全等三角形的性质及判定(经典讲义)
《全等三角形》讲义

《全等三角形》讲义一、全等三角形的定义两个能够完全重合的三角形叫做全等三角形。
“完全重合”意味着它们的形状和大小完全相同,对应边相等,对应角也相等。
例如,我们将一个三角形沿着某条直线对折,如果对折后的两部分能够完全重合,那么这就是一个全等三角形。
二、全等三角形的性质1、全等三角形的对应边相等这是全等三角形最基本的性质之一。
如果两个三角形全等,那么它们对应的三条边的长度是相等的。
比如,三角形 ABC 全等于三角形DEF,那么 AB = DE,BC = EF,AC = DF。
2、全等三角形的对应角相等同样,如果两个三角形全等,它们对应的三个角的度数也是相等的。
还是以上面的例子来说,∠A =∠D,∠B =∠E,∠C =∠F。
3、全等三角形的周长相等因为全等三角形的对应边相等,所以它们的周长也必然相等。
4、全等三角形的面积相等由于全等三角形的形状和大小完全相同,所以它们所覆盖的面积也是相等的。
三、全等三角形的判定1、 SSS(边边边)如果两个三角形的三条边分别对应相等,那么这两个三角形全等。
比如说,有三角形 ABC 和三角形 DEF,AB = DE,BC = EF,AC = DF,那么就可以判定三角形 ABC 全等于三角形 DEF。
2、 SAS(边角边)如果两个三角形的两条边及其夹角分别对应相等,那么这两个三角形全等。
假设在三角形 ABC 和三角形 DEF 中,AB = DE,∠A =∠D,AC = DF,那么可以得出这两个三角形全等。
3、 ASA(角边角)当两个三角形的两个角及其夹边分别对应相等时,这两个三角形全等。
例如,在三角形 ABC 和三角形 DEF 中,∠B =∠E,BC = EF,∠C =∠F,那么三角形 ABC 全等于三角形 DEF。
4、 AAS(角角边)如果两个三角形的两个角和其中一个角的对边分别对应相等,那么这两个三角形全等。
比如,在三角形 ABC 和三角形 DEF 中,∠A =∠D,∠B =∠E,BC = EF,那么这两个三角形全等。
第5课三角形全等的判定(学生版)八年级数学上册讲义(浙教版)

第5课三角形全等的判定目标导航学习目标1.掌握判定两个三角形全等的方法:“SSS”、“SAS”、“ASA”、“AAS”,会判定两个三角形全等.2.了解三角形的稳定性及其应用.3.掌握线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端点的距离相等.4.掌握角平分线的性质定理:角平分线上的点到角两边的距离相等.知识精讲知识点01 三角形全等的判定三角形全等的判定方法:1.三边对应相等的两个三角形全等(简写成“边边边”或“SSS”)2.两边及其夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)3.两个角及其夹边对应相等的两个三角形全等。
(简写成“角边角”或“ASA”)4.两角及其中一个角的对边对应相等的两个三角形全等(简写成“角角边”或“AAS”)知识点02 线段垂直平分线的性质线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端点的距离相等知识点03 角平分线的性质角平分线的性质定理:角平分线上的点到角两边的距离相等能力拓展考点01 三角形全等的判定【典例1】如图,下列各组条件中,不能得到△ABC≌△BAD的是()A.BC=AD,∠ABC=∠BAD B.BC=AD,AC=BDC.AC=BD,∠CAB=∠DBA D.BC=AD,∠CAB=∠DBA【即学即练1】如图,点E在AB上,AC=AD,∠CAB=∠DAB,△ACE与△ADE全等吗?△ACB与△ADB 呢?请说明理由.考点02 线段垂直平分线的性质【典例2】如图,在△ABC中,DE是AC的垂直平分线,AE=3,△ABC的周长为14,求△BCD的周长.【即学即练2】如图,在△ABC中,AC=6cm,线段AB的垂直平分线交AC于点N,△BCN的周长是13cm,则BC的长为()A.6cm B.7cm C.8cm D.13cm考点03 角平分线的性质【典例3】如图,AC平分∠BAD,CE⊥AB,CD⊥AD,点E、D为垂足,CF=CB.