BD,∴∠BAD=∠BDA,∵∠BAE=90°,∴∠B=90°﹣∠AED=90°﹣2∠C,∴∠BAD=(180°﹣∠B)=[180°﹣(90°﹣2∠C)]=45°+∠C,∴∠DAE=90°﹣∠BAD=90°﹣(45°+∠C)=45°﹣∠C,②由①,②得,∠DAC=∠DAE+∠CAE=45°﹣∠C+∠C=45°;(2)设∠ABC=m°,则∠BAD=(180°﹣m°)=90°﹣m°,∠AEB=180°﹣n°﹣m°,∴∠DAE=n°﹣∠BAD=n°﹣90°+m°,∵EA=EC,∴∠CAE=AEB=90°﹣n°﹣m°,∴∠DAC=∠DAE+∠CAE=n°﹣90°+m°+90°﹣n°﹣m°=n°.14.如图,在△ABC中,AB=AC,D是BC边上任意一点,过点D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当点D在BC的什么位置时,DE=DF?请加以证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?请加以证明.(3)若点D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?请说明理由.【分析】(1)当点D在BC的中点时,DE=DF,根据AAS证△BED≌△CFD,根据全等三角形的性质推出即可;(2)连接AD,根据三角形ABC的面积=三角形ABD的面积+三角形ACD的面积,进行分析证明;(3)类似(2)的思路,仍然用计算面积的方法来确定线段之间的关系.即三角形ABC 的面积=三角形ABD的面积﹣三角形ACD的面积.【解答】(1)解:当点D在BC的中点时,DE=DF.理由:如图1中,连接AD.∵D为BC的中点,∴BD=CD.∵AB=AC,∴∠B=∠ACB,∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°.在△BED和△CFD中,,∴△BED≌△CFD(AAS),∴DE=DF.(2)解:DE+DF=CG.证明如下:如图2,连接AD,则S△ABC=S△ABD+S△ACD,即AB•CG=AB•DE+AC•DF.∵AB=AC,∴DE+DF=CG.(3)解:当点D在BC的延长线上时,(2)中的结论不成立,但有DE﹣DF=CG.理由如下:如图3,延长BC至点D,连接AD,过点D作DF⊥AC,交AC的延长线于点F,则S△ABD=S△ABC+S△ACD,即AB•DE=AB•CG+AC•DF.∵AB=AC,∴DE=CG+DF,即DE﹣DF=CG.15.如图,∠ACB=90°,D、E在AB上,AD=AC,BE=BC,求∠DCE的度数.【分析】由AD=AC,BC=BE,根据等边对等角得出∠ACD=∠ADC,∠BEC=∠ECB,再利用三角形内角和定理得出∠A=180°﹣2∠ADC,∠B=180°﹣2∠DEC,而∠A+∠B=90°,那么求出∠ADC+∠DEC=135°,则∠DCE=180°﹣(∠ADC+∠DEC)=180°﹣135°=45°.【解答】解:∵AD=AC,∴∠ADC=∠ACD.∵BE=BC,∴∠BEC=∠ECB.∵∠ACB=90°,∴∠A+∠B=90°.在△ACD中,∠A=180°﹣2∠ADC,在△BCE中,∠B=180°﹣2∠DEC,∴∠A+∠B=180°﹣2∠ADC+180°﹣2∠DEC=90°.∴360°﹣2(∠ADC+∠DEC)=90°.∴∠ADC+∠DEC=135°.∴∠DCE=180°﹣(∠ADC+∠DEC)=180°﹣135°=45°.。
【基础练习】《等腰三角形》(数学沪科版八上)【含答案】

