2018年湖北仙桃市中考数学考试(答案+解析)
2018年湖北省仙桃市数学中考模拟试卷(一)(有答案解析)最新

湖北省仙桃市西流河镇初级中学2018届中考模拟试卷(一)数学一、单选题1.下表是某水库一周内水位高低的变化情况(用正数记水位比前一日上升数,用负数记下降数).那么本周星期几水位最低()B.星期四C.星期六D.星期五【答案】C【考点】正数和负数的认识及应用【解析】【解答】解:由于用正数记水位比前一日上升数,用负数记下降数,由图表可知,周一水位比上周末上升0.12米,从周二开始水位下降,一直降到周六,所以星期六水位最低.故答案为:C.【分析】由于用正数记水位比前一日上升数,用负数记水位比前一日下降数,由图表即可知答案。
2.据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5 300万美元,“5 300万”用科学记数法可表示为()A. 5.3×103B. 5.3×104C. 5.3×107D. 5.3×108【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】5300万=53000000= .故答案为:C.【分析】科学记数法表示绝对值较大的数,一般表示成a ×10n,的形式,其中1 ≤∣a ∣<10, n是原数的整数位数减一。
3.如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K ﹣∠H=27°,则∠K=()A. 76°B. 78°C. 80°D. 82°【答案】B【考点】角的平分线,平行线的性质【解析】【解答】如图,分别过K、H作AB的平行线MN和RS,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE= ∠ABK,∠SHC=∠DCF= ∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣(∠ABK+∠DCK),∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,又∠BKC﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,∴∠BKC=180°﹣2(∠BKC﹣27°),∴∠BKC=78°,故答案为:B.【分析】分别过K、H作AB的平行线MN和RS,根据平行线的性质和角平分线的性质可用∠ABK和∠DCK 分别表示出∠H和∠K,从而可找到∠H和∠K的关系,结合条件可求得∠K。
实数的运算(含二次根式 三角函数特殊值的运算)(解析版)2018年数学全国中考真题-2

2018年数学全国中考真题实数的运算(含二次根式 三角函数特殊值的运算)(试题二)解析版一、选择题 1. 计算的结果等于( ) A. 5 B. C. 9 D.【答案】C【解析】分析:根据有理数的乘方运算进行计算. 详解:(-3)2=9, 故选C .点睛:本题考查了有理数的乘方,比较简单,注意负号.2. (2018黑龙江绥化,4,3分) 下列运算正确的是( ) A.2a +3a =5a 2B.552-=-)( C.a 3·a 4=a12D.(π-3)0=1【答案】D.【解析】解:A 、235a a a +=,故错误; B 255-=(),故错误;C 、34347·a a a a +==,故错误;D 、0(3)1π-=,故正确.故选:D.【知识点】合并同类项,二次根式的性质,同底数幂的乘法,零指数幂的意义3. (湖北省咸宁市,1,3)咸宁冬季里某一天的气温为- 3℃〜2 ),则这一天的温差是( )A .1℃B .-1℃C .5℃D .-5℃ 【答案】C【解析】解:根据“温差=最高气温-最低气温”,2℃-(-3))=2℃+3℃=5℃,故选C . 【知识点】有理数的减法运算4. (2018吉林省,1, 2分)计算(﹣1)×(﹣2)的结果是( ) A .2B .1C .﹣2D .﹣3【答案】A【解析】根据“两数相乘,同号得正”即可求出(﹣1)×(﹣2)=2.故选A .【知识点】有理数的乘法5. (2018贵州铜仁,10,4)计算990013012011216121++++++ 的值为( ) A. 1100 B. 99100 C. 199D. 10099【答案】B【解析】∵21-121121=⨯=,31-2132161=⨯=,41-31431121=⨯=,51-41541201=⨯=, 61-51651301=⨯=,……,1001-90110099199001=⨯=, ∴990013012011216121++++++ =11111111111122334455699100 =1991100100.6.(2018云南省昆明市,12,4分)下列运算正确的是( )A .2193-=⎛⎫ ⎪⎝⎭B . 020181-=- C . 32326(0)a a a a -⋅=≠ D =【答案】C .【解析】A 选项是幂的乘方,213-⎛⎫ ⎪⎝⎭=(13-)×(13-)=19,故A 选项错误; B 选项02018-1-(-2)=3,故B 选项错误;3232a a -⋅=3×2·32a -=6a ,故C 选项正确是同底数幂的乘法,其法则是底数不变,指数相加,即32325a a a a +⋅==,故C 选项正确;D ==故D 选项错误,故选C .【知识点】幂的乘方;同底数幂的乘法;零指数幂;负指数幂;合并同类二次根式7. (2018湖北恩施州,16,3分)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图6,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为 个.【答案】1838.【解析】本题为探索规律型,由题意可知,因为满六进一,从右到左依次排列的绳子分别代表绳结束乘以6的0次幂,6的1幂,6的2次幂,6的3次幂,6的4次幂.她一共采集到的野果数量为1838个.8. (2018辽宁锦州,6,3分)下列运算正确的是A 、7a -a=6B 、a 2·a 3=a 5C 、(a 3)3=a 6D 、(ab)4=ab 4【答案】B ,【解析】:根据合并同类项、幂的乘方、同底数幂的乘法、积的乘方法则进行解答. 二、填空题1. (2018湖北省江汉油田潜江天门仙桃市,12,3分)112()2--= .【答案】0【解析】直接利用二次根式的化简、绝对值的性质和负整数指数幂的性质分别化简,再计算.2323)21(23331=--+=--+-【知识点】二次根式分母有理化,绝对值,负整数指数幂2. (湖北省咸宁市,5,3)按一定顺序排列的一列数叫做数列,如数列:1111,,,,,261220则这个数列的前2018个数的和为__________. 【答案】20182019【解析】11111111,,,,,21262312342045====⨯⨯⨯⨯则第2018个数为120182019⨯ 则这个数列的前2018个数的和为111111223344520182019+++++⨯⨯⨯⨯⨯ =1111111111223344520182019-+-+-+-++- =112019-=20182019【知识点】探究规律3. (2018年黔三州,19,3)根据下列各式的规律,在横线处填空: 11+12−1=12,13+14−12=112,15+16−13=130,17+18−14=156,... (1)2017+12018− =12017×2018 . 【答案】11009【解析】按照等式顺序,第一个为11+12−1=12,第二个为13+14−1(3−1)÷2+1=13×4,第3个式子15+16−1(5−1)÷2+1=15×6,17+18−1(7−1)÷2+1=17×8,… …以此类推,12017+12018−1(2017−1)÷2+1 =12017×2018 . 【知识点】等式规律探索4. (2018江苏常州,9,2)计算:3-1-=_______. 【答案】2 【解析】21313=-=--5. (2018四川巴中,21(1),6分)(1)计算:│-2│ -2cos 60°+()-1-(2018-)0【答案】原式=2-2×+6-1=2﹣1+6﹣1=6.【解析】依据数的绝对值意义,│-2│=2;由特殊角的三角函数值得cos 60°=;由负整数指数幂的意义得()-1=611=6或者()-1=(6-1)-1=6;根据a 0=1(a ≠0)得(2018-)0=1.6.(2018广西南宁,17,3) 观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,…,根据其中规律可得30+31+32+…+32018的结果的个位数字是 . 【答案】3,【解析】∵30=1,31=3,32=9,33=27,34=81∴各位数4个数一循环, ∴(2018+1)÷4=504余3, ∴1+3+9=13∴30+31+32+…+32018的结果的个位数字3.7. (2018湖北十堰,14,3分) 对于实数a ,b ,定义运算“)”如下,a )b =a 2-ab ,例如,5)3=52-5*3=10.若(x +1))(x -2)=6,则x 的值为 . 【答案】1【解析】由于(x +1))(x -2)=6,所以(x +1)2-(x +1)(x -2)=6,即有3x +3=6,解得x =1,故答案为:1.8. (2018湖北随州11,3分)8|2-2+2tan45°=______.【答案】4.【解析】842⨯2根据“负数的绝对值等于它的相反数”可得|2-2|=22-2;熟记特殊角的三角函数值可得2tan45°=2×1=2,所以原式=222)+2=222+2=4.三、解答题1. (2018省市,题号,分值)计算:11220182-⎛⎫--+ ⎪⎝⎭【思路分析】先计算各项的值,进而求得结果,一个负数的绝对值为它的相反数,任何非零数的零次幂都为1,一个数的-1次幂相当于它的倒数 【解题过程】原式=2-1+2=3【知识点】绝对值;零指数幂和负整指数幂;有理数加减2. (2018省市,题号,分值)先化简,再求值:22221644a a a aa-+-,其中a 【思路分析】先将分式化简,再将a 值代入求值【解题过程】()()()222244216224444a a a a a a a a a a a a +--==+-+-,当a =2时,原式 【知识点】分式的乘除;二次根式3. (2018广西省桂林市,19,6分)1103)6cos 45+2---︒⎛⎫⎪⎝⎭.【思路分析】先算出每一个式子的值,再依据混合运算顺序,依次计算即可.1103)6cos 45+2---︒⎛⎫ ⎪⎝⎭=6+121232-⨯=-=. 【知识点】实数的四则运算;特殊角三角函数值的运用;负指数次幂;0次幂;二次根式的化简4. (2018黑龙江省龙东地区,21,5分) 先化简,再求值:2221(1)21a a a a a a --÷+++,其中a =sin30°. 【思路分析】先化简分式,再求a 的值,最后把a 的值代入计算即可.【解题过程】解:原式=2222(1)()(1)(1)a a a a a a a a a a ++-+-++=22(1)(1)(1)(1)a a a a a a +++-=1aa -.当a =sin30°=12时,原式=-1.【知识点】分式的化简求值;特殊角的锐角三角函数值;平方差公式;完全平方公式5. (2018山东省东营市,19①,4分) 计算:02018112133012)tan ()()--︒+-- 【思路分析】根据绝对值、0指数、三角函数、负数的偶次幂、分数的负整数指数幂的法则性质进行计算即可。
湖北省仙桃市中考数学试卷

2018年湖北省仙桃市中考数学试卷一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3.00分)(2018•天门)8的倒数是()A.﹣8 B.8 C.﹣ D.2.(3.00分)(2018•天门)如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥3.(3.00分)(2018•天门)2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.3.5×102B.3.5×1010C.3.5×1011D.35×10104.(3.00分)(2018•天门)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.30°B.36°C.45°D.50°5.(3.00分)(2018•天门)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a|B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b 6.(3.00分)(2018•天门)下列说法正确的是()A.了解某班学生的身高情况,适宜采用抽样调查B.数据3,5,4,1,1的中位数是4C.数据5,3,5,4,1,1的众数是1和5D.甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定7.(3.00分)(2018•天门)一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240° D.300°8.(3.00分)(2018•天门)若关于x的一元一次不等式组的解集是x>3,则m的取值范围是()A.m>4 B.m≥4 C.m<4 D.m≤49.(3.00分)(2018•天门)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.510.(3.00分)(2018•天门)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h 的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的是()A.①②③B.①②④C.①③④D.①②③④二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3.00分)(2018•天门)在“Wish you success”中,任选一个字母,这个字母为“s”的概率为.12.(3.00分)(2018•天门)计算:+|﹣2|﹣()﹣1=.13.(3.00分)(2018•天门)若一个多边形的每个外角都等于30°,则这个多边形的边数为.14.(3.00分)(2018•天门)某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为件.15.(3.00分)(2018•天门)我国海域辽阔,渔业资源丰富.如图,现有渔船B 在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)n mile处,则海岛A,C之间的距离为n mile.16.(3.00分)(2018•天门)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.三、解答题(本大题共9个小题,满分72分.)17.(5.00分)(2018•天门)化简:•.18.(5.00分)(2018•天门)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.19.(7.00分)(2018•天门)在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.请你根据所给的相关信息,解答下列问题:(1)本次共随机采访了名教师,m=;(2)补全条形统计图;(3)已知受访的教师中,E组只有2名女教师,F组恰有1名男教师,现要从E组、F组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.20.(7.00分)(2018•天门)已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.21.(8.00分)(2018•天门)如图,在平面直角坐标系中,直线y=﹣x与反比例函数y=(k≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣x向上平移后与反比例函数图象在第二象限内交于点B,与y 轴交于点C,且△ABO的面积为,求直线BC的解析式.22.(8.00分)(2018•天门)如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.23.(10.00分)(2018•天门)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?24.(10.00分)(2018•天门)问题:如图①,在Rt△ABC中,AB=AC,D为BC 边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.25.(12.00分)(2018•天门)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A 在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为,,;(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.2018年湖北省仙桃市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3.00分)(2018•天门)8的倒数是()A.﹣8 B.8 C.﹣ D.【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:8的倒数是,故选:D.【点评】此题主要考查倒数的概念及性质,属于基础题,注意掌握倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3.00分)(2018•天门)如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:观察图形可知,这个几何体是三棱柱.故选:A.【点评】本题考查的是三棱柱的展开图,考法较新颖,需要对三棱柱有充分的理解.3.(3.00分)(2018•天门)2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.3.5×102B.3.5×1010C.3.5×1011D.35×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:数350亿用科学记数法表示为3.5×1010.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3.00分)(2018•天门)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.30°B.36°C.45°D.50°【分析】直接利用平行线的性质得出∠ADC=150°,∠ADB=∠DBC,进而得出∠ADB 的度数,即可得出答案.