(1)求证:BE=FD;(2)若AC=10,AD=8,求四边形ABCF的面积.【即学即练3】如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC的面积是30cm2,AB=13cm,AC=7cm,则DE的长()A.3cm B.4cm C.5cm D.6cm分层提分题组A 基础过关练1.如图,已知AB=AC,AE=AD,要利用“SSS”推理得出△ABD≌△ACE,还需要添加的一个条件是()A.∠B=∠C B.BD=CE C.∠BAD=∠CAE D.以上都不对2.下列选项可用SAS证明△ABC≌△A′B′C′的是()A.AB=A′B′,∠B=∠B′,AC=A′C′B.AB=A′B′,BC=B′C′,∠A=∠A′C.AC=A′C′,BC=B′C′,∠C=∠C′D.AC=A′C′,BC=B′C′,∠B=∠B′3.如图,用∠B=∠C,∠1=∠2,直接判定△ABD≌△ACD的理由是()A.AAS B.SSS C.ASA D.SAS4.如图,点E,F在AC上,AD=BC,DF=BE,下列条件中,能使△ADF≌△CBE的是()A.∠A=∠C B.AF=CE C.AD∥BC D.DF∥BE5.如图,在△ABC中,BD平分∠ABC,点E在BC的垂直平分线上,若∠A=60°,∠ABD=24°,则∠ACE的度数为()A.48°B.50°C.55°D.60°6.如图,在△ABC和△DCB中,∠A=∠D,AC和DB相交于点O,OA=OD.求证:(1)AB=DC;(2)△ABC≌△DCB.7.如图,AF=CE,AF∥CE,BE=FD,问△ABF与△CDE全等吗?请说明理由.8.如图所示,点E在△ABC外部,点D在BC边上,DE交AC于F,若∠1=∠3,∠E=∠C,AE=AC,问△ABC≌△ADE吗?请说明理由.题组B 能力提升练9.已知:BD=CB,AB平分∠DBC,则图中有()对全等三角形.A.2对B.3对C.4对D.5对10.如图,若∠B=∠C,下列结论正确的是()A.△BOE≌△COD B.△ABD≌△ACE C.AE=AD D.∠AEC=∠ADB11.用如图所示方法测小河宽度:AB⊥BC,OB=OC,BC⊥CD,点A,O,D在同一条直线上,量出CD 的长度即知小河AB的宽度.这里判断△AOB≌△DOC的依据是()A.SAS或SSA B.SAS或ASA C.AAS或SSS D.ASA或AAS12.如图,已知AC=AD,要使△ABC≌△ABD,还需要添加一个条件,给出下列条件:①∠1=∠2,②∠C=∠D,③BC=BD,其中符合要求的是()A.①②B.②③C.①③D.①②③13.如图,已知AB=CD,在不添加辅助线的情况下,若再添一个条件就可以证明△ABC≌△CDA,下列条件中符合要求的有()个.①BC=AD;②AD∥BC;③∠B=∠D;④AB∥DC;A.1 B.2 C.3 D.414.如图所示,△EBC≌△DCB,BE的延长线与CD的延长线交于点A,CE与BD相交于点O.则下列结论:①△OEB≌△ODC;②AE=AD;③BD平分∠ABC,CE平分∠ACB;④OB=OC,其中正确的有()A.4个B.3个C.2个D.1个15.如图,在△ABC中,AB、AC的垂直平分线分别交BC于点E、F,若AB=5,AC=8,BC=10,则△AEF的周长为()A.5 B.8 C.10 D.1316.如图,在△ABC中,∠ACB=90°,BE⊥CE于点E,AD⊥CE于点D,请你添加一个条件,使△BEC≌△CDA(填一个即可).17.如图,在△ABC中,边AB,AC的垂直平分线交于点P,连接AP,BP,CP,若∠BAC=50°,则∠BPC=°.18.如图,在△ABC中,点D在AC上,BD平分∠ABC,延长BA到点E,使得BE=BC,连接DE,若∠ADE=38°,∠C=42°,求∠BAD的度数.19.