C语言通用数据类型链表的构造数据域为指针

合集下载

C语言中都有哪些常见的数据结构你都知道几个?

C语言中都有哪些常见的数据结构你都知道几个?

C语⾔中都有哪些常见的数据结构你都知道⼏个?上次在⾯试时被⾯试官问到学了哪些数据结构,那时简单答了栈、队列/(ㄒoㄒ)/~~其它就都想不起来了,今天有空整理了⼀下⼏种常见的数据结构,原来我们学过的数据结构有这么多~⾸先,先来回顾下C语⾔中常见的基本数据类型吧O(∩_∩)OC语⾔的基本数据类型有:整型int,浮点型float,字符型char等等添加描述那么,究竟什么是数据结构呢?数据结构是计算机存储、组织数据的⽅式。

数据结构是指相互之间存在⼀种或多种特定关系的数据元素的集合⼤部分数据结构的实现都需要借助C语⾔中的指针和结构体类型下⾯,进⼊今天的重点啦O(∩_∩)O⼏种常见的数据结构(1)线性数据结构:元素之间⼀般存在元素之间存在⼀对⼀关系,是最常⽤的⼀类数据结构,典型的有:数组、栈、队列和线性表(2)树形结构:结点间具有层次关系,每⼀层的⼀个结点能且只能和上⼀层的⼀个结点相关,但同时可以和下⼀层的多个结点相关,称为“⼀对多”关系,常见类型有:树、堆(3)图形结构:在图形结构中,允许多个结点之间相关,称为“多对多”关系下⾯分别对这⼏种数据结构做⼀个简单介绍:1、线性数据结构:典型的有:数组、栈、队列和线性表(1)数组和链表a、数组:存放着⼀组相同类型的数据,需要预先指定数组的长度,有⼀维数组、⼆维数组、多维数组等b、链表:链表是C语⾔中⼀种应⽤⼴泛的结构,它采⽤动态分配内存的形式实现,⽤⼀组任意的存储单元存放数据元素链表的,⼀般为每个元素增设指针域,⽤来指向后继元素c、数组和链表的区别:从逻辑结构来看:数组必须事先定义固定的长度,不能适应数据动态地增减的情况;链表动态地进⾏存储分配,可以适应数据动态地增减的情况,且可以⽅便地插⼊、删除数据项(数组中插⼊、删除数据项时,需要移动其它数据项)从内存存储来看:(静态)数组从栈中分配空间(⽤NEW创建的在堆中), 对于程序员⽅便快速,但是⾃由度⼩;链表从堆中分配空间, ⾃由度⼤但是申请管理⽐较⿇烦从访问⽅式来看:数组在内存中是连续存储的,因此,可以利⽤下标索引进⾏随机访问;链表是链式存储结构,在访问元素的时候只能通过线性的⽅式由前到后顺序访问,所以访问效率⽐数组要低(2)栈、队列和线性表:可采⽤顺序存储和链式存储的⽅法进⾏存储顺序存储:借助数据元素在存储空间中的相对位置来表⽰元素之间的逻辑关系链式存储:借助表⽰数据元素存储地址的指针表⽰元素之间的逻辑关系a、栈:只允许在序列末端进⾏操作,栈的操作只能在栈顶进⾏,⼀般栈⼜被称为后进先出或先进后出的线性结构顺序栈:采⽤顺序存储结构的栈称为顺序栈,即需要⽤⼀⽚地址连续的空间来存储栈的元素,顺序栈的类型定义如下:添加描述链栈:采⽤链式存储结构的栈称为链栈:添加描述b、队列:只允许在序列两端进⾏操作,⼀般队列也被称为先进先出的线性结构循环队列:采⽤顺序存储结构的队列,需要按队列可能的最⼤长度分配存储空空,其类型定义如下:添加描述 链队列:采⽤链式存储结构的队列称为链队列,⼀般需要设置头尾指针只是链表的头尾结点:添加描述c、线性表:允许在序列任意位置进⾏操作,线性表的操作位置不受限制,线性表的操作⼗分灵活,常⽤操作包括在任意位置插⼊和删除,以及查询和修改任意位置的元素顺序表:采⽤顺序存储结构表⽰的线性表称为顺序表,⽤⼀组地址连续的存储单元⼀次存放线性表的数据元素,即以存储位置相邻表⽰位序相继的两个元素之间的前驱和后继关系,为了避免移动元素,⼀般在顺序表的接⼝定义中只考虑在表尾插⼊和删除元素,如此实现的顺序表也可称为栈表:添加描述线性表:⼀般包括单链表、双向链表、循环链表和双向循环链表单链表:添加描述 双向链表:添加描述线性表两种存储结构的⽐较:顺序表: 优点:在顺序表中,逻辑中相邻的两个元素在物理位置上也相邻,查找⽐较⽅便,存取任⼀元素的时间复杂度都为O(1) 缺点:不适合在任意位置插⼊、删除元素,因为需要移动元素,平均时间复杂度为O(n)链表: 优点:在链接的任意位置插⼊或删除元素只需修改相应指针,不需要移动元素;按需动态分配,不需要按最⼤需求预先分配⼀块连续空空 缺点:查找不⽅便,查找某⼀元素需要从头指针出发沿指针域查找,因此平均时间复杂度为O(n)2、树形结构:结点间具有层次关系,每⼀层的⼀个结点能且只能和上⼀层的⼀个结点相关,但同时可以和下⼀层的多个结点相关,称为“⼀对多”关系,常见类型有:树、堆(1)⼆叉树:⼆叉树是⼀种递归数据结构,是含有n(n>=0)个结点的有限集合,⼆叉树具有以下特点:⼆叉树可以是空树;⼆叉树的每个结点都恰好有两棵⼦树,其中⼀个或两个可能为空;⼆叉树中每个结点的左、右⼦树的位置不能颠倒,若改变两者的位置,就成为另⼀棵⼆叉树(2)完全⼆叉树:从根起,⾃上⽽下,⾃左⽽右,给满⼆叉树的每个结点从1到n连续编号,如果每个结点都与深度为k的满⼆叉树中编号从1⾄n的结点⼀⼀对应,则称为完全⼆叉树a、采⽤顺序存储结构:⽤⼀维数组存储完全⼆叉树,结点的编号对于与结点的下标(如根为1,则根的左孩⼦为2*i=2*1=2,右孩⼦为2*i+1=2*1+1=2)添加描述b、采⽤链式存储结构:⼆叉链表:添加描述三叉链表:它的结点⽐⼆叉链表多⼀个指针域parent,⽤于执⾏结点的双亲,便于查找双亲结点添加描述两种存储结构⽐较:对于完全⼆叉树,采⽤顺序存储结构既能节省空间,⼜可利⽤数组元素的下标值确定结点在⼆叉树中的位置及结点之间的关系,但采⽤顺序存储结构存储⼀般⼆叉树容易造成空间浪费,链式结构可以克服这个缺点(3)⼆叉查找树:⼆叉查找树⼜称⼆叉排序树,或者是⼀课空⼆叉树,或者是具有如下特征的⼆叉树:a、若它的左⼦树不空,则左⼦树上所有结点的值均⼩于根结点的值b、若它的右⼦树不空,则右⼦树上所有结点的值均⼤于根结点的值c、它的左、右⼦树也分别是⼆叉查找树(4)平衡⼆叉树:平衡⼆叉查找树简称平衡⼆叉树,平衡⼆叉树或者是棵空树,或者是具有下列性质的⼆叉查找树:它的左⼦树和右⼦树都是平衡⼆叉树,且左⼦树和右⼦树的⾼度之差的绝对值不超过1添加描述平衡⼆叉树的失衡及调整主要可归纳为下列四种情况:LL型、RR型、LR型、RL型(5)树:树是含有n(n>=0)个结点的有限集合,在任意⼀棵⾮空树种: a、有且仅有⼀个特定的称为根的结点b、当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1,T2,...,Tm,其中每⼀个集合本⾝⼜是⼀棵树,并且T1,T2,...,Tm称为根的⼦树(6)堆:堆是具有以下特性的完全⼆叉树,其所有⾮叶⼦结点均不⼤于(或不⼩于)其左右孩⼦结点。