【解答】解:∵AD∥BC,∠C=30°,∴∠ADC=150°,∠ADB=∠DBC,∵∠ADB:∠BDC=1:2,∴∠ADB=×150°=50°,∴∠DBC的度数是50°.故选:D.【点评】此题主要考查了平行线的性质,正确得出∠ADB度数是解题关键.5.(3.00分)(2018•天门)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a|B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b【分析】根据图示可以得到a、b的取值范围,结合绝对值的含义推知|b|、|a|的数量关系.【解答】解:A、如图所示,|b|<2<|a|,故本选项不符合题意;B、如图所示,a<b,则2a<2b,由不等式的性质知1﹣2a>1﹣2b,故本选项不符合题意;C、如图所示,a<﹣2<b<2,则﹣a>2>b,故本选项符合题意;D、如图所示,a<﹣2<b<2且|a|>2,|b|<2.则a<﹣2<﹣b,故本选项不符合题意;故选:C.【点评】此题考查了绝对值意义,比较两个负数大小的方法,有理数的运算,解本题的关键是掌握有理数的运算.6.(3.00分)(2018•天门)下列说法正确的是()A.了解某班学生的身高情况,适宜采用抽样调查B.数据3,5,4,1,1的中位数是4C.数据5,3,5,4,1,1的众数是1和5D.甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定【分析】直接利用方差的意义以及中位数的定义和众数的定义分别分析得出答案.【解答】解:A、了解某班学生的身高情况,适宜采用全面调查,故此选项错误;B、数据3,5,4,1,1的中位数是:3,故此选项错误;C、数据5,3,5,4,1,1的众数是1和5,正确;D、甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明甲的射击成绩比乙稳定.故选:C.【点评】此题主要考查了方差的意义以及中位数的定义和众数的定义,正确把握相关定义是解题关键.7.(3.00分)(2018•天门)一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240° D.300°【分析】根据圆锥的侧面积是底面积的2倍可得到圆锥底面半径和母线长的关系,利用圆锥侧面展开图的弧长=底面周长即可得到该圆锥的侧面展开图扇形的圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=πrR,∵侧面积是底面积的2倍,∴2πr2=πrR,∴R=2r,设圆心角为n,则=2πr=πR,解得,n=180°,故选:B.【点评】本题考查的是圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.8.(3.00分)(2018•天门)若关于x的一元一次不等式组的解集是x>3,则m的取值范围是()A.m>4 B.m≥4 C.m<4 D.m≤4【分析】先求出每个不等式的解集,再根据不等式组的解集和已知得出关于m 的不等式,再求出解集即可.【解答】解:,∵解不等式①得:x>3,解不等式②得:x>m﹣1,又∵关于x的一元一次不等式组的解集是x>3,∴m﹣1≤3,解得:m≤4,故选:D.【点评】本题考查了解一元一次不等式组,能根据不等式的解集和已知得出关于m的不等式是解此题的关键.9.(3.00分)(2018•天门)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.5【分析】根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE;在直角△ECG中,根据勾股定理即可求出DE的长.【解答】解:如图,连接AE,∵AB=AD=AF,∠D=∠AFE=90°,在Rt△AFE和Rt△ADE中,∵,∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,则EC=6﹣x.∵G为BC中点,BC=6,∴CG=3,在Rt△ECG中,根据勾股定理,得:(6﹣x)2+9=(x+3)2,解得x=2.则DE=2.故选:C.【点评】本题考查了翻折变换,解题的关键是掌握翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理.10.(3.00分)(2018•天门)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h 的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的是()A.①②③B.①②④C.①③④D.①②③④【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【解答】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选:A.【点评】本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3.00分)(2018•天门)在“Wish you success”中,任选一个字母,这个字母为“s”的概率为.【分析】根据概率公式进行计算即可.【解答】解:任选一个字母,这个字母为“s”的概率为:=,故答案为:.【点评】此题主要考查了概率公式,关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数:所有可能出现的结果数.12.(3.00分)(2018•天门)计算:+|﹣2|﹣()﹣1=0.【分析】根据二次根式的除法法则、绝对值的化简、负整数指数幂的运算法则计算即可.【解答】解:原式=+2﹣﹣2=0故答案为:0.【点评】本题考查的是二次根式的混合运算,掌握二次根式的除法法则、绝对值的化简、负整数指数幂的运算法则是解题的关键.13.(3.00分)(2018•天门)若一个多边形的每个外角都等于30°,则这个多边形的边数为12.【分析】根据已知和多边形的外角和求出边数即可.【解答】解:∵一个多边形的每个外角都等于30°,又∵多边形的外角和等于360°,∴多边形的边数是=12,故答案为:12.【点评】本题考查了多边形的内角和外角,能熟记多边形的外角和等于360°是解此题的关键.14.(3.00分)(2018•天门)某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为3200件.【分析】设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据发往A、B两区的物资共6000件,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据题意得:x+1.5x﹣1000=6000,解得:x=2800,∴1.5x﹣1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.15.(3.00分)(2018•天门)我国海域辽阔,渔业资源丰富.如图,现有渔船B 在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)n mile处,则海岛A,C之间的距离为18n mile.【分析】作AD⊥BC于D,根据正弦的定义、正切的定义分别求出BD、CD,根据题意列式计算即可.【解答】解:作AD⊥BC于D,设AC=x海里,在Rt△ACD中,AD=AC×sin∠ACD=x,则CD=x,在Rt△ABD中,BD=x,则x+x=18(1+),解得,x=18,答:A,C之间的距离为18海里.故答案为:18【点评】本题考查的是解直角三角形的应用,掌握方向角的概念、锐角三角函数的定义是解题的关键.16.(3.00分)(2018•天门)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.【分析】分别过点P1、P2、P3作x轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案.【解答】解:如图,分别过点P1、P2、P3作x轴的垂线段,垂足分别为点C、D、E,∵P1(3,3),且△P1OA1是等腰直角三角形,∴OC=CA1=P1C=3,设A1D=a,则P2D=a,∴OD=6+a,∴点P2坐标为(6+a,a),将点P2坐标代入y=﹣x+4,得:﹣(6+a)+4=a,解得:a=,∴A1A2=2a=3,P2D=,同理求得P3E=、A2A3=,∵S1=×6×3=9、S2=×3×=、S3=××=、……∴S2018=,故答案为:.【点评】本题考查规律型:点的坐标、等腰直角三角形的性质等知识,解题的关键是从特殊到一般,探究规律,利用规律解决问题,属于中考常考题型.三、解答题(本大题共9个小题,满分72分.)17.(5.00分)(2018•天门)化简:•.【分析】先将分子、分母因式分解,再约分即可得.【解答】解:原式=•=.【点评】本题主要考查分式的乘除法,解题的关键是掌握分式乘除运算顺序和运算法则.18.(5.00分)(2018•天门)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.【分析】(1)构造全等三角形,利用全等三角形的性质即可解决问题;(2)利用菱形以及平行线的性质即可解决问题;【解答】解:(1)如图所示,射线OP即为所求.(2)如图所示,点C即为所求;【点评】本题考查作图﹣应用与设计、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.(7.00分)(2018•天门)在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.请你根据所给的相关信息,解答下列问题:(1)本次共随机采访了60名教师,m=5;(2)补全条形统计图;(3)已知受访的教师中,E组只有2名女教师,F组恰有1名男教师,现要从E 组、F组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.【分析】(1)根据:某组的百分比=×100%,所有百分比的和为1,计算即可;(2)先计算出D、F组的人数,再补全条形统计图;(3)列出树形图,根据总的情况和一男一女的情况计算概率.【解答】解:(1)由条形图知,C组共有15名,占25%所以本次共随机采访了15÷25%=60(名)m=100﹣10﹣20﹣25﹣30﹣10=5故答案为:60,5(2)D组教师有:60×30%=18(名)F组教师有:60×5%=3(名)(3)E组共有6名教师,4男2女,F组有三名教师,1男2女共有18种可能,∴P==一男一女答:所选派的两名教师恰好是1男1女的概率为【点评】本题考查了条形图、频率分布图、树形图、概率等相关知识,难度不大,综合性较强.概率=所求情况数与总情况数之比20.(7.00分)(2018•天门)已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.【分析】(1)利用判别式的意义得到△=(2m+1)2﹣4(m2﹣2)≥0,然后解不等式得到m的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=﹣(2m+1),x1x2=m2﹣2,再利用(x1﹣x2)2+m2=21得到(2m+1)2﹣4(m2﹣2)+m2=21,接着解关于m的方程,然后利用(1)中m的范围确定m的值.【解答】解:(1)根据题意得△=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21,∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,∵m≥﹣,∴m的值为2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.21.(8.00分)(2018•天门)如图,在平面直角坐标系中,直线y=﹣x与反比例函数y=(k≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣x向上平移后与反比例函数图象在第二象限内交于点B,与y 轴交于点C,且△ABO的面积为,求直线BC的解析式.【分析】(1)将A点坐标代入直线y=﹣x中求出m的值,确定出A的坐标,将A的坐标代入反比例解析式中求出k的值,即可确定出反比例函数的解析式;(2)根据直线的平移规律设直线BC的解析式为y=﹣x+b,由同底等高的两三角形面积相等可得△ACO与△ABO面积相等,根据△ABO的面积为列出方程OC•2=,解方程求出OC=,即b=,进而得出直线BC的解析式.【解答】解:(1)∵直线y=﹣x过点A(m,1),∴﹣m=1,解得m=﹣2,∴A(﹣2,1).∵反比例函数y=(k≠0)的图象过点A(﹣2,1),∴k=﹣2×1=﹣2,∴反比例函数的解析式为y=﹣;(2)设直线BC的解析式为y=﹣x+b,∵三角形ACO与三角形ABO面积相等,且△ABO的面积为,∴△ACO的面积=OC•2=,∴OC=,∴b=,∴直线BC的解析式为y=﹣x+.【点评】此题考查了一次函数与反比例函数的交点问题,待定系数法求函数解析式,三角形的面积求法,以及一次函数图象与几何变换,熟练掌握待定系数法是解题的关键.22.(8.00分)(2018•天门)如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.【分析】(1)连接OC,如图,利用圆周角定理得到∠ACB=90°,再根据斜边上的中线性质得MC=MG=ME,所以∠G=∠1,接着证明∠1+∠2=90°,从而得到∠OCM=90°,然后根据直线与圆的位置关系的判断方法可判断CM为⊙O的切线;(2)先证明∠G=∠A,再证明∠EMC=∠4,则可判定△EFC∽△ECM,利用相似比先计算出CE,再计算出EF,然后计算ME﹣EF即可.【解答】解:(1)CM与⊙O相切.理由如下:连接OC,如图,∵GD⊥AO于点D,∴∠G+∠GBD=90°,∵AB为直径,∴∠ACB=90°,∵M点为GE的中点,∴MC=MG=ME,∴∠G=∠1,∵OB=OC,∴∠B=∠2,∴∠1+∠2=90°,∴∠OCM=90°,∴OC⊥CM,∴CM为⊙O的切线;(2)∵∠1+∠3+∠4=90°,∠5+∠3+∠4=90°,∴∠1=∠5,而∠1=∠G,∠5=∠A,∴∠G=∠A,∵∠4=2∠A,∴∠4=2∠G,而∠EMC=∠G+∠1=2∠G,∴∠EMC=∠4,而∠FEC=∠CEM,∴△EFC∽△ECM,∴==,即==,∴CE=4,EF=,∴MF=ME﹣EF=6﹣=.【点评】本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l 的距离为d:直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.也考查了圆周角定理.23.(10.00分)(2018•天门)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?【分析】(1)根据线段EF经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(2)显然,当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,利用待定系数法确定一次函数的表达式即可;(3)利用:总利润=每千克利润×产量,根据x的取值范围列出有关x的二次函数,求得最值比较可得.【解答】解:(1)设y1与x之间的函数关系式为y1=kx+b,∵经过点(0,168)与(180,60),∴,解得:,∴产品销售价y1(元)与产量x(kg)之间的函数关系式为y1=﹣x+168(0≤x ≤180);(2)由题意,可得当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,∵直线y2=mx+n经过点(50,70)与(130,54),∴,解得,∴当50<x<130时,y2=﹣x+80.综上所述,生产成本y2(元)与产量x(kg)之间的函数关系式为y2=;(3)设产量为xkg时,获得的利润为W元,①当0≤x≤50时,W=x(﹣x+168﹣70)=﹣(x﹣)2+,∴当x=50时,W的值最大,最大值为3400;②当50<x<130时,W=x[(﹣x+168)﹣(﹣x+80)]=﹣(x﹣110)2+4840,∴当x=110时,W的值最大,最大值为4840;③当130≤x≤180时,W=x(﹣x+168﹣54)=﹣(x﹣95)2+5415,∴当x=130时,W的值最大,最大值为4680.因此当该产品产量为110kg时,获得的利润最大,最大值为4840元.【点评】本题考查了二次函数的应用,待定系数法求二次函数的解析式,解题的关键是从实际问题中抽象出二次函数模型.24.(10.00分)(2018•天门)问题:如图①,在Rt△ABC中,AB=AC,D为BC 边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为BC=DC+EC;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)连接CE,根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.【解答】解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE==6,∵∠DAE=90°,∴AD=AE=DE=6.【点评】本题考查的是全等三角形的判定和性质、勾股定理、以及旋转变换的性质,掌握全等三角形的判定定理和性质定理是解题的关键.25.(12.00分)(2018•天门)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A 在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为(,0),(3,0),(,);(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)利用二次函数图象上点的坐标特征可求出点A、B的坐标,再利用配方法即可找出抛物线的顶点D的坐标;(2)由点D的坐标结合对称找出点E的坐标,根据点B、C的坐标利用待定系数法可求出直线BC的解析式,再利用一次函数图象上点的坐标特征即可得出关于t的一元一次不等式组,解之即可得出t的取值范围;(3)假设存在,设点P的坐标为(m,0),则点Q的横坐标为m,分m<或m>3及≤m≤3两种情况,利用勾股定理找出关于m的一元二次方程,解之即可得出m的值,进而可找出点P的坐标,此题得解.【解答】解:(1)当y=0时,有﹣x2+x﹣1=0,解得:x1=,x2=3,∴点A的坐标为(,0),点B的坐标为(3,0).∵y=﹣x2+x﹣1=﹣(x2﹣x)﹣1=﹣(x﹣)2+,∴点D的坐标为(,).故答案为:(,0);(3,0);(,).(2)∵点E、点D关于直线y=t对称,∴点E的坐标为(,2t﹣).当x=0时,y=﹣x2+x﹣1=﹣1,∴点C的坐标为(0,﹣1).设线段BC所在直线的解析式为y=kx+b,。