15.3 《等腰三角形》基础练习第 1 课时《等腰三角形的性质定理及推论》一、选择题1.已知等腰三角形的顶角为40°,则这个等腰三角形的底角为()A.40°B.70°C. 100 °D.140 °2.若等腰三角形中有两边长分别为 2 和5,则这个三角形的第三条边长为()A.2 或5B. 3C. 4D. 53.如图,AB∥ CD, AD=CD,∠ 1=65 °,则∠ 2 的度数是()A.50°B.60°C. 65°D.70°4.如图, AD,CE分别是△ ABC的中线和角均分线.若AB=AC,∠ CAD=20°,则∠ACE的度数是()A.20°B.35°C. 40°D. 70°5.若实数 m、n 知足等式 |m ﹣ 2|+=0,且 m、 n 恰巧是等腰△ ABC 的两条边的边长,则△ ABC的周长是()A.12B.10C.8 D.66.若等腰三角形的一个外角等于140 °,则这个等腰三角形的顶角度数为()A.40°B.100 °C. 40°或 70°D. 40°或 100 °7.如图,已知DE∥ BC, AB=AC,∠ 1=125 °,则∠ C 的度数是()A.55°B.45°C. 35°D. 65°8.如图,△ ABC中, AD⊥ BC, AB=AC,∠ BAD=30°,且 AD=AE,则∠ EDC等于()A.10°B. 12.5 °C. 15°D. 20°二、填空题9.等腰三角形的一个底角为50°,则它的顶角的度数为.10.一个等腰三角形的两边长分别为4cm 和 9cm ,则它的周长为cm.11.已知等腰三角形的一个外角为130 °,则它的顶角的度数为.12.如图,△ ABC中.点 D 在 BC边上, BD=AD=AC, E 为 CD 的中点.若∠CAE=16°,则∠ B 为度.13.我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特点值”,记作k,若 k=,则该等腰三角形的顶角为度.三、解答题14.如图,点D、 E 在△ ABC 的 BC 边上, AB=AC,AD=AE.求证: BD=CE.15.如图,△ ABC是等边三角形,BD 是中线,延伸BC 至 E,CE=CD,(1)求证: DB=DE.(2)在图中过 D 作 DF⊥ BE交 BE于 F,若 CF=4,求△ ABC 的周长.第2课时一、选择题1.以以下各组数据为边长,能够组成等腰三角形的是()A.1, 1, 2B. 1,1,3C. 2,2, 1D. 2,2,52.在△ABC 中,其两个内角以下,则能判断△ABC为等腰三角形的是()A.∠ A=40°,∠ B=50B.∠ A=40°,∠ B=60°C.∠ A=40°,∠ B=70D.∠ A=40°,∠ B=80°AB 于点E,3.如图,在△ABC中,∠ A=36°,∠ C=72°,点 D 在AC 上, BC=BD, DE∥ BC交则图中等腰三角形共有()A.3 个B.4 个C.5 个D.6 个4.如图,正方形网格中,网格线的交点称为格点,已知A, B 是两格点,假如 C 也是图中C 的个数是()的格点,且使得△ABC为等腰三角形,则点A.6B. 8C.9D.105.以下条件中,不可以判断△ABC 是等腰三角形的是()A.a=3,b=3 ,c=4B. a: b: c=2: 3: 4C.∠ B=50°,∠ C=80°D.∠ A:∠ B:∠ C=1: 1:26.已知△ ABC 的三条边长分别为3,4,6,在△ ABC所在平面内画一条直线,将△ABC切割成两个三角形,使此中的一个是等腰三角形,则这样的直线最多可画()A.5 条B.6 条C.7 条D.8 条7.以下三角形,不必定是等边三角形的是()A.有两个角等于60°的三角形B.有一个外角等于120 °的等腰三角形C.三个角都相等的三角形D.边上的高也是这边的中线的三角形8.如图, A、B 两点在正方形网格的格点上,每个方格都是边长为 1 的正方形,点 C 也在格点上,且△ABC是等腰三角形,则切合条件是点C共有()个.A.8B.9C. 10D. 11二、填空题9.如图,在△ABC中,∠ ACB=90°,∠ BAC=40°,在直线 AC上找点 P,使△ ABP 是等腰三角形,则∠ APB的度数为.10.如图已知OA=a, P 是射线 ON 上一动点,∠ AON=60°,当 OP=时,△ AOP为等边三角形.11.如图,在3× 3 的网格中有A、B 两点,任取一个格点E,则知足△EAB是等腰三角形的点 E 有个.12.在△ ABC中,∠ A=80°,当∠ B= 13.如图,以下 4 个三角形中,均有这个三角形分红两个小等腰三角形的是时,△ ABC 是等腰三角形.AB=AC,则经过三角形的一个极点的一条直线不可以够将(填序号).