c语言中链表的定义

c语言中链表的定义

c语言中链表的定义C语言中链表的定义链表是一种常用的数据结构,它是由一系列节点组成的,每个节点包含一个数据元素和一个指向下一个节点的指针。

链表可以用来存储任意类型的数据,而且它的大小可以动态地增加或减少,非常灵活。

在C语言中,链表的定义通常包括两个部分:节点结构体和链表结构体。

节点结构体定义如下:```typedef struct node {int data; // 数据元素struct node *next; // 指向下一个节点的指针} Node;```这里定义了一个名为Node的结构体,它包含两个成员变量:data和next。

其中,data用来存储节点的数据元素,next用来指向下一个节点的指针。

注意,这里的next是一个指向Node类型的指针,这样才能实现链表的连接。

链表结构体定义如下:```typedef struct list {Node *head; // 指向链表头节点的指针Node *tail; // 指向链表尾节点的指针int size; // 链表的大小} List;```这里定义了一个名为List的结构体,它包含三个成员变量:head、tail和size。

其中,head和tail分别指向链表的头节点和尾节点,size表示链表的大小。

通过这两个结构体的定义,我们就可以创建一个链表了。

下面是一个简单的例子:```int main() {List list = {NULL, NULL, 0}; // 初始化链表Node *node1 = (Node*)malloc(sizeof(Node)); // 创建第一个节点node1->data = 1; // 设置节点的数据元素node1->next = NULL; // 设置节点的指针list.head = node1; // 将节点1设置为链表的头节点list.tail = node1; // 将节点1设置为链表的尾节点list.size++; // 链表大小加1// 创建更多的节点...return 0;}```在这个例子中,我们首先初始化了一个空链表,然后创建了第一个节点,并将它设置为链表的头节点和尾节点。

[转载整理]C语言链表实例

[转载整理]C语言链表实例

[转载整理]C语⾔链表实例 C语⾔链表有单链表、双向链表、循环链表。

单链表由数据域和指针域组成,数据域存放数据,指针域存放该数据类型的指针便于找到下⼀个节点。

双链表则含有头指针域、数据域和尾指针域,域单链表不同,双链表可以从后⼀个节点找到前⼀个节点,⼆单链表则不⾏。

循环链表就是在单链表的基础上,将头结点的地址指针存放在最后⼀个节点的指针域⾥以,此形成循环。

此外还有双向循环链表,它同时具有双向链表和循环链表的功能。

单链表如:链表节点的数据结构定义struct node{int num;struct node *p;} ;在此链表节点的定义中,除⼀个整型的成员外,成员p是指向与节点类型完全相同的指针。