如图,在△ABC中,AB=AC,点D、E在BC上,延长BA至F使AF=AB,连接EF;延长CA至G 使AG=AC,连接DG,当∠G=∠F时,猜想线段BD与线段CE的数量关系?并说明理由.题组C 培优拔尖练20.如图,在△ABC中,AB=AC,点D是OABC外一点,连接AD、BD、CD,且BD交AC于点O,在BD上取一点E,使得AE=AD,∠EAD=∠BAC,若∠ABC=62°,则∠BDC的度数为()A.56°B.60°C.62°D.64°21.在学习完“探索三角形全等的条件”一节后,一同学总结出很多全等三角形的模型,他设计了以下问题给同桌解决:如图,做一个“U”字形框架P ABQ,其中AB=42cm,AP,BQ足够长,P A⊥AB于A,QB⊥AB于点B,点M从B出发向A运动,同时点N从B出发向Q运动,使M,N运动的速度之比3:4,当两点运动到某一瞬间同时停止,此时在射线AP上取点C,使△ACM与△BMN全等,则线段AC 的长为()A.18cm B.24cm C.18cm或28cm D.18cm或24cm22.如图,在直角三角形ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板ADE如图放置,使三角板斜边的两个端点分别与A、D重合,连接BE、EC.下列判断正确的有()①△ABE≌△DCE;②BE=EC;③BE⊥EC;④2S△AEC=3S△AEB.A.1个B.2个C.3个D.4个23.如图,在锐角三角形ABC中,∠BAC=60°,BE,CD为三角形ABC的角平分线.BE,CD交于点F,FG平分∠BFC,有下列四个结论:①∠BFC=120°;②BD=BG;③△BDF≌△CEF;④BC=BD+CE.其中结论正确的序号有()A.①②③B.①②④C.②③①D.①③④24.如图,在Rt△ABC中,∠ABC=90°,以AC为边,作△ACD,满足AD=AC,E为BC上一点,连接AE,∠CAD=2∠BAE,连接DE,下列结论中:①∠ADE=∠ACB;②AC⊥DE;③∠AEB=∠AED;④DE=CE+2BE.其中正确的有()A.①②③B.③④C.①④D.①③④25.已知:在△ABC中,∠ABC=60°,∠ACB=40°,BD平分∠ABC,CD平分∠ACB,(1)如图1,求∠BDC的度数;(2)如图2,连接AD,作DE⊥AB,DE=2,AC=4,求△ADC的面积.26.如图,AD∥BC,∠D=90°,∠CPB=30°,∠DAB的角平分线与∠CBA的角平分线相交于点P,且D,P,C在同一条直线上.(1)求∠P AD的度数;(2)求证:P是线段CD的中点.。
全等三角形(知识点讲解)

全等三角形(知识点讲解)全等三角形(知识点讲解)全等三角形是初中数学中的重要概念,也是几何学中的核心内容之一。
在这篇文章中,我们将从定义、判定全等三角形的条件以及全等三角形的性质等方面进行讲解。
一、全等三角形的定义全等三角形指的是具有完全相同的三边和三角的三角形。
简而言之,在几何学中,当两个三角形的对应边长相等、对应角度相等时,我们称这两个三角形是全等的。
二、全等三角形的判定条件为了判断两个三角形是否全等,我们有以下几个常用的判定条件:1. SSS判定法:即边-边-边判定法。
当两个三角形的三条边分别相等时,它们就是全等的。
2. SAS判定法:即边-角-边判定法。
当两个三角形的一对夹角和夹角两边分别相等时,它们就是全等的。
3. ASA判定法:即角-边-角判定法。
当两个三角形的一对夹角和夹角对边分别相等时,它们就是全等的。
4. AAS判定法:即角-角-边判定法。
当两个三角形的两对夹角和一个非夹角边分别相等时,它们就是全等的。
需要注意的是,这些判定条件是相互独立的,即只要满足其中一种条件,就可以判定两个三角形是全等的。
三、全等三角形的性质全等三角形具有以下重要性质:1. 对应边对应角相等性质:全等三角形的对应边对应角相等。
即若∆ABC≌∆DEF,那么 AB = DE, AC = DF, BC = EF,并且∠A = ∠D,∠B = ∠E, ∠C = ∠F。
2. 全等三角形的任意一角都与对应角相等:即若∆ABC≌∆DEF,那么∠A = ∠D, ∠B = ∠E, ∠C = ∠F。