湖北省潜江市、仙桃市、天门市、江汉油田2018年中考数学试题(解析)

2018年天门中考数学试卷解读一、选择题<共10个小题,每小题3分,满分30分)在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分﹣的疾病致死的人数大约为600万,数据600万用科学记数法表示为< )解答: 解:600万=6000000=6×106, 故选:B.点评:此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n的值. 4.不等式组的解集在数轴上表示正确的是< )A .B .C .D .考点:在数轴上表示不等式的解集;解一元一次不等式组。
分析: 先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可. 解答:解:, 由①得x ≥﹣1; 由②得x <2;∴不等式组的解集为﹣1≤x <2; 在数轴上表示为:故选C .点评: 本题考查了不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.A . 70°B . 26°C . 36°D . 16° 考点:平行线的性质;三角形内角和定理。
分析: 由AB ∥CD ,根据两直线平行,内错角相等,即可求得∠1的度数,又由三角形外角的性质,即可求得∠E 的度数. 解答: 解:∵AB ∥CD ,∠A=48°, ∴∠1=∠A=48°,∵∠C=22°,∴∠E=∠1﹣∠C=48°﹣22°=26°. 故选B .点评: 此题考查了平行线的性质与三角形外角的性质.此题比较简单,注意掌握两直线平行,内错角相等定理的应用.6.化简的结果是< ) A .B .C . <x+1)2D . <x ﹣1)2考点:分式的混合运算。
尺规作图(解析版)2018年数学全国中考真题-2

2018年数学全国中考真题尺规作图(试题二)解析版一、选择题1.(2018浙江嘉兴,8,3)用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是()【答案】C 【解析】根据尺规作图以及菱形的判定方法.二、填空题△中,用直尺和圆规作AB、AC的垂直平分线,分1.(2018年江苏省南京市,14,2分).如图,在ABCBC=,则DE=cm.别交AB、AC于点D、E,连接DE.若10cm【答案】5【解析】∵用直尺和圆规作AB、AC的垂直平分线,∴D为AB的中点,E为AC的中点,∴DE是△ABC的中位线,∴DE=BC=5cm.故答案为:5.【知识点】线段垂直平分线中位线2.(2018吉林省,11, 2分)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为__________【答案】(-1,0)【解析】由题意知,OA=4,OB=3,∴AC=AB=5,则OC=1.则点C坐标为(-1,0)【知识点】尺规作图,实数与数轴的一一对应关系3.(2018山西省,14题,3分)如图,直线MN∥PQ.直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于12CD 长为半径作弧,两弧在∠NAB 内交于点E;③作射线AE 交PQ 于点F.若AB=2.∠ABP =60°则线段AF 的长为 .【答案】2√3【解析】解:过点A 作AG ⊥PQ 交PQ 与点G由作图可知,AF 平分∠NAB∵ MN ∥PQ ;AF 平分∠NAB ;∠ABP =60°∴ ∠AFG =30°在Rt △ABG 中,∠ABP =60°,AB=2;∴ AG =√3在Rt △AFG 中,∠AFG =30°,AG =√3;∴ AF =2√3【知识点】角平分线、特殊角三角函数4. (2018内蒙古通辽,16,3分)如图,在△ABC 中,按以下步骤作图:①分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于M 、N 两点;②作直线MN 交BC 于点D ,连接A D .若AB =BD ,AB =6,∠C =30°,则△ACD 的面积为 .【答案】93【解析】依题意MN 是AC 的垂直平分线,所以∠C =∠DAC =30°,所以∠ADB =∠C +∠DAC =60°,又AB =BD ,所以△ABD 为等边三角形,∠BAD =60°,所以∠BAC =∠DAC +∠BAD =90°,因为AB =6,所以AC =63,所以△ABC 的面积为12×6×63=183.又BD =AD =DC ,所以S △ACD =12S △ABC =93,故应填:93.5. (2018辽宁省抚顺市,题号16,分值3)如图,ABCD 中,AB=7,BC=3,连接AC ,分别以点A 和点C 为圆PP【答案】10【解析】由题可知,直线MN 是线段AC 的垂直平分线,∴AE=EC.∵在ABCD 中DE+EC=CD=AB=7,AD=BC=3,∴△AED 的周长为AD+DE+AE=BC+DE+EC=BC+CD=10.【知识点】用尺规作垂直平分线,垂直平分线的性质.三、解答题1. (2018广东省,题号,分值) 如图,BD 是菱形ABCD 的对角线,︒=∠75CBD ,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF ∠的度数.【思路分析】(1)根据尺规作图步骤作垂直平分线,保留痕迹即可;(2)先利用菱形性质求得∠DBA 的度数,再利用垂直平分线性质求得∠ABF 的度数,进而求得∠DBF 的度数.【解题过程】(1)如图直线MN 为所求(2)解:∵四边形ABCD 是菱形∴AD =AB ,AD ∥AB ,∵∠DBC =75°,∴∠ADB =75°,CA∴∠ABD =75°∴∠A =30°∵EF 为AB 的垂直平分线∴∠A =∠FBE =30°,∴∠DBE =45°【知识点】菱形性质;线段垂直平分线性质;尺规作图2. (2018甘肃省兰州市,20,6分)如图,在Rt △ABC 中.(1)利用尺度作图,在BC 边上求作一点P ,使得点P 到AB 的距离(PD 的长)等于PC 的长;(2)利用尺规作图,作出(1)中的线段PD .(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)【思路分析】PC ⊥AC ,要使P 到AB 的距离(PD 的长)等于PC 的长,即求∠A 的角平分线与BC 的交点.【解题过程】(1)作∠A 的平分线AD ,交BC 于P ;(2)过点P 作直线AB 的垂线,垂中为D 。【知识点】尺规作图19题答案图2FE C DA BMN C A B第20题图3. (2018湖北省江汉油田潜江天门仙桃市,18,5分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O ,M ,N ,A ,B 均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON 的平分线OP ;(2)在图②中,画一个Rt △ABC ,使点C 在格点上.【思路分析】(1)在只能用直尺画角平分线的情况下,就设法将∠MON 放置在能画出角平分线的图形中,如菱形.(2)原图是由全等的小菱形组成的,∴要想找到直角就要从菱形的对角线方面入手考虑.设法找让三角形中的一个顶点处在两个菱形的对角线交点位置,并且在格点上.【解题过程】解:(1)如图①,将∠MON 放在菱形AOBC 中,连接对角线OC ,并取格点P ,OP 即为所求. 2分 如图②所示,△ABC 或△ABC 1均可.4. (湖北省咸宁市,18,7)已知:AOB ∠.求作:,'''B O A ∠使'''AO B AOB ∠=∠ 作法:(1)如图1,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;(2)如图2,画一条射线''A O ,以点'O 为圆心OC 长为半径画弧,交于点''A O 于点'C ;(3)以点'C 为圆心,D C ,长为半径画弧,与第2 步中所画的弧交于点'D ;(4)过点 'D 画射线'OB ,则 '''AO B AOB ∠=∠. 根据以上作图步骤,请你证明AOB B O A ∠=∠'''.(第18题图) 图①图② BAO N M第18题答图 P A 图① ON MB C C 1 C图②B A【思路分析】由画一条射线''A O ,以点'O为圆心OC 长为半径画弧,交于点''A O 于点'C 可得OC =O′C′,由以点'C 为圆心,D C ,长为半径画弧,与第 2 步中所画的弧交于点'D 可得OD =O′D′,CD =C′D′,从而'''.COD C O D ∆≅∆【解题过程】证明:由作图步骤可知,在COD ∆和'''D O C ∆中,''''''OC O C OD O D CD C D ⎧=⎪=⎨⎪=⎩,'''().COD C O D SSS ∴∆≅∆COD D O C ∠=∠∴'''.即AOB B O A ∠=∠'''.【知识点】三角形全等;尺规作图5. (2018广西贵港,20,5分)尺规作图(只保留作图痕迹,不要求写出作法).如图,已知∠α和线段a ,求作:△ABC ,使∠A =∠α,∠C =90°,AB =a .【思路分析】先作∠A 等于已知角∠α,再在角的一边上截取线段AB =a ,再过B 点作角的另一边的垂线,垂足为C ,则△ABC 即为所求.【解答过程】所作图形如下a A6.(2018江苏常州,27,10)(本小题满分10分)(1)如图1,已知EK垂直平分BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD;(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法).②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?【解答过程】(1)∵EK垂直平分BC,点F在EK上,∴FC=FB,且∠CFD=∠BFD ∵∠AFE=∠BFD,∴∠AFE=∠CFD(2)如图所示,点Q为所求作的点.(3)Q是GN的中点。
中考数学真题模拟试卷 (51)

2018年湖北省仙桃市中考数学试卷一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3.00分)8的倒数是()A.﹣8 B.8 C.﹣ D.2.(3.00分)如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥3.(3.00分)2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.3.5×102B.3.5×1010C.3.5×1011D.35×10104.(3.00分)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.30°B.36°C.45°D.50°5.(3.00分)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a|B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b 6.(3.00分)下列说法正确的是()A.了解某班学生的身高情况,适宜采用抽样调查B.数据3,5,4,1,1的中位数是4C.数据5,3,5,4,1,1的众数是1和5D.甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定7.(3.00分)一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240° D.300°8.(3.00分)若关于x的一元一次不等式组的解集是x>3,则m的取值范围是()A.m>4 B.m≥4 C.m<4 D.m≤49.(3.00分)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG 对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.510.(3.00分)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的是()A.①②③B.①②④C.①③④D.①②③④二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3.00分)在“Wish you success”中,任选一个字母,这个字母为“s”的概率为.12.(3.00分)计算:+|﹣2|﹣()﹣1=.13.(3.00分)若一个多边形的每个外角都等于30°,则这个多边形的边数为.14.(3.00分)某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为件.15.(3.00分)我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C 附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)n mile处,则海岛A,C之间的距离为n mile.16.(3.00分)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.三、解答题(本大题共9个小题,满分72分.)17.(5.00分)化简:•.18.(5.00分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.19.(7.00分)在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.请你根据所给的相关信息,解答下列问题:(1)本次共随机采访了名教师,m=;(2)补全条形统计图;(3)已知受访的教师中,E组只有2名女教师,F组恰有1名男教师,现要从E组、F组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.20.(7.00分)已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.21.(8.00分)如图,在平面直角坐标系中,直线y=﹣x与反比例函数y=(k ≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣x向上平移后与反比例函数图象在第二象限内交于点B,与y 轴交于点C,且△ABO的面积为,求直线BC的解析式.22.(8.00分)如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.23.(10.00分)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?24.(10.00分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.25.(12.00分)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为,,;(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.2018年湖北省仙桃市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3.00分)8的倒数是()A.﹣8 B.8 C.﹣ D.【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:8的倒数是,故选:D.【点评】此题主要考查倒数的概念及性质,属于基础题,注意掌握倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3.00分)如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:观察图形可知,这个几何体是三棱柱.故选:A.【点评】本题考查的是三棱柱的展开图,考法较新颖,需要对三棱柱有充分的理解.3.(3.00分)2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.3.5×102B.3.5×1010C.3.5×1011D.35×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:数350亿用科学记数法表示为3.5×1010.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3.00分)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.30°B.36°C.45°D.50°【分析】直接利用平行线的性质得出∠ADC=150°,∠ADB=∠DBC,进而得出∠ADB 的度数,即可得出答案.【解答】解:∵AD∥BC,∠C=30°,∴∠ADC=150°,∠ADB=∠DBC,∵∠ADB:∠BDC=1:2,∴∠ADB=×150°=50°,∴∠DBC的度数是50°.故选:D.【点评】此题主要考查了平行线的性质,正确得出∠ADB度数是解题关键.5.(3.00分)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a|B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b【分析】根据图示可以得到a、b的取值范围,结合绝对值的含义推知|b|、|a|的数量关系.【解答】解:A、如图所示,|b|<2<|a|,故本选项不符合题意;B、如图所示,a<b,则2a<2b,由不等式的性质知1﹣2a>1﹣2b,故本选项不符合题意;C、如图所示,a<﹣2<b<2,则﹣a>2>b,故本选项符合题意;D、如图所示,a<﹣2<b<2且|a|>2,|b|<2.则a<﹣2<﹣b,故本选项不符合题意;故选:C.【点评】此题考查了绝对值意义,比较两个负数大小的方法,有理数的运算,解本题的关键是掌握有理数的运算.6.(3.00分)下列说法正确的是()A.了解某班学生的身高情况,适宜采用抽样调查B.数据3,5,4,1,1的中位数是4C.数据5,3,5,4,1,1的众数是1和5D.甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定【分析】直接利用方差的意义以及中位数的定义和众数的定义分别分析得出答案.