三、解答题14.如图, BD 是△ ABC的角均分线,DE∥ BC 交 AB 于点 E.(1)求证: BE=DE;(2)若 AB=BC=10,求 DE 的长.15.已知:如图,AB=AC,∠ ABD=∠ ACD,求证: BD=CD.第3课时一、选择题1.如图∠ AOP=∠ BOP=15°, PC∥ OA, PD⊥ OA,若 PC=10,则 PD 等于()A.10B.C. 5D.2.52.如图,在Rt△ ABC中,∠C=90°, AB=2BC,则∠A=()A.15°B. 30°C. 45°D. 60°3.如图,在Rt△ ABC中,∠ C=90°,∠ A=30°, BC=4cm,则 AB 等于()A.9 cm B. 8 cm C. 7cm D. 6cm4.如图,在等边△ABC中,BD 均分∠ABC交AC于点D,过点D 作 DE⊥BC于点E,且AB=6,则 EC的长为()A 3B 4.5C 1.5D 7.55.△ ABC中,∠A:∠ B:∠ C=1: 2: 3,最小边BC=3cm,则最长边AB 的长为()A.9cm B. 8cm C. 7cm D. 6cm6.如图,在△ABC中,∠ ACB=90°, CD是高,∠A=30°,AB=8,则BD=()A.2B.3C. 4D.67.某市为了美化环境,计划在以下图的三角形空地上栽种草皮,已知这类草皮每平方米售价为 a 元,则购置这类草皮起码需要()A.450a 元B. 225a 元C.150a 元D. 300a 元8.如图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC,DE垂直于横梁AC,AB=6m,∠ A=30°,则 DE等于()A.1.5m B. 2m C. 2.5m D. 3m二、填空题9.在 Rt△ ABC中,∠ A=30°,∠ B=90°, AC=10,则 BC=10.如图,在△A BC 中,∠ ACB=90°,∠ A=30°,以点 C 为圆心, CB 长为半径作圆弧,交AB 于点 D,若 CB=4,则 BD 的长为.11.如图,在Rt△ ABC 中,∠ C=90°,∠ ABC=60°, AB 的垂直均分线分别交AB 与 AC 于点 D 和点 E,若 CE=2,则 AB 的长为12.已知等腰三角形的底角为15°,腰长为 8cm,则腰上的高为.13.如图,在△A BC 中,∠ B=∠ C=60°,点 D 在 AB 边上, DE⊥ AB,并与 AC 边交于点E.如果 AD=1, BC=6,那么 CE等于.三、解答题14.如图,在△A BC 中, BA=BC,∠ B=120°,线段AB 的垂直均分线MN 交 AC 于点 D,且AD=8cm.求:(1)∠ ADG 的度数;(2)线段 DC的长度.15.某轮船由西向东航行,在 A 处测得小岛 P 的方向是北偏东 75°,又持续航行 7 海里后,在 B处测得小岛 P 的方向是北偏东 60°,求:( 1)此时轮船与小岛P 的距离 BP 是多少海里.(2)小岛点 P 方圆 3 海里内有暗礁,假如轮船持续向东履行,请问轮船有没有触礁的危险?请说明原因.参照答案第1课时1.解:∵等腰三角形的顶角为50°,∴这个等腰三角形的底角为:( 180°﹣ 40°)÷ 2=70°,应选: B.2.解:当腰为 5 时,依据三角形三边关系可知此状况建立,这个三角形的第三条边长为5;当腰长为 2 时,依据三角形三边关系可知此状况不建立;应选: D.3.解:∵ AB∥ CD,∴∠ 1=∠ ACD=65°,∵ AD=CD,∴∠ DCA=∠ CAD=65°,∴∠ 2 的度数是: 180°﹣ 65°﹣ 65°=50°.应选: A.4.解:∵ AD 是△ ABC 的中线, AB=AC,∠ CAD=20°,∴∠ CAB=2∠ CAD=40°,∠ B=∠ ACB=(180°﹣∠ CAB)=70°.∵ CE是△ ABC的角均分线,∴∠ ACE= ∠ ACB=35°.应选: B.5.解:∵ |m ﹣ 2|+=0,∴m﹣2=0, n﹣ 4=0,解得 m=2, n=4,当 m=2 作腰时,三边为 2,2, 4,不切合三边关系定理;当 n=4 作腰时,三边为2, 4, 4,切合三边关系定理,周长为:2+4+4=10.