3. 全等三角形的任意一边都与对应边相等:即若∆ABC≌∆DEF,那么 AB = DE, AC = DF, BC = EF。
4. 全等三角形的外角相等:即若∆ABC≌∆DEF,那么∠BAC =∠EDF, ∠ABC = ∠DEF, ∠ACB = ∠DFE。
通过以上性质,我们可以进行全等三角形的各种推理和计算。
四、全等三角形的应用全等三角形在几何学的应用非常广泛。
全等三角形判定ppt课件

若两个三角形全等,则它们的周长也 相等。
对应角相等
在全等三角形中,任意两个对应 的角都相等。
若两个三角形全等,则它们的内 角和也相等,且均为180度。
可以通过测量两个三角形的三个 内角来判断它们是否全等。
面积相等
若两个三角形全等,则它们的面积也相等。 可以通过计算两个三角形的面积来判断它们是否全等。
1 2
定义
两边和它们的夹角分别相等的两个三角形全等。
图形语言
若a=a',∠B=∠B',b=b',则⊿ABC≌⊿A'B'C'。
3
符号语言
∵a=a',∠B=∠B',b=b',∴⊿ABC≌⊿A'B'C'( SAS)。
角边角判定法(ASA)
01
02
03
定义
两角和它们的夹边分别相 等的两个三角形全等。
图形语言
实例1
证明两个三角形全等并求出未知 边长
实例2
利用全等三角形判定方法证明两个 四边形面积相等
实例3
利用全等三角形判定方法解决一个 实际问题,如测量一个不可直接测 量的距离
06
总结与展望
判定全等三角形的方法总结
三边分别相等的两个三角形全等。这是最基本的判定 方法,通过比较三角形的三边长度来确定两个三角形
证明过程
可以通过AAS(角角边)全等条件进行证明,即 如果两个三角形有两个角和其中一个角的对边分 别相等,则这两个三角形全等。这也是一种常用 的全等三角形判定方法。
实际应用举例
在实际应用中,角角边判定法常用于解决与角度 和边长有关的问题。例如,在建筑设计中,如果 需要确保两个建筑结构的角度和边长完全相等, 就可以利用角角边判定法来进行验证。
全等三角形的讲义整理讲义

全等三角形专题一 全等三角形的性质【知识点1】能够完全重合的两个三角形叫做全等三角形。
(两个三角形全等是指两个三角形的大小和形状完全一样,与他们的位置没有关系。
)【知识点2】两个三角形重合在一起,重合的顶点叫做对应顶点;重合的边叫做 对应边;重合的角叫做对应角。
【例题1】如图,已知图中的两个三角形全等,填空:(1)AB 与 是对应边,BC 与 是对应边, CA 与 是对应边;(2)∠A 与 是对应角,∠ABC 与 是对应角, ∠BAC 与 是对应角【方法总结】在两个全等三角形中找对应边和对应角的方法。
(1)有公共边的,公 共边一定是对应边;(2)有公共角的,公共角一定是对应角;(3)有对顶角的,对顶角是对应角;(4)在两个全等三角形中,最长的边对最长的边,最短的边对最短的边,最大的角对最大的角,最小的角对最小的角。
【练习1】 如图,图中有两对三角形全等,填空: (1)△BOD ≌ ; (2)△ACD ≌ .【知识点3】 全等三角形的对应边相等,对应角相等。
(由定义还可知道,全等三角形的周长相等,面积相等,对应边上的中线和高相DABCOE ABCD等,对应角的角平分线相等)【例题2】 (海南省中考卷第5题) 已知图2中的两个三角形全等,则∠α度数是( )A.72°B.60°C.58°D.50°【例题3】(清远)如图,若111ABC A B C △≌△,且11040A B ∠=∠=°,°,则1C ∠= .【练习2】 如图,ACB A C B '''△≌△,BCB ∠'=30°,则ACA '∠的度数为( )A 20° B.30° C .35° D .40°【练习3】如图,△ABD 绕着点B 沿顺时针方向旋转90°到△EBC , 且∠ABD=90°。
全等三角形经典讲义