【解答】解:A、了解某班学生的身高情况,适宜采用全面调查,故此选项错误;B、数据3,5,4,1,1的中位数是:3,故此选项错误;C、数据5,3,5,4,1,1的众数是1和5,正确;D、甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明甲的射击成绩比乙稳定.故选:C.【点评】此题主要考查了方差的意义以及中位数的定义和众数的定义,正确把握相关定义是解题关键.7.(3.00分)一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240° D.300°【分析】根据圆锥的侧面积是底面积的2倍可得到圆锥底面半径和母线长的关系,利用圆锥侧面展开图的弧长=底面周长即可得到该圆锥的侧面展开图扇形的圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=πrR,∵侧面积是底面积的2倍,∴2πr2=πrR,∴R=2r,设圆心角为n,则=2πr=πR,解得,n=180°,故选:B.【点评】本题考查的是圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.8.(3.00分)若关于x的一元一次不等式组的解集是x>3,则m的取值范围是()A.m>4 B.m≥4 C.m<4 D.m≤4【分析】先求出每个不等式的解集,再根据不等式组的解集和已知得出关于m 的不等式,再求出解集即可.【解答】解:,∵解不等式①得:x>3,解不等式②得:x>m﹣1,又∵关于x的一元一次不等式组的解集是x>3,∴m﹣1≤3,解得:m≤4,故选:D.【点评】本题考查了解一元一次不等式组,能根据不等式的解集和已知得出关于m的不等式是解此题的关键.9.(3.00分)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG 对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.5【分析】根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE;在直角△ECG中,根据勾股定理即可求出DE的长.【解答】解:∵AB=AD=AF,∠D=∠AFE=90°,在Rt△ABG和Rt△AFG中,∵,∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,则EC=6﹣x.∵G为BC中点,BC=6,∴CG=3,在Rt△ECG中,根据勾股定理,得:(6﹣x)2+9=(x+3)2,解得x=2.则DE=2.故选:C.【点评】本题考查了翻折变换,解题的关键是掌握翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理.10.(3.00分)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的是()A.①②③B.①②④C.①③④D.①②③④【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【解答】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选:A.【点评】本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3.00分)在“Wish you success”中,任选一个字母,这个字母为“s”的概率为.【分析】根据概率公式进行计算即可.【解答】解:任选一个字母,这个字母为“s”的概率为:=,故答案为:.【点评】此题主要考查了概率公式,关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数:所有可能出现的结果数.12.(3.00分)计算:+|﹣2|﹣()﹣1=0.【分析】根据二次根式的除法法则、绝对值的化简、负整数指数幂的运算法则计算即可.【解答】解:原式=+2﹣﹣2=0故答案为:0.【点评】本题考查的是二次根式的混合运算,掌握二次根式的除法法则、绝对值的化简、负整数指数幂的运算法则是解题的关键.13.(3.00分)若一个多边形的每个外角都等于30°,则这个多边形的边数为12.【分析】根据已知和多边形的外角和求出边数即可.【解答】解:∵一个多边形的每个外角都等于30°,又∵多边形的外角和等于360°,∴多边形的边数是=12,故答案为:12.【点评】本题考查了多边形的内角和外角,能熟记多边形的外角和等于360°是解此题的关键.14.(3.00分)某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为3200件.【分析】设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据发往A、B两区的物资共6000件,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据题意得:x+1.5x﹣1000=6000,解得:x=2800,∴1.5x﹣1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.15.(3.00分)我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C 附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)n mile处,则海岛A,C之间的距离为18n mile.【分析】作AD⊥BC于D,根据正弦的定义、正切的定义分别求出BD、CD,根据题意列式计算即可.【解答】解:作AD⊥BC于D,设AC=x海里,在Rt△ACD中,AD=AC×sin∠ACD=x,则CD=x,在Rt△ABD中,BD=x,则x+x=18(1+),解得,x=18,答:A,C之间的距离为18海里.故答案为:18【点评】本题考查的是解直角三角形的应用,掌握方向角的概念、锐角三角函数的定义是解题的关键.16.(3.00分)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.【分析】分别过点P1、P2、P3作x轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案.【解答】解:如图,分别过点P1、P2、P3作x轴的垂线段,垂足分别为点C、D、E,∵P1(3,3),且△P1OA1是等腰直角三角形,∴OC=CA1=P1C=3,设A1D=a,则P2D=a,∴OD=6+a,∴点P2坐标为(6+a,a),将点P2坐标代入y=﹣x+4,得:﹣(6+a)+4=a,解得:a=,∴A1A2=2a=3,P2D=,同理求得P3E=、A2A3=,∵S1=×6×3=9、S2=×3×=、S3=××=、……∴S2018=,故答案为:.【点评】本题考查规律型:点的坐标、等腰直角三角形的性质等知识,解题的关键是从特殊到一般,探究规律,利用规律解决问题,属于中考常考题型.三、解答题(本大题共9个小题,满分72分.)17.(5.00分)化简:•.【分析】先将分子、分母因式分解,再约分即可得.【解答】解:原式=•=.【点评】本题主要考查分式的乘除法,解题的关键是掌握分式乘除运算顺序和运算法则.18.(5.00分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.【分析】(1)构造全等三角形,利用全等三角形的性质即可解决问题;(2)利用菱形以及平行线的性质即可解决问题;【解答】解:(1)如图所示,射线OP即为所求.(2)如图所示,点C即为所求;【点评】本题考查作图﹣应用与设计、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.(7.00分)在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.请你根据所给的相关信息,解答下列问题:(1)本次共随机采访了60名教师,m=5;(2)补全条形统计图;(3)已知受访的教师中,E组只有2名女教师,F组恰有1名男教师,现要从E 组、F组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.【分析】(1)根据:某组的百分比=×100%,所有百分比的和为1,计算即可;(2)先计算出D、F组的人数,再补全条形统计图;(3)列出树形图,根据总的情况和一男一女的情况计算概率.【解答】解:(1)由条形图知,C组共有15名,占25%所以本次共随机采访了15÷25%=60(名)m=100﹣10﹣20﹣25﹣30﹣10=5故答案为:60,5(2)D组教师有:60×30%=18(名)F组教师有:60×5%=3(名)(3)E组共有6名教师,4男2女,F组有三名教师,1男2女共有18种可能,==∴P一男一女答:所选派的两名教师恰好是1男1女的概率为【点评】本题考查了条形图、频率分布图、树形图、概率等相关知识,难度不大,综合性较强.概率=所求情况数与总情况数之比20.(7.00分)已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.【分析】(1)利用判别式的意义得到△=(2m+1)2﹣4(m2﹣2)≥0,然后解不等式得到m的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=﹣(2m+1),x1x2=m2﹣2,再利用(x1﹣x2)2+m2=21得到(2m+1)2﹣4(m2﹣2)+m2=21,接着解关于m的方程,然后利用(1)中m的范围确定m的值.【解答】解:(1)根据题意得△=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21,∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,∵m≥﹣,∴m的值为﹣6.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.21.(8.00分)如图,在平面直角坐标系中,直线y=﹣x与反比例函数y=(k ≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣x向上平移后与反比例函数图象在第二象限内交于点B,与y 轴交于点C,且△ABO的面积为,求直线BC的解析式.【分析】(1)将A点坐标代入直线y=﹣x中求出m的值,确定出A的坐标,将A的坐标代入反比例解析式中求出k的值,即可确定出反比例函数的解析式;(2)根据直线的平移规律设直线BC的解析式为y=﹣x+b,由同底等高的两三角形面积相等可得△ACO与△ABO面积相等,根据△ABO的面积为列出方程OC•2=,解方程求出OC=,即b=,进而得出直线BC的解析式.【解答】解:(1)∵直线y=﹣x过点A(m,1),∴﹣m=1,解得m=﹣2,∴A(﹣2,1).∵反比例函数y=(k≠0)的图象过点A(﹣2,1),∴k=﹣2×1=﹣2,∴反比例函数的解析式为y=﹣;(2)设直线BC的解析式为y=﹣x+b,∵三角形ACO与三角形ABO面积相等,且△ABO的面积为,∴△ACO的面积=OC•2=,∴OC=,∴b=,∴直线BC的解析式为y=﹣x+.【点评】此题考查了一次函数与反比例函数的交点问题,待定系数法求函数解析式,三角形的面积求法,以及一次函数图象与几何变换,熟练掌握待定系数法是解题的关键.22.(8.00分)如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.【分析】(1)连接OC,如图,利用圆周角定理得到∠ACB=90°,再根据斜边上的中线性质得MC=MG=ME,所以∠G=∠1,接着证明∠1+∠2=90°,从而得到∠OCM=90°,然后根据直线与圆的位置关系的判断方法可判断CM为⊙O的切线;(2)先证明∠G=∠A,再证明∠EMC=∠4,则可判定△EFC∽△ECM,利用相似比先计算出CE,再计算出EF,然后计算ME﹣EF即可.【解答】解:(1)CM与⊙O相切.理由如下:连接OC,如图,∵GD⊥AO于点D,∴∠G+∠GBD=90°,∵AB为直径,∴∠ACB=90°,∵M点为GE的中点,∴MC=MG=ME,∴∠G=∠1,∵OB=OC,∴∠B=∠2,∴∠1+∠2=90°,∴∠OCM=90°,∴OC⊥CM,∴CM为⊙O的切线;(2)∵∠1+∠3+∠4=90°,∠5+∠3+∠4=90°,∴∠1=∠5,而∠1=∠G,∠5=∠A,∴∠G=∠A,∵∠4=2∠A,∴∠4=2∠G,而∠EMC=∠G+∠1=2∠G,∴∠EMC=∠4,而∠FEC=∠CEM,∴△EFC∽△ECM,∴==,即==,∴CE=4,EF=,∴MF=ME﹣EF=6﹣=.【点评】本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l 的距离为d:直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.也考查了圆周角定理.23.(10.00分)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?【分析】(1)根据线段EF经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(2)显然,当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,利用待定系数法确定一次函数的表达式即可;(3)利用:总利润=每千克利润×产量,根据x的取值范围列出有关x的二次函数,求得最值比较可得.【解答】解:(1)设y1与x之间的函数关系式为y1=kx+b,∵经过点(0,168)与(180,60),∴,解得:,∴产品销售价y1(元)与产量x(kg)之间的函数关系式为y1=﹣x+168(0≤x ≤180);(2)由题意,可得当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,∵直线y2=mx+n经过点(50,70)与(130,54),∴,解得,∴当50<x<130时,y2=﹣x+80.综上所述,生产成本y2(元)与产量x(kg)之间的函数关系式为y2=;(3)设产量为xkg时,获得的利润为W元,①当0≤x≤50时,W=x(﹣x+168﹣70)=﹣(x﹣)2+,∴当x=50时,W的值最大,最大值为3400;②当50<x<130时,W=x[(﹣x+168)﹣(﹣x+80)]=﹣(x﹣110)2+4840,∴当x=110时,W的值最大,最大值为4840;③当130≤x≤180时,W=x(﹣x+168﹣54)=﹣(x﹣95)2+5415,∴当x=130时,W的值最大,最大值为4680.因此当该产品产量为110kg时,获得的利润最大,最大值为4840元.【点评】本题考查了二次函数的应用,待定系数法求二次函数的解析式,解题的关键是从实际问题中抽象出二次函数模型.24.(10.00分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为BC=DC+EC;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)连接CE,根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.【解答】解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE==6,∵∠DAE=90°,∴AD=AE=DE=6.【点评】本题考查的是全等三角形的判定和性质、勾股定理、以及旋转变换的性质,掌握全等三角形的判定定理和性质定理是解题的关键.25.(12.00分)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为(,0),(3,0),(,);(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)利用二次函数图象上点的坐标特征可求出点A、B的坐标,再利用配方法即可找出抛物线的顶点D的坐标;(2)由点D的坐标结合对称找出点E的坐标,根据点B、C的坐标利用待定系数法可求出直线BC的解析式,再利用一次函数图象上点的坐标特征即可得出关于t的一元一次不等式组,解之即可得出t的取值范围;(3)假设存在,设点P的坐标为(m,0),则点Q的横坐标为m,分m<或m>3及≤m≤3两种情况,利用勾股定理找出关于m的一元二次方程,解之即可得出m的值,进而可找出点P的坐标,此题得解.【解答】解:(1)当y=0时,有﹣x2+x﹣1=0,解得:x1=,x2=3,∴点A的坐标为(,0),点B的坐标为(3,0).∵y=﹣x2+x﹣1=﹣(x2﹣x)﹣1=﹣(x﹣)2+,∴点D的坐标为(,).故答案为:(,0);(3,0);(,).(2)∵点E、点D关于直线y=t对称,∴点E的坐标为(,2t﹣).当x=0时,y=﹣x2+x﹣1=﹣1,∴点C的坐标为(0,﹣1).。
2018年湖北省江汉油田、潜江、天门、仙桃中考数学试卷和答案解析