应选: B.6.解:①若顶角的外角等于140 °,那么顶角等于 40°,两个底角都等于70°;②若底角的外角等于140°,那么底角等于40°,顶角等于100°.应选: D.7.解:∵∠ 1=125 °,∴∠ ADE=180°﹣125°=55°,∵DE∥BC, AB=AC,∴AD=AE,∠ C=∠ AED,∴∠ AED=∠ ADE=55°,又∵∠ C=∠ AED,∴∠C=55°.应选:A.8.解:∵△ ABC中, AD⊥ BC, AB=AC,∠ BAD=30°,∴∠ DAC=∠BAD=30°(等腰三角形的顶角均分线、底边上的中线、底边上的高互相重合),∵AD=AE(已知),∴∠ ADE=75°∴∠ EDC=90°﹣∠ADE=15°.应选: C.9.解:∵等腰三角形底角相等,∴180°﹣50°×2=80°,∴顶角为 80°.故填 80°.10.解:①当腰是4cm ,底边是9cm 时:不知足三角形的三边关系,所以舍去.②当底边是4cm,腰长是9cm 时,能组成三角形,则其周长=4+9+9=22cm.故填 22.11.解:当50°为顶角时,其余两角都为65°、 65°,当50°为底角时,其余两角为50°、80°,所以等腰三角形的顶角为 50°或 80°.故答案为: 50°或 80°.12.解:∵ AD=AC,点 E 是 CD 中点,∴AE⊥ CD,∴∠ AEC=90°,∴∠ C=90°﹣∠CAE=74°,∵ AD=AC,∴∠ADC=∠C=74°,∵ AD=BD,∴2∠ B=∠ ADC=74°,∴∠ B=37°,故答案为 37°.13.解:∵△ ABC中, AB=AC,∴∠ B=∠ C,“特点值”,记作k,若k=,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的∴∠ A:∠ B=1: 2,即 5∠ A=180°,∴∠ A=36°,故答案为: 36.14.证明:如图,过点 A 作 AP⊥ BC于 P.∵ AB=AC,∴BP=PC;∵ AD=AE,∴DP=PE,∴BP﹣ DP=PC﹣ PE,∴BD=CE.15.( 1)证明:∵△ ABC是等边三角形,BD 是中线,∴∠ ABC=∠ ACB=60°.∠DBC=30°(等腰三角形三线合一).又∵ CE=CD,∴∠ CDE=∠CED.又∵∠ BCD=∠ CDE+∠CED,∴∠ CDE=∠CED=∠ BCD=30°.∴∠ DBC=∠ DEC.∴ DB=DE(等角平等边);(2)∵∠ CDE=∠ CED= ∠ BCD=30°,∴∠ CDF=30°,∵ CF=4,∴ DC=8,∵ AD=CD,∴ AC=16,∴△ ABC的周长 =3AC=48.第2课时1.解: A、∵ 1+1=2,∴本组数据不可以够组成等腰三角形;故本选项错误;B、∵ 1+1< 3,∴本组数据不可以够组成等腰三角形;故本选项错误;C、∵1+2>2,且有两边相等,∴本组数据能够组成等腰三角形;故本选项正确;D、∵ 2+2<5,∴本组数据不可以够组成等腰三角形;故本选项错误;应选: C.2.解;当顶角为∠A=40°时,∠ C=70°≠ 50°,当顶角为∠ B=50°时,∠ C=65°≠40°所以 A 选项错误.当顶角为∠ B=60°时,∠ A=60°≠40°,当∠ A=40°时,∠ B=70°≠ 60°,所以 B 选项错误.当顶角为∠ A=40°时,∠ C=70°=∠ B,所以 C 选项正确.当顶角为∠ A=40°时,∠ B=70°≠ 80°,当顶角为∠ B=80°时,∠ A=50°≠40°所以 D 选项错误.应选: C.3.解:∵在△ABC中, AB=AC,∠ A=36°,∴∠ ABC=∠ C==72°,△ ABC是等腰三角形,∵BD 均分∠ ABC,∴∠ABD=∠ DBC=36°,∵DE∥BC,∴∠ EDB=∠ DBC=36°,∴∠ ABD=∠ EDB=∠A,∴AD=BD, EB=ED,即△ ABD 和△ EBD是等腰三角形,∵∠ BDC=180°﹣∠ DBC﹣∠ C=72°,∴∠ BDC=∠ C,∴BD=BC,即△ BCD是等腰三角形,∵DE∥BC,∴∠ AED=∠ ABC,∠ ADE=∠ C,∴∠ AED=∠ ADE,∴AE=AD,即△ AED是等腰三角形.