全等三角形状元笔记【知识要点】1.全等三角形能够完全重合的两个三角形叫做全等三角形.2.全等三角形的性质全等三角形的对应边相等,全等三角形的对应角相等.3.三角形全等的判定方法(1)三边分别相等的两个三角形全等(简写成“边边边”或“SSS”).(2)两边和它们的夹角分别相等的两个三角形全等(简写成“边角边”或“SAS”).(3)两角和它们的夹边分别相等的两个三角形全等(简写成“角边角”或“ASA”).(4)两个角和其中一个角的对边分别相等的两个三角形全等(简写成“角角边”或“AAS”).4.直角三角形全等的判定方法斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”).【温馨提示】1.两个三角形全等的条件中必须有一条边分别相等,只有角分别相等不能证明两个三角形全等.2.有两边和其中一边的对角分别相等的两个三角形不一定全等.3.“HL”定理指的是斜边和一条直角边分别相等,而不是斜边和直角分别相等.【方法技巧】1.应用全等三角形性质解决问题的前提是准确地确定全等三角形的对应边和对应角,其规律主要有以下几点:(1)以对应顶点为顶点的角是对应角;(2)对应顶点所对应的边是对应边;(3)公共边(角)是对应边(角);(4)对顶角是对应角;(5)最大边(角)是对应边(角),最小边(角)是对应边(角).全等三角形的对应边和对应角可以依据字母的对应位置来确定,如若△ABC≌△DEF,说明A与D,B与E, C与F是对应点,则∠ABC与∠DEF是对应角,边AC与边DF是对应边.2.判定两个三角形全等的解题思路:专题一 三角形全等的判定1.如图,BD 是平行四边形ABCD 的对角线,∠ABD 的平分线BE 交AD 于点E ,∠CDB 的平分线DF 交BC 于点F .求证:△ABE≌△CDF .2.如图,在△ABC 中,D 是BC 边上的点(不与B ,C 重合),F ,E 分别是AD 及其延长线上的点,CF ∥BE . 请你添加一个条件,使△BDE ≌△CDF (不再添加其他线段,不再标注或使用其他字母),并给出证明.(1)你添加的条件是:__________; (2)证明:SAS SSS AAS SAS ASA AAS ASA AAS ⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪⎪⎧⎪⎪⎨⎨⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎪⎨⎪⎩⎩找夹角——已知两边找另一边——边为角的对边——找任一角——找夹角的另一边——已知一边一角边为角的邻边找夹边的另一角——找边的对角——找夹边——已知两角找任一边——3.如图,△ABC中,点D在BC上,点E在AB上,BD=BE,要使△ADB≌△CEB,还需添加一个条件.(1)给出下列四个条件:①AD=CE;②AE=CD;③∠BAC=∠BCA;④∠ADB=∠CEB;请你从中选出一个能使△ADB≌△CEB的条件,并给出证明;(2)在(1)中所给出的条件中,能使△ADB≌△CEB的还有哪些?直接在题后横线上写出满足题意的条件序号.__________________.专题二 全等三角形的判定与性质4.如图,已知△ABC 中,∠ABC =45°,AC =4,H 是高AD 和BE 的交点,则线段BH 的长度为( )AB .4C .D .55.【2013·襄阳】如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D ,将△ADC 绕点A 顺时针旋转,使AC 与AB 重合,点D 落在点E 处,AE 的延长线交CB 的延长线于点M ,EB 的延长线交AD 的延长线于点N .求证:AM =AN .6.【2012·泸州】如图,△ABC 是等边三角形,D 是AB 边上一点,以CD 为边作等边三角形CDE ,使点E 、A 在直线DC 的同侧,连接AE .求证:AE ∥BC .NME D B CA专题三全等三角形的应用7.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角∠ABC与∠DFE的度数和是()A.60° B.90° C.120° D.150°8.