※在链表节点的数据结构中,⾮常特殊的⼀点就是结构体内的指针域的数据类型使⽤了未定义成功的数据类型。

这是在C中唯⼀规定可以先使⽤后定义的数据结构。

链表实例代码:1// 原⽂地址 /wireless-dragon/p/5170565.html2 #include<stdio.h>3 #include<stdlib.h>4 #include<string.h>56 typedef int elemType;//定义存⼊的数据的类型可以是int char78 typedef struct NODE{ //定义链表的结构类型9 elemType element;10struct NODE *next;11 }Node;1213/************************************************************************/14/* 以下是关于线性表链接存储(单链表)操作的19种算法 */1516/* 1.初始化线性表,即置单链表的表头指针为空 */17/* 2.创建线性表,此函数输⼊负数终⽌读取数据*/18/* 3.打印链表,链表的遍历*/19/* 4.清除线性表L中的所有元素,即释放单链表L中所有的结点,使之成为⼀个空表 */20/* 5.返回单链表的长度 */21/* 6.检查单链表是否为空,若为空则返回1,否则返回0 */22/* 7.返回单链表中第pos个结点中的元素,若pos超出范围,则停⽌程序运⾏ */23/* 8.从单链表中查找具有给定值x的第⼀个元素,若查找成功则返回该结点data域的存储地址,否则返回NULL */24/* 9.把单链表中第pos个结点的值修改为x的值,若修改成功返回1,否则返回0 */25/* 10.向单链表的表头插⼊⼀个元素 */26/* 11.向单链表的末尾添加⼀个元素 */27/* 12.向单链表中第pos个结点位置插⼊元素为x的结点,若插⼊成功返回1,否则返回0 */28/* 13.向有序单链表中插⼊元素x结点,使得插⼊后仍然有序 */29/* 14.从单链表中删除表头结点,并把该结点的值返回,若删除失败则停⽌程序运⾏ */30/* 15.从单链表中删除表尾结点并返回它的值,若删除失败则停⽌程序运⾏ */31/* 16.从单链表中删除第pos个结点并返回它的值,若删除失败则停⽌程序运⾏ */32/* 17.从单链表中删除值为x的第⼀个结点,若删除成功则返回1,否则返回0 */33/* 18.交换2个元素的位置 */34/* 19.将线性表进⾏冒排序 */35363738/*注意检查分配到的动态内存是否为空*/3940414243/* 1.初始化线性表,即置单链表的表头指针为空 */44void initList(Node **pNode)45 {46 *pNode=NULL;47 printf("initList函数执⾏,初始化成功\n");48 }4950/* 2.创建线性表,此函数输⼊负数终⽌读取数据*/51 Node *creatList(Node *pHead)52 {53 Node *p1,*p2;54 p1=p2=(Node *)malloc(sizeof(Node));55if(p1 == NULL || p2 ==NULL)57 printf("内存分配失败\n");58 exit(0);59 }60 memset(p1,0,sizeof(Node));6162 scanf("%d",&p1->element);63 p1->next=NULL;6465while(p1->element >0) //输⼊的值⼤于0则继续,否则停⽌66 {67if(pHead == NULL)//空表,接⼊表头68 {69 pHead=p1;70 }71else72 {73 p2->next=p1;74 }7576 p2=p1;77 p1=(Node *)malloc(sizeof(Node));7879if(p1==NULL||p2==NULL)80 {81 printf("内存分配失败\n");82 exit(0);83 }84 memset(p1,0,sizeof(Node));85 scanf("%d",&p1->element);86 p1->next=NULL;87 }88 printf("CreatList函数执⾏,链表创建成功\n");89return pHead;90 }9192/* 3.打印链表,链表的遍历*/93void printList(Node *pHead)94 {95if(NULL==pHead)96 {97 printf("PrintList函数执⾏,链表为空\n");98 }99else100 {101while(NULL!=pHead)102 {103 printf("%d\n",pHead->element);104 pHead=pHead->next;105 }106 }107108 }109110111/* 4.清除线性表L中的所有元素,即释放单链表L中所有的结点,使之成为⼀个空表 */ 112void clearList(Node *pHead)113 {114 Node *pNext;115116if(pHead==NULL)117 {118 printf("clearList函数执⾏,链表为空\n");119return;120 }121while(pHead->next!=NULL)122 {123 pNext=pHead->next;124free(pHead);125 pHead=pNext;126 }127 printf("clearList函数执⾏,链表已经清除!\n");128129 }130131/* 5.返回链表的长度*/132int sizeList(Node *pHead)133 {134int size=0;135136while(pHead!=NULL)137 {138 size++;139 pHead=pHead->next;141 printf("sizelist函数执⾏,链表长度为%d\n",size);142return size;143 }144145/* 6.检查单链表是否为空,若为空则返回1,否则返回0 */146int isEmptyList(Node *pHead)147 {148if(pHead==NULL)149 {150 printf("isEmptylist函数执⾏,链表为空!\n");151return1;152 }153154else155 printf("isEmptylist函数执⾏,链表⾮空!\n");156return0;157158 }159160/* 7.返回链表中第post节点的数据,若post超出范围,则停⽌程序运⾏*/161int getElement(Node *pHead,int pos)162 {163int i=0;164if(pos<1)165 {166 printf("getElement函数执⾏,pos值⾮法!");167return0;168 }169if(pHead==NULL)170 {171 printf("getElement函数执⾏,链表为空!");172 }173174while (pHead!=NULL)175 {176 ++i;177if(i==pos)178 {179break;180 }181 pHead=pHead->next;182 }183if(i<pos)184 {185 printf("getElement函数执⾏,pos值超出链表长度\n");186return0;187 }188 printf("getElement函数执⾏,位置%d中的元素为%d\n",pos,pHead->element);189190return1;191 }192193//8.从单⼀链表中查找具有给定值x的第⼀个元素,若查找成功后,返回该节点data域的存储位置,否则返回NULL 194 elemType *getElemAddr(Node *pHead,elemType x)195 {196if(NULL==pHead)197 {198 printf("getEleAddr函数执⾏,链表为空");199return NULL;200 }201if(x<0)202 {203 printf("getEleAddr函数执⾏,给定值x不合法\n");204return NULL;205 }206while((pHead->element!=x)&&(NULL!