∴图中共有 5 个等腰三角形.应选: C.4.解:如图,分状况议论:① AB 为等腰△ ABC的底边时,切合条件的C点有 6 个;② AB 为等腰△ ABC此中的一条腰时,切合条件的 C 点有4 个.应选: D.5.解: A、∵ a=3, b=3,c=4,∴ a=b,∴△ ABC是等腰三角形;B、∵ a: b: c=2: 3: 4∴ a≠ b≠ c,∴△ ABC不是等腰三角形;C、∵∠ B=50°,∠ C=80°,∴∠ A=180°﹣∠ B﹣∠ C=50°,∴∠ A=∠ B,∴ AC=BC,∴△ ABC是等腰三角形;D、∵∠ A:∠ B:∠ C=1: 1: 2,∵∠ A=∠ B,∴ AC=BC,∴△ ABC是等腰三角形.应选: B.6.解:以下图:当 BC1=AC1, AC=CC2,AB=BC3, AC4=CC4, AB=AC5, AB=AC6, BC7=CC7时都能获得切合题意的等腰三角形.应选: C.7.解: A、依占有两个角等于60°的三角形是等边三角形,不合题意,故此选项错误;B、有一个外角等于120 °的等腰三角形,则内角为60°的等腰三角形,此三角形是等边三角形,不合题意,故此选项错误;C、三个角都相等的三角形,内角必定为60°是等边三角形,不合题意,故此选项错误;D、边上的高也是这边的中线的三角形,也可能是等腰三角形,故此选项正确.应选:D.8.解:①点 C 以点 A 为标准,AB 为底边,切合点 C 的有 5 个;②点 C 以点 B 为标准, AB 为等腰三角形的一条边,切合点 C 的有4 个.所以切合条件的点C共有 9 个.应选: B.9.解:∵在Rt△ ABC中,∠ C=90°,∠ A=40°,∴当 AB=BP1时,∠ BAP1=∠ BP1A=40°,当 AB=AP3 时,∠ ABP3=∠AP3B= ∠ BAC= × 40°=20°,当 AB=AP4 时,∠ ABP4=∠AP4B= ×( 180°﹣40°)=70°,当 AP2=BP2时,∠ BAP2=∠ ABP2,∴∠ AP2B=180°﹣ 40°× 2=100°,∴∠ APB 的度数为: 20°、40°、70°、 100°.故答案为: 20°或 40°或 70°或 100°.10.解:∵ AON=60°,∴当 OA=OP=a时,△ AOP 为等边三角形.故答案是: a.11.解:如图,知足△ EAB是等腰三角形的点 E 有5 个,故答案为: 5.12.解:∵∠A=80°,∴①当∠ B=80°时,△ ABC是等腰三角形;②当∠ B=( 180°﹣ 80°)÷ 2=50°时,△ ABC 是等腰三角形;③当∠ B=180°﹣ 80°× 2=20°时,△ ABC是等腰三角形;故答案为: 80°、 50°、20°.13.解:由题意知,要求“被一条直线分红两个小等腰三角形”,①中分红的两个等腰三角形的角的度数分别为:36°,36°,108°和 36°,72°72°,能;②不可以;③明显原等腰直角三角形的斜边上的高把它还分为了两个小等腰直角三角形,能;④中的为36°, 72, 72°和 36°, 36°, 108°,能.故答案为:②14.( 1)证明:∵ BD 是△ ABC 的角均分线,∴∠ EBD=∠ CBD.∵DE∥BC,∴∠EDB=∠CBD.∴∠EDB=∠ EBD.∴BE=DE.( 2)∵ AB=BC, BD 是△ ABC 的角均分线,∴ AD=DC.∵DE∥BC,∴,∴.∴DE=5.15.证明:连结BC.∵AB=AC(已知),∴∠ 1=∠ 2(等边平等角).又∠ ABD=∠ ACD(已知),∴∠ ABD﹣∠ 1=∠ ACD﹣∠ 2(等式运算性质).即∠ 3=∠ 4.∴ BD=DC(等角平等边).第3课时1.解:∵ PC∥ OA,∴∠ CPO=∠ POA,∵∠ AOP=∠ BOP=15°,∴∠ AOP=∠ BOP=∠ CPO=15°,过点 P 作∠ OPE=∠CPO交于 AO 于点 E,则△ OCP≌△ OEP,∴PE=PC=10,∵∠ PEA=∠OPE+∠ POE=30°,∴PD=10× =5.