数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前江汉油田、潜江、天门、仙桃 2018年初中学业水平考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.8的倒数是( )A .8-B .8C .1-8D .182.如图是某个几何体的展开图,该几何体是 ( ) A .同位角 B .内错角 C .同旁内角 D .对顶角3.2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为 ( ) A .23.510⨯ B .103.510⨯ C .113.510⨯ D .103510⨯4.如图,AD BC ∥,30C ∠=,=12ADB BDC ∠∠::,则DBC ∠的度数是 ( ) A .30 B .36 C .45 D .50 5.点A ,B 在数轴上的位置如图所示,其对应的实数分别是a ,b ,下列结论错误的是 ( ) A .2||||b a << B .1212a b ->-C .2a b -<<D .2a b <-<- 6.下列说法正确的是 ( ) A .了解某班学生的身高情况,适宜采用抽样调查 B .数据3,5,4,1,1的中位数是4C .数据5,3,5,4,1,1的众数是1和5D .甲、乙两人射中环数的方差分别为22s =甲,2=3s 乙,说明乙的射击成绩比甲稳定 7.一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是 ( )A .120B .180C .240D .3008.若关于x 的一元一次不等式组6391,x x m --⎧⎨--⎩(x+1)<,>的解集是3x >,则m 的取值范围是( )A .4m >B .4m ≥C .4m <D .4m ≤ 9.如图,正方形ABCD 中,=6AB ,G 是BC 的中点.将ABG △沿AG 对折至AFG △,延长GF 交DC 于点E ,则DE 的长是 ( ) A .1 B .1.5 C .2 D .2.510.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80 km 的速度行驶1 h 后,乙车才沿相同路线行驶.乙车先到达B 地并停留1 h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km )与乙车行驶时间x (h )之间的函数关系如图所示.下列说法: ①乙车的速度是120 km/h ; ②=160m ;③点H 的坐标是780(,); ④=7.5n .其中说法正确的是( )A .4个B .3个C .2个D .1个第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填写在题中的横线上) 11.在“Wish you success ”中,任选一个字母,这个字母为“s ”的概率为: .12.计算:112|=2--() .13.若一个多边形的每个外角都等于30,则这个多边形的边数为 .14.某公司积极开展“爱心扶贫”的公益活动,现准备将6 000件生活物资发往A ,B 两个贫困地区,其中发往A 区的物资比B 区的物资的1.5倍少1 000件,则发往A 区的生活物资为 件.15.我国海域辽阔,渔业资源丰富.如图,现有渔船B 在海岛A ,C 附近捕鱼作业,已知海岛C 位于海岛A 的北偏东45方向上.在渔船B 上测得海岛A 位于渔船的北偏西30的方向上,此时海岛C 恰好位于渔船B的正北方向181( n mile 处,则海岛A ,C 之间的距离为 n mile .16.如图,在平面直角坐标系中,11POA △,212P A A △,323P A A △,…都是等腰直角三角形,其直角顶点133P (,),2P ,3P ,…均在直线143y x =-+上.设11POA △,212P A A △,323P A A △,…的面积分别为1S ,2S ,3S ,…,依据图形所反映的规律,2018=S .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共6页) 数学试卷 第4页(共6页)三、解答题(本大题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分5分)化简:22244155a b a bab a b +-18.(本小题满分5分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O ,M ,C ,A ,B 均在格点上,请仅用无刻度直尺在网格中完成下列画图. (1)在图①中,画出MON ∠的平分线OP ;(2)在图②中,画一个Rt ABC △,使点36n ≤<在格点上.19.(本小题满分7分)在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.请你根据所给的相关信息,解答下列问题:(1)本次共随机采访了 名教师,m= ; (2)补全条形统计图; (3)已知受访的教师中,E 组只有2名女教师,F 组恰有1名男教师,现要从E 组、F 组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.20.(本小题满分7分)已知关于x 的一元二次方程22212=0x m x m +++()-. (1)若该方程有两个实数根,求m 的最小整数值;(2)若方程的两个实数根为1x ,2x ,且2212=21x x m +(-),求m 的值.21.(本小题满分8分)如图,在平面直角坐标系中,直线12y x =-与反比例函数k y k x=≠(0)在第二象限内的图象相交于点1A m (,).(1)求反比例函数的解析式;(2)将直线12y x =-向上平移后与反比例函数图象在第二象限内交于点B ,与y 轴 交于点C ,且ABO △的面积为32,求直线BC 的解析式.数学试卷 第5页(共6页) 数学试卷 第6页(共6页)22.(本小题满分8分)如图,在O 中,AB 为直径,AC 为弦.过BC 延长线上一点G ,作G D AO ⊥于点D ,交AC 于点E ,交O 于点F ,M 是GE 的中点,连接CF ,CM . (1)判断CM 与O 的位置关系,并说明理由; (2)若=2ECF A ∠∠,=6CM ,=4CF ,求MF 的长.23.(本小题满分10分)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF 、折线ABCD 分别表示该有机产品每千克的销售价1y (元)、生产成本2y (元)与产量x (kg )之间的函数关系.(1)求该产品销售价1y (元)与产量x (kg )之间的函数关系式; (2)直接写出生产成本2y (元)与产量x (kg )之间的函数关系式; (3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?24.(本小题满分10分)问题:如图①,在Rt A B C △中,=AB AC ,D 为BC 边上一点(不与点B ,C 重合),将线段AD 绕点A 逆时针旋转90得到AE ,连接EC ,则线段BC ,DC ,EC 之间满足的等量关系式为 ;探索:如图②,在Rt A B C △与中,AB AC =,AD AE =,将A D E △绕点A 旋转,使点D 落在BC 边上,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD 中,===45ABC ACB ADC ∠∠∠.若9BD =,3CD =,求AD 的长.25.(本小题满分12分)抛物线227133y x x =+--与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C ,其顶点为D .将抛物线位于直线l :2524y t t =(<)上方的部分沿直线l 向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M ”形的新图象. (1)点A ,B ,D 的坐标分别为 , , ;(2)如图①,抛物线翻折后,点D 落在点E 处.当点E 在ABC △内(含边界)时,求t 的取值范围;(3)如图②,当=0t 时,若Q 是“M ”形新图象上一动点,是否存在以CQ 为直径的圆与x 轴相切于点P ?若存在,求出点P 的坐标;若不存在,请说明理由.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------江汉油田、潜江、天门、仙桃 2018年初中学业水平考试数学答案解析一、选择题 1.【答案】D【解析】根据倒数的定义,互为倒数的两数乘积为1,8的倒数是18,故选D . 2.【答案】A【解析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱,观察图形可知,这个几何体是三棱柱. 3.【答案】B【解析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤||<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数,故数350亿用科学记数法表示为103.510⨯. 4.【答案】D【解析】直接利用平行线的性质得出150ADC ∠=,ADB DBC ∠=∠,进而得出ADB ∠的度数,即可得出答案. 解:AD BC ∥,30C ∠=︒,∴=150ADC ∠,=ADB DBC ∠∠, 12ADB BDC ∠∠=::,∴1=150503ADB ∠⨯=,∴DBC ∠的度数是50.5.【答案】A【解析】根据图示可以得到a b 、的取值范围,结合绝对值的含义推知||b 、||a 数量关系. 解:A 、如图所示,2||||b a <<,故本选项不符合题意;B 、如图所示,a b <,则22a b <,由不等式的性质知1212a b ->-,故本选项不符合题意;C 、如图所示,22a b <-<<,则2a b -<<,故本选项符合题意;D 、如图所示,22a b <-<<且|2|a >,|2|b <.则2a b <-<-,故本选项不符合题意; 6.【答案】C【解析】直接利用方差的意义以及中位数的定义和众数的定义分别分析得出答案.A 、了解某班学生的身高情况,适宜采用全面调查,故此选项错误;B 、数据3,5,4,1,1的中位数是:3,故此选项错误;C 、数据5,3,5,4,1,1的众数是1和5,正确;D 、甲、乙两人射中环数的方差分别为22s =甲,2=3s 乙,说明甲的射击成绩比乙稳定. 7.【答案】B【解析】根据圆锥的侧面积是底面积的2倍可得到圆锥底面半径和母线长的关系,利用圆锥侧面展开图的弧长=底面周长即可得到该圆锥的侧面展开图扇形的圆心角度数. 解:设母线长为R ,底面半径为r ,∴底面周长2πr =,底面面积2πr =,侧面面积πrR =,侧面积是底面积的2倍,∴22ππr rR =, ∴2R r =,设圆心角为n ,则π2ππ180n R r R ==, 解得,180n =,故选:B . 8.【答案】D【解析】先求出每个不等式的解集,再根据不等式组的解集和已知得出关于m 的不等式,再求出解集即可.解:639,1,x x m --⎧⎨--⎩(x+1)<>解不等式①得:3x >, 解不等式②得:1x m >-,又关于x 的一元一次不等式组639,1,x x m --⎧⎨--⎩(x+1)<>的解集是3x >,∴13m -≤,解得:4m ≤,故选:D . 9.【答案】C【解析】根据翻折变换的性质和正方形的性质可证Rt AFE Rt ADE △≌△;在直角ECG △中,根据勾股定理即可求出DE 的长. 解:==AB AD AF ,==90D AFE ∠∠,在Rt ABG △和Rt AFG △中,,,{AE AE AF AD ==,∴Rt AFE Rt ADE △≌△, ∴EF DE =,设EF DE x ==,则6EC x =-.G 为BC 中点,6BC =,∴3CG =,在Rt ECG △中,根据勾股定理,得:2269=3x x ++(-)(), 解得=2x . 则=2DE . 10.【答案】B【解析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.解:由图象可知,乙出发时,甲乙相距80 km ,2小时后,乙车追上甲.则说明乙每小时比甲快40 km ,则乙的速度为120 km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B ,用时4小时,每小时比甲快40 km ,则此时甲乙距离440=160 km ⨯,则=160m ,②正确;当乙在B 休息1 h 时,甲前进80 km ,则H 点坐标为780(,),③正确;乙返回时,甲乙相距80 km ,到两车相遇用时8012080=0.4÷+()小时,则=610.4=7.4n ++,④错误. 二、填空题 11.【答案】27【解析】根据概率公式进行计算即可.解:任选一个字母,这个字母为“s ”的概率为:42=147, 12.【答案】0【解析】根据二次根式的除法法则、绝对值的化简、负整数指数幂的运算法则计算即可.解:原式22=0 13.【答案】12【解析】根据已知和多边形的外角和求出边数即可. 解:一个多边形的每个外角都等于30,又多边形的外角和等于360,∴多边形的边数是360=1230, 14.【答案】3 200【解析】设发往B 区的生活物资为x 件,则发往A 区的生活物资为1.5 1 000x (﹣)件,根据发往A 、B 两区的物资共6 000件,即可得出关于x 的一元一次方程,解之即可得出结论.解:设发往B 区的生活物资为x 件,则发往A 区的生活物资为 1.5 1 000x (﹣)件,根据题意得:1.5 1 000=6 000x x +-,解得:=2 800x ,∴1.5 1 000 3 200x=﹣. 答:发往A 区的生活物资为3 200件.15.【答案】A ,C 之间的距离为【解析】作AD BC ⊥于D ,根据正弦的定义、正切的定义分别求出BD 、CD ,根据题意列式计算即可.解:作AD BC ⊥于D ,设=AC x 海里,在Rt ACD △,=sin AD AC ACD ⨯∠,则CD ,在Rt ABD △中,tan AD BD ABD ==∠,18x =(,解得,x 16.【答案】201794【解析】分别过点1P 、2P 、3P 作x 轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案.解:如图,分别过点1P 、2P 、3P 作x 轴的垂线段,垂足分别为点C 、D 、E ,133P (,),且11POA △是等腰直角三角形, 11===3OC CA PC ∴,设1=A D a ,则2=P D a ,=6OD a ∴+,∴点2P 坐标为6a a +(,), 将点2P 坐标代入143y x =-+,得:164=3a a ++-(),解得:32a =,12=2=3A A a ∴,23=2P D ,同理求得33=4P E 、233=2A A ,116392S =⨯⨯=、21393224S =⨯⨯=、3133922416S =⨯⨯=、……920172018S ∴=4,故答案为:201794.三、解答题17.【答案】解:原式24a+b 15a b 12a==5a+b a-b a-b())()(). 【解析】先将分子、分母因式分解,再约分即可得. 18.【答案】解:(1)如图所示,射线OP 即为所求. (2)如图所示,点C 即为所求;【解析】(1)构造全等三角形,利用全等三角形的性质即可解决问题; (2)利用菱形以及平行线的性质即可解决问题;19.【答案】解:(1)由条形图知,C 组共有15名,占25%,所以本次共随机采访了 1525%=60÷(名); =1001020253010=5m -----(2)D 组教师有:6030%=18⨯(名)F 组教师有:605%3⨯=(名)(3)E 组共有6名教师,4男2女,F 组有三名教师,1男2女共有18种可能,105189P ∴==一男一女答:所选派的两名教师恰好是1男1女的概率为59.【解析】(1)根据:某组的百分比100%=⨯该组人数总人数,所有百分比的和为1,计算即可;(2)先计算出D 、F 组的人数,再补全条形统计图; (3)列出树形图,根据总的情况和一男一女的情况计算概率.20.【答案】解:(1)根据题意得22=21420m m +△()--)≥(,解得94m -≥,所以m 的最小整数值为2-; (2)根据题意得12=21x x m +-+(),212=2x x m -, 2212=21x x m +(-),2212124=21x x x x m ∴++()-,2222142=21m m m ∴++()-(-),整理得2212412=0=2m m x x m +--,,解得1=2m ,2=6m -,94m ≥-,m ∴的值为2.【解析】(1)利用判别式的意义得到2221420m m =+△()-(-)≥,然后解不等式得到m 的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到1221x x m +=-+(),212=2x x m -,再利用2212=21x x m +(-)得到2222142=21m m m ++()-(-),接着解关于m 的方程,然后利用(1)中m 的范围确定m 的值. 21.【答案】解:(1)直线12y x =-过点1A m (,), 112m ∴=-,解得2m =-,21A ∴(﹣,). 反比例函数=0ky k x ≠()的图象过点21A (﹣,), =21=2k ∴⨯--,∴反比例函数的解析式为2y x=-; (2)设直线BC 的解析式为12y x b =+-, 三角形ACO 与三角形ABO 面积相等,且ABO △的面积为32, ACO ∴△的面积13=222OC =, ∴32OC =, ∴32b =, ∴直线BC 的解析式为13=22y x +. 【分析】(1)将A 点坐标代入直线1=-2y x 中求出A 的值,确定出A 的坐标,将A 的坐标代入反比例解析式中求出k 的值,即可确定出反比例函数的解析式;(2)根据直线的平移规律设直线BC 的解析式为1=-2y x b +,由同底等高的两三角形面积相等可得ACO △与ABO △面积相等,根据ABO △的面积为32列出方程13222OC =,解方程求出32OC =,即32b =,进而得出直线BC 的解析式.22.【答案】解:(1)CM 与O 相切.理由如下:连接OC ,如图,GD AO ⊥于点D , 90G GBD ∴∠+∠=, AB 为直径, 90ACB ∴∠=,M 点为GE 的中点,MC MG ME ∴==,1G ∴∠=∠,OB OC =,2B ∴∠=∠, 1290∴∠+∠=,90OCM ∴∠=,OC CM ∴⊥,∴CM 为O 的切线;(2)13490∠+∠+∠=,53490∠+∠+∠=,∴15∠=∠,而1G ∠=∠,5A ∠=∠,G A ∴∠=∠,42A ∠=∠,42G ∴∠=∠,而12EMC G G ∠=∠+∠=∠,4EMC ∴∠=∠,而FEC CEM ∠=∠,EFC ECM ∴△∽△,EF CE CF CE ME CM ∴==,即66EF CE CE CE ==, 843CE EF ∴==,, 810633MF ME EF ∴===--.【解析】(1)连接OC ,如图,利用圆周角定理得到90ACB ∠=,再根据斜边上的中线性质得MC MG ME ==,所以1G ∠=∠,接着证明1290∠+∠=,从而得到90OCM ∠=,然后根据直线与圆的位置关系的判断方法可判断CM 为O 的切线;(2)先证明G A ∠=∠,再证明4EMC ∠=∠,则可判定EFC ECM △∽△,利用相似比先计算出CE ,再计算出EF ,然后计算ME EF -即可.23.【答案】解:(1)设1y 与x 之间的函数关系式为y kx b =+,经过点0168(,)与18060(,), =16818060b k b ⎧∴⎨+=⎩,,解得:3=5=168.k b ⎧-⎪⎨⎪⎩,∴产品销售价1y (元)与产量x (kg )之间的函数关系式为13=16801805y x x +-(≤≤); (2)由题意,可得当050x ≤≤时,2=70y ;当130180x ≤≤时,2=54y ;当50130x <<时,设2y 与x 之间的函数关系式为2=y mx n +,直线2=y mx n +经过点5070(,)与13054(,), ∴5070,13054,m n m n +=⎧⎨+=⎩解得1,580,m n ⎧=-⎪⎨⎪=⎩ ∴当50130x <<时,21805y x =-+. 