=pHead->next))//判断链表是否为空,并且是否存在所查找的元素207 {208 pHead=pHead->next;209 }210if(pHead->element!=x)211 {212 printf("getElemAddr函数执⾏,在链表中没有找到x值\n");213return NULL;214 }215else216 {217 printf("getElemAddr函数执⾏,元素%d的地址为0x%x\n",x,&(pHead->element));218 }219return &(pHead->element);220221 }222223224/*9.修改链表中第pos个点X的值,如果修改成功,则返回1,否则返回0*/225int modifyElem(Node *pNode,int pos,elemType x)226 {227 Node *pHead;228 pHead=pNode;229int i=0;230if(NULL==pHead)231 {232 printf("modifyElem函数执⾏,链表为空\n");233return0;234 }235236if(pos<1)237 {238 printf("modifyElem函数执⾏,pos值⾮法\n");239return0;240 }241242while(pHead!= NULL)243 {244 ++i;245if(i==pos)246 {247break;248 }249 pHead=pHead->next;250 }251252if(i<pos)253 {254 printf("modifyElem函数执⾏,pos值超出链表长度\n");255return0;256 }257 pNode=pHead;258 pNode->element=x;259 printf("modifyElem函数执⾏,修改第%d点的元素为%d\n",pos,x);260261return1;262263 }264265/* 10.向单链表的表头插⼊⼀个元素 */266int insertHeadList(Node **pNode,elemType insertElem)267 {268 Node *pInsert;269 pInsert=(Node *)malloc(sizeof(Node));270if(pInsert==NULL) exit(1);271 memset(pInsert,0,sizeof(Node));272 pInsert->element=insertElem;273 pInsert->next=*pNode;274 *pNode=pInsert;275 printf("insertHeadList函数执⾏,向表头插⼊元素%d成功\n",insertElem);276return1;277 }278279/* 11.向单链表的末尾添加⼀个元素 */280int insertLastList(Node *pNode,elemType insertElem)281 {282 Node *pInsert;283 Node *pHead;284 Node *pTmp;285286 pHead=pNode;287 pTmp=pHead;288 pInsert=(Node *)malloc(sizeof(Node));289if(pInsert==NULL) exit(1);290 memset(pInsert,0,sizeof(Node));291 pInsert->element=insertElem;292 pInsert->next=NULL;293while(pHead->next!=NULL)294 {295 pHead=pHead->next;296 }297 pHead->next=pInsert;298 printf("insertLastList函数执⾏,向表尾插⼊元素%d成功!\n",insertElem);299return1;300 }301302/* 12.向单链表中第pos个结点位置插⼊元素为x的结点,若插⼊成功返回1,否则返回0*/ 303int isAddPos(Node *pNode,int pos,elemType x)304 {305 Node *pHead;306 pHead=pNode;307 Node *pTmp;308int i=0;309310if(NULL==pHead)311 {312 printf("AddPos函数执⾏,链表为空\n");313return0;314 }315316if(pos<1)317 {318 printf("AddPos函数执⾏,pos值⾮法\n");319return0;320 }321322while(pHead!=NULL)323 {324 ++i;325if(i==pos)326break;327 pHead=pHead->next;328 }329330if(i<pos)331 {332 printf("AddPos函数执⾏,pos值超出链表长度\n");333return0;334 }335336 pTmp=(Node *)malloc(sizeof(Node));337if(pTmp==NULL) exit(1);338 memset(pTmp,0,sizeof(Node));339 pTmp->next=pHead->next;340 pHead->next=pTmp;341 pTmp->element=x;342343 printf("AddPos函数执⾏成功,向节点%d后插⼊数值%d\n",pos,x); 344return1;345 }346347/* 13.向有序单链表中插⼊元素x结点,使得插⼊后仍然有序 */348int OrrderList(Node *pNode,elemType x)349 {350//注意如果此数值要排到⾏尾要修改本代码351 Node *pHead;352 pHead=pNode;353 Node *pTmp;354355if(NULL==pHead)356 {357 printf("OrrderList函数执⾏,链表为空\n");358return0;359 }360361if(x<1)362 {363 printf("OrrderList函数执⾏,x值⾮法\n");364return0;365 }366367while(pHead!=NULL)368 {369if((pHead->element)>=x)370break;371 pHead=pHead->next;372 }373374375if(pHead==NULL)376 {377 printf("OrrderList函数查找完毕,该函数中没有该值\n");378return0;379 }380381382 pTmp=(Node *)malloc(sizeof(Node));383if(pTmp==NULL) exit(1);384 memset(pTmp,0,sizeof(Node));385 pTmp->next=pHead->next;386 pHead->next=pTmp;387 pTmp->element=x;388389 printf("OrrderList函数成功插⼊数值%d\n",x);390return1;391 }392393/*14.从单链表中删除表头结点,并把该结点的值返回,若删除失败则停⽌程序运⾏*/ 394int DelHeadList(Node **pList)395 {396 Node *pHead;397 pHead=*pList;398if(pHead!=NULL)399 printf("DelHeadList函数执⾏,函数⾸元素为%d删除成功\n",pHead->element); 400else401 {402 printf("DelHeadList函数执⾏,链表为空!");403return0;404 }405 *pList=pHead->next;406return1;407 }408409/* 15.从单链表中删除表尾结点并返回它的值,若删除失败则停⽌程序运⾏ */410int DelLastList(Node *pNode)411 {412 Node *pHead;413 Node *pTmp;414415 pHead=pNode;416while(pHead->next!=NULL)417 {418 pTmp=pHead;419 pHead=pHead->next;420 }421 printf("链表尾删除元素%d成功!