应选: C.2.解:∵在Rt△ ABC中,∠ C=90°, AB=2BC,即 BC= AB,∴∠ A=30°,应选: B.3.解:∵在Rt△ ABC中,∠ C=90°,∠ A=30°, BC=4cm,∴AB=2BC=8cm,应选: B.4.解:∵△ ABC是等边三角形,∴∠ C=60°, AC=AB=BC=6,∵BD 均分∠ ABC交 AC 于点 D,∴CD= AC=3,∵ DE⊥BC,∴∠ CDE=30°,∵EC= CD=1.5.应选: C.5.解:设∠ A、∠ B、∠ C 分别为 k、2k、 3k,则 k+2k+3k=180°,解得 k=30°,2k=60 °,3k=90 °,∵最小边BC=3cm,∴最长边AB=2BC=2×3=6cm.应选: D.6.解:∴ CD 是高,∴∠ BDC=90°,∵∠ ACB=90°,∠ A=30°,∴∠ B=60°,BC= AB=× 8=4,∴∠ BCD=30°,∴BD= BC=2,应选: A.7.解:如图,作BH⊥ AC于 H,则∠ ABH=180°﹣∠ BAC=30°,在 Rt△ ABH 中, BH= AB=10,所以 S△ ABC=× 10× 30=150,所以购置这类草皮起码需要150a 元.应选: C.8.解:∵立柱BC、 DE 垂直于横梁AC,∴BC∥ DE,∵D是 AB中点,∴ AD=BD,∴ AE: CE=AD: BD,∴ AE=CE,∴ DE 是△ ABC的中位线,∴DE= BC,在 Rt△ ABC中, BC= AB=3,∴ DE=1.5.应选: A.9.解:∵∠ A=30°,∠ B=90°,∴BC= AC=5,故答案为: 5.10.解:如图,过 C 点作 BD 的垂直均分线交BD 于点 E,∵在△ ABC中,∠ ACB=90°,∠ A=30°, BC=4,∴∠ BCE=∠ A=30°, BE=BD,∴BE=2∴BD=2BE=4故答案为: 4.11.解:∵在Rt△ ABC中,∠ C=90°,∠ ABC=60°,∴∠ A=30°,∵DE 是线段 AB 的垂直均分线,∴ EA=EB, ED⊥ AB,∴∠ A=∠ EBA=30°,∴∠ EBC=∠ ABC﹣∠ EBA=30°,又∵ BC⊥ AC, ED⊥ AB,∴DE=CE=2.在直角三角形ADE 中, DE=2,∠ A=30°,∴AE=2DE=4,∴ AD==2 ,∴ AB=2AD=4.故答案为: 4.12.解:如图,过C作CD⊥AB,交BA延长线于D,∵∠ B=15°,AB=AC,∴∠ DAC=30°,∵CD 为 AB 上的高, AC=8cm,∴CD= AC=4cm.故答案为: 4cm.13.解:∵在△ABC 中,∠ B=∠ C=60°,∴∠ A=60°,∵DE⊥AB,∴∠ AED=30°,∵AD=1,∴AE=2,∵ BC=6,∴AC=BC=6,∴CE=AC﹣ AE=6﹣ 2=4,故答案为 4.14.解:(1 )∵在△ ABC中,已知BA=BC,∴∠ A=∠ C(等边平等角);又∵∠ B=120°,∴∠ A=(180°﹣120°)=30°(三角形内角和定理),∴∠ ADG=90°﹣30°=60°;( 2)连结 BD.∵ AB 的垂直均分线DG 交 AC 于点 D,∴AD=BD,∠ A=∠ABD=30°,∴∠ CBD=90°;由( 1)知∠ A=∠ C=30°,∴BD= CD( 30°所对的直角边是斜边的一半),∴CD=2AD=2BD,∴AC=AD+CD=AD+2AD=3AD;又∵ AD=8cm,∴DC=16cm.15.解:(1 )过 P 作 PD⊥AB 于点 D,∵∠ PBD=90°﹣ 60°=30°且∠ PBD=∠ PAB+∠ APB,∠ PAB=90﹣ 75=15°∴∠ PAB=∠ APB,∴BP=AB=7(海里).( 2)作 PD⊥ AB于 D,∵ A 处测得小岛 P 在北偏东 75°方向,∴∠ PAB=15°,∵在 B 处测得小岛 P 在北偏东 60°方向,∴∠ APB=15°,∴AB=PB=7海里,∵∠ PBD=30°,∴PD= PB=3.5> 3,∴该船持续向东航行,没有触礁的危险.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等腰三角形的性质