综上所述,生产成本2y (元)与产量x (kg )之间的函数关系式为27050180,554180x y x x x ⎧⎪⎪=-+⎨⎪⎪⎩(0≤≤),(50<<130)(130≤≤), (3)设产量为x kg 时,获得的利润为W 元,①当050x ≤≤时,23324512005W 16870=5533x x x =-+-+(-)-(), ∴当=50x 时,W 的值最大,最大值为3 400;②当50130x <<时,2312W=168801104840555x x x x ⎡-++⎤⎢⎥=-⎦+⎣()-(-)(-), ∴当=110x 时,W 的值最大,最大值为4 840;③当130180x ≤≤时,233W=16854=95541555x x x -+-+(-)(-), ∴当=130x 时,W 的值最大,最大值为4 680.因此当该产品产量为110 kg 时,获得的利润最大,最大值为4 840元.【解析】(1)根据线段EF 经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(2)显然,当050x ≤≤时,2=70y ;当130180x ≤≤时,2=54y ;当50130x <<时,设2y 与x 之间的函数关系式为2=y mx n +,利用待定系数法确定一次函数的表达式即可;(3)利用:总利润=每千克利润⨯产量,根据x 的取值范围列出有关x 的二次函数,求得最值比较可得.24.【答案】解:(1)=BC DC EC +,理由如下:==90BAC DAE ∠∠,=BAC DAC DAE DAC ∴∠∠∠∠--,即=BAD CAE ∠∠,在BAD △和CAE △中,,,=,BAD CA AB AC A E E D A =⎧⎪⎨⎪=∠⎩∠,BAD CAE ∴△≌△,=BD CE ∴,==BC BD CD EC CD ∴++,故答案为:=BC DC EC +;(2)222=2BD CD AD +,理由如下:连接CE ,由(1)得,BAD CAE △≌△,=BD CE ∴,=ACE B ∠∠,=90DCE ∴∠,222=CE CD ED ∴+,在Rt ADE △中,222AD AE ED +=,又=AD AE ,222=2BD CD AD ∴+;(3)作AE AD ⊥,使=AE AD ,连接CE ,DE ,=BAC CAD DAE CAD ∠+∠∠+∠,即BAC=DAE ∠∠,在BAD △与CAE △中,,,=,BAD CA AB AC A E E D A =⎧⎪⎨⎪=∠⎩∠BAD CAE SAS ∴△≌△(), ==9BD CE ∴,=45ADC ∠,=45EDA ∠,=90EDC ∴∠,DE ∴90DAE ∠=,62AD AE DE ∴===.【解析】(1)证明BAD CAE △≌△,根据全等三角形的性质解答;(2)连接CE ,根据全等三角形的性质得到=BD CE ∴,=ACE B ∠∠,得到=90DCE ∠,根据勾股定理计算即可;(3)作AE AD ⊥,使=AE AD ,连接CE ,DE ,证明BAD CAE △≌△,得到=9BD CE =,根据勾股定理计算即可.25.【答案】解:(1)当0y =时,有2271033x x +=--, 解得:112x =,23x =, ∴点A 的坐标为102(,),点B 的坐标为30(,). 222727251=333424y x x x =+--+--(), ∴点D 的坐标为725424(,). 故答案为:102(,);30(,);725424(,). (2)点E 、点D 关于直线=y t 对称,∴点E 的坐标为7252424t -(,).当=0x 时,2271=133y x x =+---, ∴点C 的坐标为01-(,). 设线段BC 所在直线的解析式为=y kx b +,将B 30(,)、C01-(,)代入=y kx b +, 30,1,k b b +=⎧⎨=-⎩解得:1,31.k b ⎧=⎪⎨⎪=-⎩ ∴线段BC 所在直线的解析式为113y x =-. 点E 在ABC △内(含边界), ∴2520,24251721,2434t t ⎧-⎪⎪⎨⎪-⨯-⎪⎩≤≥ 解得:15254848≤t ≤. (3)当12x <或3x >时,227133y x x =+--; 当132x ≤≤时,227133y x x =-+. 假设存在,设点P 的坐标为012m (,),则点Q 的横坐标为m . ①当12m <或3m >时,点Q 的坐标为227133m x x +(,-)(如图1), 以CQ 为直径的圆与x 轴相切于点P ,∴CP PQ ⊥,∴222=CQ CP PQ +,即2222222271127=11334433m m m m m m m ++++++-(-)(-),整理,得:1m =2m =, ∴点P 的坐标为0)或0); ②当123m ≤≤时,点Q 的坐标为227133m x x -+(,)(如图2), 以CQ 为直径的圆与x 轴相切于点P ,CP PQ ∴⊥,222=CQ CP PQ ∴+,即22222222711272=11334433m m m m m m m +-++++-+()(), 整理,得:2112812=0m m -+, 解得:36=11m ,4=2m , ∴点P 的坐标为311(,0)或1(,0).综上所述:存在以CQ 为直径的圆与x 轴相切于点P ,点P 的坐标为0)、311(,0)、1(,0)或0).【解析】(1)利用二次函数图象上点的坐标特征可求出点A 、B 的坐标,再利用配方法即可找出抛物线的顶点D 的坐标;(2)由点D 的坐标结合对称找出点E 的坐标,根据点B 、C 的坐标利用待定系数法可求出直线BC 的解析式,再利用一次函数图象上点的坐标特征即可得出关于t 的一元一次不等式组,解之即可得出t 的取值范围;(3)假设存在,设点P 的坐标为012m (,),则点Q 的横坐标为m ,分12m <或3m >及123m ≤≤两种情况,利用勾股定理找出关于m 的一元二次方程,解之即可得出m 的值,进而可找出点P 的坐标,此题得解.。
湖北省江汉油田、潜江、天门、仙桃中考数学试卷

2018年湖北省江汉油田中考数学试卷一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3.00分)(2018•天门)8的倒数是()A.﹣8 B.8 C.﹣ D.2.(3.00分)(2018•天门)如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥3.(3.00分)(2018•天门)2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.3.5×102B.3.5×1010C.3.5×1011D.35×10104.(3.00分)(2018•天门)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.30°B.36°C.45°D.50°5.(3.00分)(2018•天门)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a|B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b 6.(3.00分)(2018•天门)下列说法正确的是()A.了解某班学生的身高情况,适宜采用抽样调查B.数据3,5,4,1,1的中位数是4C.数据5,3,5,4,1,1的众数是1和5D.甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定7.(3.00分)(2018•天门)一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240° D.300°8.(3.00分)(2018•天门)若关于x的一元一次不等式组的解集是x>3,则m的取值范围是()A.m>4 B.m≥4 C.m<4 D.m≤49.(3.00分)(2018•天门)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.510.(3.00分)(2018•天门)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h 的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的是()A.①②③B.①②④C.①③④D.①②③④二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3.00分)(2018•天门)在“Wish you success”中,任选一个字母,这个字母为“s”的概率为.12.(3.00分)(2018•天门)计算:+|﹣2|﹣()﹣1=.13.(3.00分)(2018•天门)若一个多边形的每个外角都等于30°,则这个多边形的边数为.14.(3.00分)(2018•天门)某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为件.15.(3.00分)(2018•天门)我国海域辽阔,渔业资源丰富.如图,现有渔船B 在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)n mile处,则海岛A,C之间的距离为n mile.16.(3.00分)(2018•天门)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.三、解答题(本大题共9个小题,满分72分.)17.(5.00分)(2018•天门)化简:•.18.(5.00分)(2018•天门)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.19.(7.00分)(2018•天门)在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.组别发言次数n百分比A0≤n<310%B3≤n<620%C6≤n<925%D9≤n<1230%E12≤n<1510%F15≤n<18m%请你根据所给的相关信息,解答下列问题:(1)本次共随机采访了名教师,m=;(2)补全条形统计图;(3)已知受访的教师中,E组只有2名女教师,F组恰有1名男教师,现要从E组、F组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.20.(7.00分)(2018•天门)已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.21.(8.00分)(2018•天门)如图,在平面直角坐标系中,直线y=﹣x与反比例函数y=(k≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣x向上平移后与反比例函数图象在第二象限内交于点B,与y 轴交于点C,且△ABO的面积为,求直线BC的解析式.22.(8.00分)(2018•天门)如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.23.(10.00分)(2018•天门)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?24.(10.00分)(2018•天门)问题:如图①,在Rt△ABC中,AB=AC,D为BC 边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.25.(12.00分)(2018•天门)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A 在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为,,;(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.2018年湖北省江汉油田中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3.00分)(2018•天门)8的倒数是()A.﹣8 B.8 C.﹣ D.【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:8的倒数是,故选:D.【点评】此题主要考查倒数的概念及性质,属于基础题,注意掌握倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3.00分)(2018•天门)如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:观察图形可知,这个几何体是三棱柱.故选:A.【点评】本题考查的是三棱柱的展开图,考法较新颖,需要对三棱柱有充分的理解.3.(3.00分)(2018•天门)2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.3.5×102B.3.5×1010C.3.5×1011D.35×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:数350亿用科学记数法表示为3.5×1010.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3.00分)(2018•天门)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.30°B.36°C.45°D.50°【分析】直接利用平行线的性质得出∠ADC=150°,∠ADB=∠DBC,进而得出∠ADB 的度数,即可得出答案.【解答】解:∵AD∥BC,∠C=30°,∴∠ADC=150°,∠ADB=∠DBC,∵∠ADB:∠BDC=1:2,∴∠ADB=×150°=50°,∴∠DBC的度数是50°.故选:D.【点评】此题主要考查了平行线的性质,正确得出∠ADB度数是解题关键.5.(3.00分)(2018•天门)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a|B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b【分析】根据图示可以得到a、b的取值范围,结合绝对值的含义推知|b|、|a|的数量关系.【解答】解:A、如图所示,|b|<2<|a|,故本选项不符合题意;B、如图所示,a<b,则2a<2b,由不等式的性质知1﹣2a>1﹣2b,故本选项不符合题意;C、如图所示,a<﹣2<b<2,则﹣a>2>b,故本选项符合题意;D、如图所示,a<﹣2<b<2且|a|>2,|b|<2.则a<﹣2<﹣b,故本选项不符合题意;故选:C.【点评】此题考查了绝对值意义,比较两个负数大小的方法,有理数的运算,解本题的关键是掌握有理数的运算.6.(3.00分)(2018•天门)下列说法正确的是()A.了解某班学生的身高情况,适宜采用抽样调查B.数据3,5,4,1,1的中位数是4C.数据5,3,5,4,1,1的众数是1和5D.甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定【分析】直接利用方差的意义以及中位数的定义和众数的定义分别分析得出答案.【解答】解:A、了解某班学生的身高情况,适宜采用全面调查,故此选项错误;B、数据3,5,4,1,1的中位数是:3,故此选项错误;C、数据5,3,5,4,1,1的众数是1和5,正确;D、甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明甲的射击成绩比乙稳定.故选:C.【点评】此题主要考查了方差的意义以及中位数的定义和众数的定义,正确把握相关定义是解题关键.7.(3.00分)(2018•天门)一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240° D.300°【分析】根据圆锥的侧面积是底面积的2倍可得到圆锥底面半径和母线长的关系,利用圆锥侧面展开图的弧长=底面周长即可得到该圆锥的侧面展开图扇形的圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=πr R,∵侧面积是底面积的2倍,∴2πr2=πrR,∴R=2r,设圆心角为n,则=2πr=πR,解得,n=180°,故选:B.【点评】本题考查的是圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.8.(3.00分)(2018•天门)若关于x的一元一次不等式组的解集是x>3,则m的取值范围是()A.m>4 B.m≥4 C.m<4 D.m≤4【分析】先求出每个不等式的解集,再根据不等式组的解集和已知得出关于m 的不等式,再求出解集即可.【解答】解:,∵解不等式①得:x>3,解不等式②得:x>m﹣1,又∵关于x的一元一次不等式组的解集是x>3,∴m﹣1≤3,解得:m≤4,故选:D.【点评】本题考查了解一元一次不等式组,能根据不等式的解集和已知得出关于m的不等式是解此题的关键.9.(3.00分)(2018•天门)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.5【分析】根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE;在直角△ECG中,根据勾股定理即可求出DE的长.【解答】解:∵AB=AD=AF,∠D=∠AFE=90°,在Rt△ABG和Rt△AFG中,∵,∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,则EC=6﹣x.∵G为BC中点,BC=6,∴CG=3,在Rt△ECG中,根据勾股定理,得:(6﹣x)2+9=(x+3)2,解得x=2.则DE=2.故选:C.【点评】本题考查了翻折变换,解题的关键是掌握翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理.10.(3.00分)(2018•天门)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h 的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的是()A.①②③B.①②④C.①③④D.①②③④【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【解答】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选:A.【点评】本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3.00分)(2018•天门)在“Wish you success”中,任选一个字母,这个字母为“s”的概率为.【分析】根据概率公式进行计算即可.【解答】解:任选一个字母,这个字母为“s”的概率为:=,故答案为:.【点评】此题主要考查了概率公式,关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数:所有可能出现的结果数.12.