\n",pHead->element);422free(pHead);423 pTmp->next=NULL;424return1;425 }426427/* 16.从单链表中删除第pos个结点并返回它的值,若删除失败则停⽌程序运⾏ */ 428int DelPos(Node *pNode,int pos)429 {430 Node *pHead;431 pHead=pNode;432 Node *pTmp;433434int i=0;435436if(NULL==pHead)437 {438 printf("DelPos函数执⾏,链表为空\n");439return0;440 }441442if(pos<1)443 {444 printf("DelPos函数执⾏,pos值⾮法\n");445return0;446 }447448while(pHead!=NULL)449 {450 ++i;451if(i==pos)452break;453 pTmp=pHead;454 pHead=pHead->next;455 }456457if(i<pos)458 {459 printf("DelPos函数执⾏,pos值超出链表长度\n");460return0;461 }462 printf("DelPos函数执⾏成功,节点%d删除数值%d\n",pos,pHead->element); 463 pTmp->next=pHead->next;464free(pHead);465return1;466 }467468/* 17.从单链表中删除值为x的第⼀个结点,若删除成功则返回1,否则返回0 */469int Delx(Node **pNode,int x)470 {471 Node *pHead;472 Node *pTmp;473 pHead=*pNode;474int i=0;475476if(NULL==pHead)477 {478 printf("Delx函数执⾏,链表为空");479return0;480 }481if(x<0)482 {483 printf("Delx函数执⾏,给定值x不合法\n");484return0;485 }486while((pHead->element!=x)&&(NULL!=pHead->next))//判断链表是否为空,并且是否存在所查找的元素487 {488 ++i;489 pTmp=pHead;490 pHead=pHead->next;491 }492if(pHead->element!=x)493 {494 printf("Delx函数执⾏,在链表中没有找到x值\n");495return0;496 }497if((i==0)&&(NULL!=pHead->next))498 {499 printf("Delx函数执⾏,在链表⾸部找到此元素,此元素已经被删除\n");500 *pNode=pHead->next;501free(pHead);502return1;503 }504 printf("Delx函数执⾏,⾸个为%d元素被删除\n",x);505 pTmp->next=pHead->next;506free(pHead);507return1;508 }509510/* 18.交换2个元素的位置 */511int exchange2pos(Node *pNode,int pos1,int pos2)512 {513 Node *pHead;514int *pTmp;515int *pInsert;516int a;517int i=0;518519if(pos1<1||pos2<1)520 {521 printf("DelPos函数执⾏,pos值⾮法\n");522return0;523 }524525 pHead=pNode;526while(pHead!=NULL)527 {528 ++i;529if(i==pos1)530break;531 pHead=pHead->next;532 }533534if(i<pos1)535 {536 printf("DelPos函数执⾏,pos1值超出链表长度\n");537return0;538 }539540 pTmp=&(pHead->element);541 i=0;542 pHead=pNode;543while(pHead!=NULL)544 {545 ++i;546if(i==pos2)547break;548 pHead=pHead->next;549 }550551if(i<pos2)552 {553 printf("DelPos函数执⾏,pos2值超出链表长度\n");554return0;555 }556557 pInsert=&(pHead->element);558 a=*pTmp;559 *pTmp=*pInsert;560 *pInsert=a;561562 printf("DelPos函数执⾏,交换第%d个和第%d个pos点的值\n",pos1,pos2); 563return1;564 }565566int swap(int *p1,int *p2)567 {568int a;569if(*p1>*p2)570 {571 a=*p1;572 *p1=*p2;573 *p2=a;574 }575return0;576 }577578/* 19.将线性表进⾏冒泡排序 */579int Arrange(Node *pNode)580 {581 Node *pHead;582 pHead=pNode;583584int a=0,i,j;585586if(NULL==pHead)587 {588 printf("Arrange函数执⾏,链表为空\n");589return0;590 }591592while(pHead!=NULL)593 {594 ++a;595 pHead=pHead->next;596 }597598 pHead=pNode;599for(i=0;i<a-1;i++)600 {601for(j=1;j<a-i;j++)602 {603 swap(&(pHead->element),&(pHead->next->element));604 pHead=pHead->next;605 }606 pHead=pNode;607 }608 printf("Arrange函数执⾏,链表排序完毕!\n");609return0;610 }611612int main()613 {614 Node *pList=NULL;615int length=0;616617 elemType posElem;618619 initList(&pList);620 printList(pList);621622 pList=creatList(pList);623 printList(pList);624625 sizeList(pList);626 printList(pList);627628 isEmptyList(pList);629630631 posElem=getElement(pList,3);632 printList(pList);633634 getElemAddr(pList,5);635636 modifyElem(pList,4,1);637 printList(pList);638639 insertHeadList(&pList,5);640 printList(pList);641642 insertLastList(pList,10);643 printList(pList);644645 isAddPos(pList,4,5); 646 printList(pList);647648 OrrderList(pList,6);649 printList(pList);650651 DelHeadList(&pList); 652 printList(pList);653654 DelLastList(pList);655 printList(pList);656657 DelPos(pList,5);658 printList(pList);659660 Delx(&pList,5);661 printList(pList);662663 exchange2pos(pList,2,5); 664 printList(pList);665666 Arrange(pList);667 printList(pList);668669 clearList(pList);670return0;671 }。