一、基础能力平台
1.选择题:
(1)等腰三角形的底角与相邻外角的关系是()
A.底角大于相邻外角B.底角小于相邻外角
C.底角大于或等于相邻外角D.底角小于或等于相邻外角
(2)等腰三角形的一个内角等于100°,则另两个内角的度数分别为()
A.40°,40°B.100°,20°
C.50°,50°D.40°,40°或100°,20°
(3)等腰三角形中的一个外角等于100°,则这个三角形的三个内角分别为()A.50°,50°,80°B.80°,80°,20°
C.100°,100°,20°D.50°,50°,80°或80°,80°,20°
(4)如果一个等腰三角形的一个底角比顶角大15°,那么顶角为()
A.45°B.40°C.55°D.50°
(5)等腰三角形一腰上的高与底边所成的角等于()
A.顶角B.顶角的一半
C.顶角的2倍D.底角的一半
(6)已知:如图1所示,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A 的度数为()
A.30°B.45°C.36°D.72°
(1)(2)(3)2.填空题:
(1)如图2所示,在△ABC中,①因为AB=AC,所以∠________=∠______;
②因为AB=AC,∠1=∠2,所以BD=_____,_____⊥______.
(2)若等腰三角形的顶角与一个底角之和为110°,则顶角的度数为______.
(3)已知等腰三角形的一个角是80°,则顶角为______.
(4)在等腰三角形ABC中,一腰上的高是1cm,这条高与底边的夹角是450,则△ABC 的面积为________.
(5)如图3所示,O为△ABC内一点,且OA=OB=OC,∠ABO=20°,∠BCO=30°,则∠CAO=______.
3.等腰三角形两个内角的度数比为4:1,求其各个角的度数.
4.如图,已知线段a和c,用圆规和直尺作等腰三角形ABC,使等腰三角形△ABC•以a和c为两边,这样的三角形能作几个?
a
c
5.如图,在△ABC中,D是BC边上一点,AD=BD,AB=AC=CD,求∠BAC的度数.
6.如图所示,AB=AE,∠ABC=∠AED,BC=ED,点F是CD的中点.
(1)AF与CD垂直吗?请说明理由;
(2)在你接连BE后,还能得出什么新的结论?请写出三个.(不要求说明理由)
7.如图,在△ABC中,AB=AC,AD和BE是高,它们相交于点H,且AE=BE.AH与2BD•相等吗?请说明理由.
二、拓展延伸训练
右下图是人字型层架的设计图,由AB、AC、BC、AD四根钢条焊接而成,其中A、B、C、D均为焊接点,且AB=AC,D为BC的中点,现在焊接所需的四根钢条已截好,且已标出BC的中点D.如果焊接工身边只有可检验直角的角尺,那么为了准确快速地焊接,他首先应取的两根钢条及焊接的点是()
A.AC和BC,焊接点B B.AB和AC,焊接点A
C.AD和BC,焊接点D D.AB和AD,焊接点A
三、自主探究提高
如图,在△ABC中,CD是边AB上的中线,且DA=DB=DC.
(1)已知∠A=30°,求∠ACB的度数;
(2)已知∠A=40°,求∠ACB的度数;
(3)试改变∠A的度数,计算∠ACB的度数,你有什么发现吗?
答案:
【基础能力平台】
1.(1)B(2)A(3)D(4)D(5)B(6)C 2.(1)①B C•②DC(或BC)AD⊥BC(2)40°
(3)80°或20°(4)1
2
cm2(5)40°
3.80°80•° 20°或120°30°30°
4.略
5.108°
6.(1)略(2)①BE∥CD②AF•⊥BE③△ACF≌△ADF④∠BCF=∠EDF等7.说明△BCE≌△AHE,得AH=BC,由等腰三角形的“三线合一”性质得BC=2BD,所以AH=2BD
【拓展延伸训练】C
【自主探究提高】
(1)∠ACB=90°(2)∠ACB=90°
(3)猜想:不论∠A•等于多少度(小于90°),∠ACB总等于90°。