(3.00分)(2018•天门)计算:+|﹣2|﹣()﹣1=0.【分析】根据二次根式的除法法则、绝对值的化简、负整数指数幂的运算法则计算即可.【解答】解:原式=+2﹣﹣2=0故答案为:0.【点评】本题考查的是二次根式的混合运算,掌握二次根式的除法法则、绝对值的化简、负整数指数幂的运算法则是解题的关键.13.(3.00分)(2018•天门)若一个多边形的每个外角都等于30°,则这个多边形的边数为12.【分析】根据已知和多边形的外角和求出边数即可.【解答】解:∵一个多边形的每个外角都等于30°,又∵多边形的外角和等于360°,∴多边形的边数是=12,故答案为:12.【点评】本题考查了多边形的内角和外角,能熟记多边形的外角和等于360°是解此题的关键.14.(3.00分)(2018•天门)某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为3200件.【分析】设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据发往A、B两区的物资共6000件,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据题意得:x+1.5x﹣1000=6000,解得:x=2800,∴1.5x﹣1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.15.(3.00分)(2018•天门)我国海域辽阔,渔业资源丰富.如图,现有渔船B 在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)n mile处,则海岛A,C之间的距离为18n mile.【分析】作AD⊥BC于D,根据正弦的定义、正切的定义分别求出BD、CD,根据题意列式计算即可.【解答】解:作AD⊥BC于D,设AC=x海里,在Rt△ACD中,AD=AC×sin∠ACD=x,则CD=x,在Rt△ABD中,BD=x,则x+x=18(1+),解得,x=18,答:A,C之间的距离为18海里.故答案为:18【点评】本题考查的是解直角三角形的应用,掌握方向角的概念、锐角三角函数的定义是解题的关键.16.(3.00分)(2018•天门)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.【分析】分别过点P1、P2、P3作x轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案.【解答】解:如图,分别过点P1、P2、P3作x轴的垂线段,垂足分别为点C、D、E,∵P1(3,3),且△P1OA1是等腰直角三角形,∴OC=CA1=P1C=3,设A1D=a,则P2D=a,∴OD=6+a,∴点P2坐标为(6+a,a),将点P2坐标代入y=﹣x+4,得:﹣(6+a)+4=a,解得:a=,∴A1A2=2a=3,P2D=,同理求得P3E=、A2A3=,∵S1=×6×3=9、S2=×3×=、S3=××=、……∴S2018=,故答案为:.【点评】本题考查规律型:点的坐标、等腰直角三角形的性质等知识,解题的关键是从特殊到一般,探究规律,利用规律解决问题,属于中考常考题型.三、解答题(本大题共9个小题,满分72分.)17.(5.00分)(2018•天门)化简:•.【分析】先将分子、分母因式分解,再约分即可得.【解答】解:原式=•=.【点评】本题主要考查分式的乘除法,解题的关键是掌握分式乘除运算顺序和运算法则.18.(5.00分)(2018•天门)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.【分析】(1)构造全等三角形,利用全等三角形的性质即可解决问题;(2)利用菱形以及平行线的性质即可解决问题;【解答】解:(1)如图所示,射线OP即为所求.(2)如图所示,点C即为所求;【点评】本题考查作图﹣应用与设计、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.(7.00分)(2018•天门)在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.组别发言次数n百分比A0≤n<310%B3≤n<620%C6≤n<925%D9≤n<1230%E12≤n<1510%F15≤n<18m%请你根据所给的相关信息,解答下列问题:(1)本次共随机采访了60名教师,m=5;(2)补全条形统计图;(3)已知受访的教师中,E组只有2名女教师,F组恰有1名男教师,现要从E 组、F组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.【分析】(1)根据:某组的百分比=×100%,所有百分比的和为1,计算即可;(2)先计算出D、F组的人数,再补全条形统计图;(3)列出树形图,根据总的情况和一男一女的情况计算概率.【解答】解:(1)由条形图知,C组共有15名,占25%所以本次共随机采访了15÷25%=60(名)m=100﹣10﹣20﹣25﹣30﹣10=5故答案为:60,5(2)D组教师有:60×30%=18(名)F组教师有:60×5%=3(名)(3)E组共有6名教师,4男2女,F组有三名教师,1男2女共有18种可能,==∴P一男一女答:所选派的两名教师恰好是1男1女的概率为【点评】本题考查了条形图、频率分布图、树形图、概率等相关知识,难度不大,综合性较强.概率=所求情况数与总情况数之比20.(7.00分)(2018•天门)已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.【分析】(1)利用判别式的意义得到△=(2m+1)2﹣4(m2﹣2)≥0,然后解不等式得到m的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=﹣(2m+1),x1x2=m2﹣2,再利用(x1﹣x2)2+m2=21得到(2m+1)2﹣4(m2﹣2)+m2=21,接着解关于m的方程,然后利用(1)中m的范围确定m的值.【解答】解:(1)根据题意得△=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21,∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,∵m≥﹣,∴m的值为2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.21.(8.00分)(2018•天门)如图,在平面直角坐标系中,直线y=﹣x与反比例函数y=(k≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣x向上平移后与反比例函数图象在第二象限内交于点B,与y 轴交于点C,且△ABO的面积为,求直线BC的解析式.【分析】(1)将A点坐标代入直线y=﹣x中求出m的值,确定出A的坐标,将A的坐标代入反比例解析式中求出k的值,即可确定出反比例函数的解析式;(2)根据直线的平移规律设直线BC的解析式为y=﹣x+b,由同底等高的两三角形面积相等可得△ACO与△ABO面积相等,根据△ABO的面积为列出方程OC•2=,解方程求出OC=,即b=,进而得出直线BC的解析式.【解答】解:(1)∵直线y=﹣x过点A(m,1),∴﹣m=1,解得m=﹣2,∴A(﹣2,1).∵反比例函数y=(k≠0)的图象过点A(﹣2,1),∴k=﹣2×1=﹣2,∴反比例函数的解析式为y=﹣;(2)设直线BC的解析式为y=﹣x+b,∵三角形ACO与三角形ABO面积相等,且△ABO的面积为,∴△ACO的面积=OC•2=,∴OC=,∴b=,∴直线BC的解析式为y=﹣x+.【点评】此题考查了一次函数与反比例函数的交点问题,待定系数法求函数解析式,三角形的面积求法,以及一次函数图象与几何变换,熟练掌握待定系数法是解题的关键.22.(8.00分)(2018•天门)如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.【分析】(1)连接OC,如图,利用圆周角定理得到∠ACB=90°,再根据斜边上的中线性质得MC=MG=ME,所以∠G=∠1,接着证明∠1+∠2=90°,从而得到∠OCM=90°,然后根据直线与圆的位置关系的判断方法可判断CM为⊙O的切线;(2)先证明∠G=∠A,再证明∠EMC=∠4,则可判定△EFC∽△ECM,利用相似比先计算出CE,再计算出EF,然后计算ME﹣EF即可.【解答】解:(1)CM与⊙O相切.理由如下:连接OC,如图,∵GD⊥AO于点D,∴∠G+∠GBD=90°,∵AB为直径,∴∠ACB=90°,∵M点为GE的中点,∴MC=MG=ME,∴∠G=∠1,∵OB=OC,∴∠B=∠2,∴∠1+∠2=90°,∴∠OCM=90°,∴OC⊥CM,∴CM为⊙O的切线;(2)∵∠1+∠3+∠4=90°,∠5+∠3+∠4=90°,∴∠1=∠5,而∠1=∠G,∠5=∠A,∴∠G=∠A,∵∠4=2∠A,∴∠4=2∠G,而∠EMC=∠G+∠1=2∠G,∴∠EMC=∠4,而∠FEC=∠CEM,∴△EFC∽△ECM,∴==,即==,∴CE=4,EF=,∴MF=ME﹣EF=6﹣=.【点评】本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l 的距离为d:直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.也考查了圆周角定理.23.(10.00分)(2018•天门)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?【分析】(1)根据线段EF经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(2)显然,当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,利用待定系数法确定一次函数的表达式即可;(3)利用:总利润=每千克利润×产量,根据x的取值范围列出有关x的二次函数,求得最值比较可得.【解答】解:(1)设y1与x之间的函数关系式为y1=kx+b,∵经过点(0,168)与(180,60),∴,解得:,∴产品销售价y1(元)与产量x(kg)之间的函数关系式为y1=﹣x+168(0≤x ≤180);(2)由题意,可得当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,∵直线y2=mx+n经过点(50,70)与(130,54),∴,解得,∴当50<x<130时,y2=﹣x+80.综上所述,生产成本y2(元)与产量x(kg)之间的函数关系式为y2=;(3)设产量为xkg时,获得的利润为W元,①当0≤x≤50时,W=x(﹣x+168﹣70)=﹣(x﹣)2+,∴当x=50时,W的值最大,最大值为3400;②当50<x<130时,W=x[(﹣x+168)﹣(﹣x+80)]=﹣(x﹣110)2+4840,∴当x=110时,W的值最大,最大值为4840;③当130≤x≤180时,W=x(﹣x+168﹣54)=﹣(x﹣95)2+5415,∴当x=130时,W的值最大,最大值为4680.因此当该产品产量为110kg时,获得的利润最大,最大值为4840元.【点评】本题考查了二次函数的应用,待定系数法求二次函数的解析式,解题的关键是从实际问题中抽象出二次函数模型.24.(10.00分)(2018•天门)问题:如图①,在Rt△ABC中,AB=AC,D为BC 边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为BC=DC+EC;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)连接CE,根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.【解答】解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE==6,∵∠DAE=90°,∴AD=AE=DE=6.【点评】本题考查的是全等三角形的判定和性质、勾股定理、以及旋转变换的性质,掌握全等三角形的判定定理和性质定理是解题的关键.25.(12.00分)(2018•天门)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A 在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为(,0),(3,0),(,);(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)利用二次函数图象上点的坐标特征可求出点A、B的坐标,再利用配方法即可找出抛物线的顶点D的坐标;(2)由点D的坐标结合对称找出点E的坐标,根据点B、C的坐标利用待定系数法可求出直线BC的解析式,再利用一次函数图象上点的坐标特征即可得出关于t的一元一次不等式组,解之即可得出t的取值范围;(3)假设存在,设点P的坐标为(m,0),则点Q的横坐标为m,分m<或m>3及≤m≤3两种情况,利用勾股定理找出关于m的一元二次方程,解之即可得出m的值,进而可找出点P的坐标,此题得解.【解答】解:(1)当y=0时,有﹣x2+x﹣1=0,解得:x1=,x2=3,∴点A的坐标为(,0),点B的坐标为(3,0).∵y=﹣x2+x﹣1=﹣(x2﹣x)﹣1=﹣(x﹣)2+,∴点D的坐标为(,).故答案为:(,0);(3,0);(,).(2)∵点E、点D关于直线y=t对称,∴点E的坐标为(,2t﹣).当x=0时,y=﹣x2+x﹣1=﹣1,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年湖北仙桃市中考数学考试(答案+解析)————————————————————————————————作者:————————————————————————————————日期:2018年湖北省仙桃市中考数学试卷一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3分)8的倒数是()A.﹣8 B.8 C.﹣D.2.(3分)如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥3.(3分)2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.3.5×102B.3.5×1010C.3.5×1011D.35×10104.(3分)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.30°B.36°C.45°D.50°5.(3分)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a| B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b6.(3分)下列说法正确的是()A.了解某班学生的身高情况,适宜采用抽样调查B.数据3,5,4,1,1的中位数是4C.数据5,3,5,4,1,1的众数是1和5D.甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定7.(3分)一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240°D.300°8.(3分)若关于x的一元一次不等式组<>的解集是x>3,则m的取值范围是()A.m>4 B.m≥4C.m<4 D.m≤49.(3分)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.510.(3分)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B 地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的有()A.4个B.3个C.2个D.1个二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3分)在“Wish you success”中,任选一个字母,这个字母为“s”的概率为.12.(3分)计算:+|﹣2|﹣()﹣1=.13.(3分)若一个多边形的每个外角都等于30°,则这个多边形的边数为.14.(3分)某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为件.15.(3分)我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)n mile 处,则海岛A,C之间的距离为n mile.16.(3分)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.三、解答题(本大题共9个小题,满分72分.)17.(5分)化简:•.18.(5分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.19.(7分)在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.组别发言次数n百分比A0≤n<310%B3≤n<620%C6≤n<925%D9≤n<1230%E12≤n<1510%F15≤n<18m%请你根据所给的相关信息,解答下列问题:(1)本次共随机采访了名教师,m=;(2)补全条形统计图;(3)已知受访的教师中,E组只有2名女教师,F组恰有1名男教师,现要从E组、F组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.20.(7分)已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.21.(8分)如图,在平面直角坐标系中,直线y=﹣x与反比例函数y=(k≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣x向上平移后与反比例函数图象在第二象限内交于点B,与y轴交于点C,且△ABO的面积为,求直线BC的解析式.22.(8分)如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.23.(10分)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y(元)、生产成本y2(元)与产量x(kg)之间的函数关系.1(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?24.(10分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.25.