全的C语言指针详解PPT课件

全的C语言指针详解PPT课件

在函数中使用指针参数
03
使用指针参数来访问和修改指针所指向的内容,需要使用“-
>”或“*”运算符。
05
指针的高级应用
指向指针的指针(二级指针)
定义与声明
二级指针是用来存储另一个指 针的地址的指针。在声明时, 需要使用`*`操作符来声明二级
指针。
初始化与使用
通过使用`&`操作符获取一个指 针的地址,并将该地址存储在 二级指针中。然后,可以通过 二级指针来访问和操作原始指
当使用malloc或calloc等函 数动态分配内存后,如果 不再需要该内存,必须使 用free函数释放它。否则, 指针将指向一个无效的内 存地址。
当一个指针在函数中定义 ,但该函数返回后仍然存 在并继续指向无效的内存 地址时,就会产生野指针 。
避免指针越界访问
总结词:指针越界访问是指试图访问数 组之外的内存,这是不安全的,可能会 导致程序崩溃或产生不可预测的结果。
指针与内存分配
通过指针来访问和操作动态分配的内存空间。指针可以 存储动态分配的内存地址,并用于读取和写入该地址中 的数据。
指向结构体的指针
01
定义与声明
指向结构体的指针是指向结构体类型的指针。在声明时,需要使用结
构体类型的名称来声明指向结构体的指针。
02 03
初始化与使用
通过使用`&`操作符获取结构体的地址,并将该地址存储在指向结构 体的指针中。然后,可以通过该指针来访问和操作结构体中的成员变 量。
```
பைடு நூலகம்
指向数组元素的指针
• 指向数组元素的指针是指向数组中某个具体元素的指针。通过将指针指向数组中的某个元素,可以访问该 元素的值。
• 指向数组元素的指针可以通过定义一个指向具体元素的指针来实现。例如,定义一个指向数组中第三个元 素的指针,可以使用以下代码

c语言 指针的指针 用法详解

c语言 指针的指针 用法详解

c语言指针的指针用法详解在C语言中,指针是非常重要的一种数据类型。

而指针的指针是指指向指针变量的指针。

它在C语言中也是非常重要的一种数据类型,经常用于动态内存分配和函数传递参数等方面。

下面,我们来详细介绍一下指针的指针在C语言中的用法。

一、指针的基本概念在C语言中,指针是一个变量,用来表示另一个变量的内存地址。

指针变量可以存储任何数据类型的地址,包括整型、字符型、浮点型等。

使用指针可以实现动态内存分配、函数传递参数等功能。

二、指针的指针的概念指针的指针是指指向指针变量的指针。

它的定义方式如下:```int **p;```其中,p是一个指向指针的指针变量,它可以指向一个指针变量的地址。

三、指针的指针的用法指针的指针在C语言中有很多用途,下面列举几个比较常见的用法。

1.动态内存分配在C语言中,可以使用malloc函数动态分配内存,该函数返回的是一个指向分配内存的首地址的指针。

而在一些情况下,需要动态分配二维数组或者指针数组,这时就需要使用指针的指针了。

例如:```int **p;int i,j;p=(int **)malloc(sizeof(int*)*3);//分配3个指向int类型指针的指针变量for(i=0;i<3;i++){p[i]=(int*)malloc(sizeof(int)*4);//分配4个int类型的变量}for(i=0;i<3;i++){for(j=0;j<4;j++){p[i][j]=i*j;//为p[i][j]赋值}}```上述代码中,先使用malloc函数分配3个指向int类型指针的变量,然后再用循环分别为这3个变量分配4个int类型的变量。

最后,再使用嵌套循环为二维数组赋值。

2.函数传递参数在C语言中,函数可以通过指针传递参数。

指针的指针也可以用于函数传递参数,可以使函数返回多个值。

例如:```void fun(int **p){*p=(int*)malloc(sizeof(int)*4);//为指针p分配4个int类型的变量(*p)[0]=10;(*p)[1]=20;(*p)[2]=30;(*p)[3]=40;}int main(){int *p;fun(&p);//传递p的地址printf("%d %d %d %d\n",p[0],p[1],p[2],p[3]);free(p);//释放内存return 0;}```上述代码中,定义了一个指针类型的函数fun,在函数中通过指针的指针为指针p分配4个int类型的变量,并为这4个变量赋值。

c语言链表的创建方法

c语言链表的创建方法

c语言链表的创建方法在C语言中,链表是一种常见的数据结构,它由一系列节点组成,每个节点包含一个值和一个指向下一个节点的指针。

链表可以动态地添加或删除节点,因此在许多应用程序中被广泛使用。

链表的创建方法大致可以分为以下几个步骤:1. 定义一个节点结构体链表的节点通常包含一个值和一个指针,指针指向下一个节点。

因此,我们需要定义一个结构体来表示节点:```struct Node {int data;struct Node* next;};```其中,`data`表示节点的值,`next`表示指向下一个节点的指针。

2. 创建第一个节点创建第一个节点时,我们需要先分配一段内存,然后将节点的值和指针都赋值为NULL:```struct Node* head = NULL;head = (struct Node*)malloc(sizeof(struct Node));head->data = 1;head->next = NULL;```这里我们使用了`malloc`函数来分配内存,并将返回的指针强制转换为`struct Node*`类型,然后将节点的值和指针赋值为1和NULL。

3. 添加新节点添加新节点时,我们需要先找到链表的末尾,然后在末尾添加新节点:```struct Node* newNode = NULL;newNode = (struct Node*)malloc(sizeof(struct Node));newNode->data = 2;newNode->next = NULL;struct Node* current = head;while (current->next != NULL) {current = current->next;}current->next = newNode;```这里我们定义了一个新节点`newNode`,然后遍历链表找到末尾节点,将末尾节点的指针指向新节点。

c语言指针教学中的知识点分析与总结

c语言指针教学中的知识点分析与总结

c语言指针教学中的知识点分析与总结c语言指针教学中的知识点分析与总结本文对c语言指针的教学进行了探讨和总结。

要想真正的掌握c 语言的指针,首先必须要对它有全面深刻的认识。

因为它是c语言的基础,只有将指针的知识学好,才能够更好地学习后续的课程。

下面小编给大家介绍一下关于c语言指针的知识。

一、 c语言中指针的定义指针是一种特殊的数据类型,也称为引用类型。

所谓指针就是指向一个地址的变量,例如: int a[10];二、变量指针及指针变量1.1 c语言中的变量。

变量是存储在计算机中的二进制数值,当我们需要使用时,必须创建一个变量并赋予它相应的值,然后将变量的地址传递给外部的一个或多个对象,这样外部对象通过访问内部变量来使用其中存储的信息,而且可以保证外部对象不会越界。

1.2指针变量是变量的一种特殊形式,指针变量在内存中占有一块区域,可以指向一个地址,这个地址的值是这个变量所代表的值,这样方便变量间的传递。

例如: char *a[10];2.1指针操作符2.2指针数组,它的作用和一维数组相同,即具有一维数组的特点,也具有二维数组的特点,三者最明显的区别就是二维数组中元素个数是固定的,而一维数组中元素个数是可变的。

2.3指针的运算规则。

在指针变量的操作中,要遵循以下运算规则:原地址→指针地址。

例如: char * a[10]; 2.4 c语言中的const指针常量是一种特殊的指针常量, const不是一种变量的标准类型,它专门用于指向一个const指针。

2.3指针的运算规则。

在指针变量的操作中,要遵循以下运算规则:原地址→指针地址。

例如: char *a[10];2.4指针的定义与使用:所谓指针就是指向一个地址的变量,例如: int a[10]; 2.4指针的定义与使用: pointer, pointer-pointer,and-and-and。

所以,当我们在一个字符串中出现pointer,pointer-pointer, and-and-and的时候,就表示它指向一个地址。

c语言中linklist类型

c语言中linklist类型

c语言中linklist类型LinkList类型是C语言中常用的数据结构之一,用于表示链表。

链表是一种动态数据结构,它可以根据需要动态地分配和释放内存空间,比较灵活。

在本文中,我们将深入探讨LinkList类型及其相关操作。

一、什么是链表链表是一种由节点组成的数据结构,每个节点包含数据和指向下一个节点的指针。

链表中的节点可以按照任意顺序存储,通过指针将它们连接起来。

与数组相比,链表的插入和删除操作更加高效,但是访问元素的效率较低。

链表分为单向链表和双向链表两种形式,本文主要介绍单向链表。

二、LinkList类型的定义在C语言中,我们通过结构体来定义链表节点的数据结构,具体定义如下:```ctypedef struct Node{int data;struct Node *next;}Node;typedef Node *LinkList;```其中,Node表示链表的节点类型,LinkList表示链表的类型。

三、LinkList类型的常用操作1. 初始化链表初始化链表主要是将链表的头指针置空,表示链表为空。

具体实现如下:```cvoid InitList(LinkList *L){*L = NULL;}```2. 判断链表是否为空判断链表是否为空可以通过判断链表的头指针是否为空来实现。

具体实现如下:```cint ListEmpty(LinkList L){return L == NULL;}```3. 求链表的长度求链表的长度即统计链表中节点的个数。

具体实现如下:```cint ListLength(LinkList L){int count = 0;Node *p = L;while(p != NULL){count++;p = p->next;}return count;}```4. 插入节点插入节点可以在链表的任意位置插入新的节点。

具体实现如下:```cint ListInsert(LinkList *L, int pos, int data){if(pos < 1 || pos > ListLength(*L) + 1){return 0;}Node *p = *L;Node *newNode = (Node*)malloc(sizeof(Node));newNode->data = data;newNode->next = NULL;if(pos == 1){newNode->next = *L;*L = newNode;}else{for(int i = 1; i < pos - 1; i++){p = p->next;}newNode->next = p->next;p->next = newNode;}return 1;}```5. 删除节点删除节点可以删除链表中指定位置的节点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

和一般的数据结构里面的链表的实现没什么大不同,在list.h里面只修改一个地方typedef void * ElemType;也就是说数据域是一个无类型指针,链表本身不对这个指针有数据访问,在使用链表的时候我们给一个有类型的指针,在操作的时候编译器有规律可循了,接下来只要链表数据访问的函数了,因为数据域是一个指针,因为没有修改TraverseList函数,那么给函数指针传递的一个指向指针的指针,所以修改遍历数据域访问函数如下int TraverseList(List*,int (*)(ElemType *));/* 遍历访问,反问某个节点元素用函数处理 */list.htypedef void * ElemType;typedef struct node{ElemType data;struct node * next;}ChainNode;typedef struct{ChainNode *head;int size;ChainNode *tail;}List;List * CreateList(void); /* 创建链表 */void DestoryList(List*); /* 销毁链表 */void ClearList(List*); /* 清空链表 */int ListAppend(List*,ElemType); /* 追加元素 */int ListInsert(List*,int,ElemType); /* 加入元素 */int ListDelete(List *,int); /* 删除第几个元素 */int GetElem(List*,int,ElemType *); /* 取得第几个元素的值用第三个参数返回 */ChainNode * GetAddr(List *, int); /* 取得编号为N的元素所在地址 */int TraverseList(List*,int (*)(ElemType *)); /* 遍历访问,反问某个节点元素用函数处理 */ChainNode * NewChainNode( ElemType);list.c#include &quot;list.h&quot;/*==================*//*==================*/List *CreateList(){List * pt = 0;ElemType data;pt=(List*)malloc( sizeof(List) );if( !pt )return 0;pt-&gt;head = NewChainNode(data );if( ! pt-&gt;head ){free(pt);return 0;}pt-&gt;tail = pt-&gt;head;return pt;}/*==================*/void DestoryList(List * plist){ClearList(plist);free(plist-&gt;head);plist-&gt;head = 0;free(plist);plist = 0;}/*==================*/int ListAppend(List * plist,ElemType data){ChainNode * pt = 0;ChainNode * newpt = 0;if( !