(12分)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为,,;(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.2018年湖北省仙桃市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3分)8的倒数是()A.﹣8 B.8 C.﹣D.【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:8的倒数是,故选:D.2.(3分)如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:观察图形可知,这个几何体是三棱柱.故选:A.3.(3分)2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.3.5×102B.3.5×1010C.3.5×1011D.35×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数350亿用科学记数法表示为3.5×1010.故选:B.4.(3分)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.30°B.36°C.45°D.50°【分析】直接利用平行线的性质得出∠ADC=150°,∠ADB=∠DBC,进而得出∠ADB的度数,即可得出答案.【解答】解:∵AD∥BC,∠C=30°,∴∠ADC=150°,∠ADB=∠DBC,∵∠ADB:∠BDC=1:2,∴∠ADB=×150°=50°,∴∠DBC的度数是50°.故选:D.5.(3分)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a| B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b【分析】根据图示可以得到a、b的取值范围,结合绝对值的含义推知|b|、|a|的数量关系.【解答】解:A、如图所示,|b|<2<|a|,故本选项不符合题意;B、如图所示,a<b,则2a<2b,由不等式的性质知1﹣2a>1﹣2b,故本选项不符合题意;C、如图所示,a<﹣2<b<2,则﹣a>2>b,故本选项符合题意;D、如图所示,a<﹣2<b<2且|a|>2,|b|<2.则a<﹣2<﹣b,故本选项不符合题意;故选:C.6.(3分)下列说法正确的是()A.了解某班学生的身高情况,适宜采用抽样调查B.数据3,5,4,1,1的中位数是4C.数据5,3,5,4,1,1的众数是1和5D.甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定【分析】直接利用方差的意义以及中位数的定义和众数的定义分别分析得出答案.【解答】解:A、了解某班学生的身高情况,适宜采用全面调查,故此选项错误;B、数据3,5,4,1,1的中位数是:3,故此选项错误;C、数据5,3,5,4,1,1的众数是1和5,正确;D、甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明甲的射击成绩比乙稳定.故选:C.7.(3分)一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240°D.300°【分析】根据圆锥的侧面积是底面积的2倍可得到圆锥底面半径和母线长的关系,利用圆锥侧面展开图的弧长=底面周长即可得到该圆锥的侧面展开图扇形的圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=πrR,∵侧面积是底面积的2倍,∴2πr2=πrR,∴R=2r,设圆心角为n,则=2πr=πR,解得,n=180°,故选:B.8.(3分)若关于x的一元一次不等式组<>的解集是x>3,则m的取值范围是()A.m>4 B.m≥4C.m<4 D.m≤4【分析】先求出每个不等式的解集,再根据不等式组的解集和已知得出关于m的不等式,再求出解集即可.【解答】解:<>,∵解不等式①得:x>3,解不等式②得:x>m﹣1,又∵关于x的一元一次不等式组<>的解集是x>3,∴m﹣1≤3,解得:m≤4,故选:D.9.(3分)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.5【分析】根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE;在直角△ECG中,根据勾股定理即可求出DE的长.【解答】解:如图,连接AE,∵AB=AD=AF,∠D=∠AFE=90°,在Rt△AFE和Rt△ADE中,∵,∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,则EC=6﹣x.∵G为BC中点,BC=6,∴CG=3,在Rt△ECG中,根据勾股定理,得:(6﹣x)2+9=(x+3)2,解得x=2.则DE=2.故选:C.10.(3分)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B 地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的有()A.4个B.3个C.2个D.1个【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【解答】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选:B.二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3分)在“Wish you success”中,任选一个字母,这个字母为“s”的概率为.【分析】根据概率公式进行计算即可.【解答】解:任选一个字母,这个字母为“s”的概率为:=,故答案为:.12.(3分)计算:+|﹣2|﹣()﹣1=0.【分析】根据二次根式的除法法则、绝对值的化简、负整数指数幂的运算法则计算即可.【解答】解:原式=+2﹣﹣2=0故答案为:0.13.(3分)若一个多边形的每个外角都等于30°,则这个多边形的边数为12.【分析】根据已知和多边形的外角和求出边数即可.【解答】解:∵一个多边形的每个外角都等于30°,又∵多边形的外角和等于360°,∴多边形的边数是=12,故答案为:12.14.(3分)某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为3200件.【分析】设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据发往A、B两区的物资共6000件,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据题意得:x+1.5x﹣1000=6000,解得:x=2800,∴1.5x﹣1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.15.(3分)我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)n mile 处,则海岛A,C之间的距离为18n mile.【分析】作AD⊥BC于D,根据正弦的定义、正切的定义分别求出BD、CD,根据题意列式计算即可.【解答】解:作AD⊥BC于D,设AC=x海里,在Rt△ACD中,AD=AC×sin∠ACD=x,则CD=x,在Rt△ABD中,BD=x,则x+x=18(1+),解得,x=18,答:A,C之间的距离为18海里.故答案为:1816.(3分)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.【分析】分别过点P1、P2、P3作x轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案.【解答】解:如图,分别过点P1、P2、P3作x轴的垂线段,垂足分别为点C、D、E,∵P1(3,3),且△P1OA1是等腰直角三角形,∴OC=CA1=P1C=3,设AD=a,则P2D=a,1∴OD=6+a,∴点P2坐标为(6+a,a),坐标代入y=﹣x+4,得:﹣(6+a)+4=a,将点P2解得:a=,∴A1A2=2a=3,P2D=,同理求得PE=、A2A3=,3∵S1=×6×3=9、S2=×3×=、S3=××=、……∴S2018=,故答案为:.三、解答题(本大题共9个小题,满分72分.)17.(5分)化简:•.【分析】先将分子、分母因式分解,再约分即可得.【解答】解:原式=•=.18.(5分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.【分析】(1)构造全等三角形,利用全等三角形的性质即可解决问题;(2)利用菱形以及平行线的性质即可解决问题;【解答】解:(1)如图所示,射线OP即为所求.(2)如图所示,点C即为所求;19.(7分)在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图. 组别 发言次数n 百分比 A 0≤n <3 10% B 3≤n <6 20% C 6≤n <9 25% D 9≤n <12 30% E 12≤n <15 10% F15≤n <18m %请你根据所给的相关信息,解答下列问题: (1)本次共随机采访了 60 名教师,m = 5 ; (2)补全条形统计图;(3)已知受访的教师中,E 组只有2名女教师,F 组恰有1名男教师,现要从E 组、F 组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.【分析】(1)根据:某组的百分比=该组人数总人数×100%,所有百分比的和为1,计算即可;(2)先计算出D 、F 组的人数,再补全条形统计图;(3)列出树形图,根据总的情况和一男一女的情况计算概率. 【解答】解:(1)由条形图知,C 组共有15名,占25% 所以本次共随机采访了15÷25%=60(名) m =100﹣10﹣20﹣25﹣30﹣10=5 故答案为:60,5(2)D 组教师有:60×30%=18(名) F 组教师有:60×5%=3(名) (3)E 组共有6名教师,4男2女, F 组有三名教师,1男2女 共有18种可能,∴P一男一女==答:所选派的两名教师恰好是1男1女的概率为20.(7分)已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.【分析】(1)利用判别式的意义得到△=(2m+1)2﹣4(m2﹣2)≥0,然后解不等式得到m的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=﹣(2m+1),x1x2=m2﹣2,再利用(x1﹣x2)2+m2=21得到(2m+1)2﹣4(m2﹣2)+m2=21,接着解关于m的方程,然后利用(1)中m的范围确定m的值.【解答】解:(1)根据题意得△=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21,∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m=2,m2=﹣6,1∵m≥﹣,∴m的值为2.21.(8分)如图,在平面直角坐标系中,直线y=﹣x与反比例函数y=(k≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣x向上平移后与反比例函数图象在第二象限内交于点B,与y轴交于点C,且△ABO的面积为,求直线BC的解析式.【分析】(1)将A点坐标代入直线y=﹣x中求出m的值,确定出A的坐标,将A的坐标代入反比例解析式中求出k的值,即可确定出反比例函数的解析式;(2)根据直线的平移规律设直线BC的解析式为y=﹣x+b,由同底等高的两三角形面积相等可得△ACO与△ABO面积相等,根据△ABO的面积为列出方程OC•2=,解方程求出OC=,即b=,进而得出直线BC的解析式.【解答】解:(1)∵直线y=﹣x过点A(m,1),∴﹣m=1,解得m=﹣2,∴A(﹣2,1).∵反比例函数y=(k≠0)的图象过点A(﹣2,1),∴k=﹣2×1=﹣2,∴反比例函数的解析式为y=﹣;(2)设直线BC的解析式为y=﹣x+b,∵三角形ACO与三角形ABO面积相等,且△ABO的面积为,∴△ACO的面积=OC•2=,∴OC=,∴b=,∴直线BC的解析式为y=﹣x+.22.(8分)如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.【分析】(1)连接OC,如图,利用圆周角定理得到∠ACB=90°,再根据斜边上的中线性质得MC=MG=ME,所以∠G=∠1,接着证明∠1+∠2=90°,从而得到∠OCM=90°,然后根据直线与圆的位置关系的判断方法可判断CM为⊙O的切线;(2)先证明∠G=∠A,再证明∠EMC=∠4,则可判定△EFC∽△ECM,利用相似比先计算出CE,再计算出EF,然后计算ME ﹣EF即可.【解答】解:(1)CM与⊙O相切.理由如下:连接OC,如图,∵GD⊥AO于点D,∴∠G+∠GBD=90°,∵AB为直径,∴∠ACB=90°,∵M点为GE的中点,∴MC=MG=ME,∴∠G=∠1,∵OB=OC,∴∠B=∠2,∴∠1+∠2=90°,∴∠OCM=90°,∴OC⊥CM,∴CM为⊙O的切线;(2)∵∠1+∠3+∠4=90°,∠5+∠3+∠4=90°,∴∠1=∠5,而∠1=∠G,∠5=∠A,∴∠G=∠A,∵∠4=2∠A,∴∠4=2∠G,而∠EMC=∠G+∠1=2∠G,∴∠EMC=∠4,而∠FEC=∠CEM,∴△EFC∽△ECM,∴==,即==,∴CE=4,EF=,∴MF=ME﹣EF=6﹣=.23.(10分)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y(元)、生产成本y2(元)与产量x(kg)之间的函数关系.1(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?【分析】(1)根据线段EF经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(2)显然,当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,利用待定系数法确定一次函数的表达式即可;(3)利用:总利润=每千克利润×产量,根据x的取值范围列出有关x的二次函数,求得最值比较可得.【解答】解:(1)设y1与x之间的函数关系式为y1=kx+b,∵经过点(0,168)与(180,60),∴,解得:,∴产品销售价y1(元)与产量x(kg)之间的函数关系式为y1=﹣x+168(0≤x≤180);(2)由题意,可得当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,∵直线y2=mx+n经过点(50,70)与(130,54),∴,解得,∴当50<x<130时,y2=﹣x+80.综上所述,生产成本y2(元)与产量x(kg)之间的函数关系式为y2=<<;(3)设产量为xkg时,获得的利润为W元,①当0≤x≤50时,W=x(﹣x+168﹣70)=﹣(x﹣)2+,∴当x=50时,W的值最大,最大值为3400;②当50<x<130时,W=x[(﹣x+168)﹣(﹣x+80)]=﹣(x﹣110)2+4840,∴当x=110时,W的值最大,最大值为4840;③当130≤x≤180时,W=x(﹣x+168﹣54)=﹣(x﹣95)2+5415,∴当x=130时,W的值最大,最大值为4680.因此当该产品产量为110kg时,获得的利润最大,最大值为4840元.24.(10分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为BC=DC+EC;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)连接CE,根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.【解答】解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE==6,∵∠DAE=90°,∴AD=AE=DE=6.25.(12分)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为(,0),(3,0),(,);(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)利用二次函数图象上点的坐标特征可求出点A、B的坐标,再利用配方法即可找出抛物线的顶点D的坐标;(2)由点D的坐标结合对称找出点E的坐标,根据点B、C的坐标利用待定系数法可求出直线BC的解析式,再利用一次函数图象上点的坐标特征即可得出关于t的一元一次不等式组,解之即可得出t的取值范围;(3)假设存在,设点P的坐标为(m,0),则点Q的横坐标为m,分m<或m>3及≤m≤3两种情况,利用勾股定理找出关于m的一元二次方程,解之即可得出m的值,进而可找出点P的坐标,此题得解.【解答】解:(1)当y=0时,有﹣x2+x﹣1=0,解得:x=,x2=3,1∴点A的坐标为(,0),点B的坐标为(3,0).∵y=﹣x2+x﹣1=﹣(x2﹣x)﹣1=﹣(x﹣)2+,∴点D的坐标为(,).故答案为:(,0);(3,0);(,).(2)∵点E、点D关于直线y=t对称,∴点E的坐标为(,2t﹣).当x=0时,y=﹣x2+x﹣1=﹣1,∴点C的坐标为(0,﹣1).设线段BC所在直线的解析式为y=kx+b,将B(3,0)、C(0,﹣1)代入y=kx+b,,解得:,∴线段BC所在直线的解析式为y=x﹣1.∵点E在△ABC内(含边界),∴,解得:≤t≤.(3)当x<或x>3时,y=﹣x2+x﹣1;当≤x≤3时,y=x2﹣x+1.假设存在,设点P的坐标为(m,0),则点Q的横坐标为m.①当m<或m>3时,点Q的坐标为(m,﹣m2+m﹣1)(如图1),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(﹣m2+m)2=m2+1+m2+(﹣m2+m﹣1)2,整理,得:m=,m2=,1∴点P的坐标为(,0)或(,0);②当≤m≤3时,点Q的坐标为(m,m2﹣m+1)(如图2),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(m2﹣m+2)2=m2+1+m2+(m2﹣m+1)2,整理,得:11m2﹣28m+12=0,解得:m=,m4=2,3∴点P的坐标为(,0)或(1,0).综上所述:存在以CQ为直径的圆与x轴相切于点P,点P的坐标为(,0)、(,0)、(1,0)或(,0).。