(plist &amp;&amp; plist-&gt;head) )return 0;newpt = NewChainNode(data);if( !newpt )return 0;plist-&gt;tail-&gt;next = newpt;plist-&gt;tail = newpt;return 1;}/*==================*/int ListInsert(List * plist, int n ,ElemType data) {ChainNode * pt = 0;ChainNode * newpt = 0;pt = GetAddr( plist, n-1 );if( !(pt) )return 0;newpt = NewChainNode(data);if( !newpt )return 0;if ( pt-&gt;next == plist-&gt;tail )plist-&gt;tail = newpt;newpt-&gt;next = pt-&gt;next;pt-&gt;next = newpt;return 1;}/*==================*/int GetElem(List * plist,int n,ElemType *data){ChainNode * pt = 0;pt = GetAddr(plist,n);if( ! pt )return 0;*data = pt-&gt;data;return 1;}/*==================*/int TraverseList(List* plist,int (*f)(ElemType *)){ChainNode * pt = 0;int a=0;/**/if( !(plist &amp;&amp; plist-&gt;head) )return 0;for( a = 0 ,pt = plist-&gt;head-&gt;next; pt ; pt = pt-&gt;next ) {if( ! f(&amp;(pt-&gt;data)) )return a+1;a++;}return 0;}/*==================*/void ClearList(List * plist){while ( ListDelete(plist,1) );}/*======(参考:)============*/ int ListDelete( List * plist, int n ){ChainNode * pt =0;ChainNode * pf=0;if( !plist-&gt;head-&gt;next )return 0;pt = GetAddr( plist,n-1 );if ( pt-&gt;next == plist-&gt;tail )plist-&gt;tail = pt;if( !(pt &amp;&amp; pt-&gt;next ))return 0;pf = pt-&gt;next;pt-&gt;next = pt-&gt;next-&gt;next;free(pf);return 1;}ChainNode * GetAddr(List * plist,int n){ChainNode * pt = 0;int a = 0;if( n &lt; 0) return 0;pt = plist-&gt;head;while( pt &amp;&amp; a &lt; n ){pt = pt-&gt;next;a++;}return pt;}/*==================*/ChainNode * NewChainNode(ElemType* data){ChainNode * pChain=0;pChain = ( ChainNode * )malloc( sizeof(ChainNode) );if( ! pChain ) return 0;pChain-&gt;data=data;pChain-&gt;next=0;return pChain;}uselist.c#include &quot;list.h&quot;typedef struct {char ch ; int id; char name[10]; int r;} myElemType;myElemType a[20] ={{'a',1,&quot;niei&quot;,2},{'b',2,&quot;aini&quot;,2},{'c',3,&quot;love&quot;, 2},{'d',4,&quot;jack&quot;,2},{'e',5,&quot;alice&quot;,2},{'f',6,&quot;ben&quot; ,2},{'g',7,&quot;carlo&quot;,2},{'h',8,&quot;mason&quot;,2}};void showList(List* plist);int putElem(ElemType *data);void main(){/**/ List * mylist;int n=0;myElemType data;myElemType data2;myElemType* pdata;mylist = CreateList();if( ! mylist){printf(&quot;error&quot;);return;}for( n = 0 ;n &lt; 8 ;n++)ListAppend(mylist ,&amp;a[n]);showList( mylist);data.ch = '*';data.id = 8;strcpy( , &quot;1223&quot;);data.r = 54;ListInsert(mylist,1,&amp;data);showList( mylist);data2.ch = 'A';data2.id = 54;strcpy( , &quot;bill&quot;);data2.r = 4;/**/ ListInsert(mylist,7,&amp;data2);showList( mylist);ListDelete(mylist,7);showList( mylist);ListDelete(mylist,1);showList( mylist);if (GetElem(mylist,5,&amp;pdata) )printf(&quot;[%c %d %s %d] &quot;,pdata-&gt;ch,pdata-&gt;id,pdata-&gt;name,pdata-&gt;r);ClearList(mylist);showList( mylist);DestoryList(mylist);mylist = 0;showList( mylist);}/*==================*/void showList(List* plist){if( !plist )return;TraverseList(plist,putElem);printf(&quot;\n&quot;);}int putElem(myElemType **data){if( !data )return 0;printf(&quot;[%c %d %s %d] &quot;,(*data)-&gt;ch,(*data)-&gt;id,(*data)-&gt;name,(*data)-&gt;r);return 1;}最后的运行结果,一个[ ] 表示一个结构体所有成员。

相关文档
最新文档