有一座小山,现要在小山A、B的两端开一条隧道,施工队要知道A、B两端的距离,于是先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A、B两端的距离,你能说说其中的道理吗?9.已知如图,要测量水池的宽AB ,可过点A 作直线AC ⊥AB ,再由点C 观测,在BA 延长线上找一点B′,使∠ACB′=∠ACB ,这时只要量出AB′的长,就知道AB 的长,对吗?为什么?10.如图,点D 、B 分别在∠A 的两边上,C 是∠A 内一点,AB = AD ,BC = CD ,CE ⊥AD 于E ,CF ⊥AF于F .求证:CE = CF11.已知:如图,在△ABC 中,∠A =90°,AB = AC ,BD 平分∠ABC .求证:BC = AB + ADFA BECD12.如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB13.如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B14.如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M . (1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.DBACPEDCBA D CBA15.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):16.如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE .OEDCBAFEA17.已知:在△ABC中,∠BAC=90,AB=AC,AE是过点A的一条直线,且BD⊥AE于D,CE⊥AE于E.(1)当直线AE处于如图①的位置时,有BD=DE+CE,请说明理由;(2)当直线AE处于如图②的位置时,则BD、DE、CE的关系如何?请说明理由;(3)归纳(1)、(2),请用简洁的语言表达BD、DE、CE之间的关系.18、两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B C E,,在同一条直线上,连结DC.(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);图1图2DCAB(2)证明:DC BE⊥.19.如图-1,ABC△的边BC在直线l上,AC BC⊥,且AC BC=;EFP△的边FP也在直线l上,边EF与边AC重合,且EF FP=.(1)在图-1中,请你通过观察、测量,猜想并写出AB与AP关系;(2)将EFP△沿直线l向左平移到图-2的位置时,EP交AC于点Q,连结AP,BQ.猜想并写出BQ与AP的关系,请证明你的猜想;(3)将EFP△沿直线l向左平移到图-3的位置时,EP的延长线交AC的延长线于点Q,连结AP,BQ.你认为(2)中所猜想的BQ与AP的关系还成立吗?若成立,给出证明;若不成立,请说明理由.A (E)B C (F)Pl l l图-1 图-2图-3全等三角形——角的平分线的性质状元笔记【知识要点】1.角的平分线的性质角的平分线上的点到角的两边的距离相等.2.角的平分线的判定角的内部到角的两边的距离相等的点在角的平分线上.【温馨提示】1.到三角形三边距离相等的点是三角形三条角平分线的交点,不是其他线段的交点.2.到三角形三边距离相等的点不仅有内角的平分线的交点,还有相邻两外角的平分线的交点,这样的点共有4个.【方法技巧】1.利用角的平分线的性质解决问题的关键是:挖掘角的平分线上的一点到角两边的垂线段.若已知条件存在两条垂线段——直接考虑垂线段相等,若已知条件存在一条垂线段——考虑通过作辅助线补出另一条垂线段,若已知条件不存在垂线段——考虑通过作辅助线补出两条垂线段.2.利用角平分线的判定解决问题的策略是:挖掘已知图形中一点到角两边的垂线段.若已知条件存在两条垂线段——先证明两条垂线段相等,然后说明角平分线或角的关系;若已知条件存在一条垂线段——考虑通过作辅助线补出另一条垂线段,再证明两条垂线段相等;若已知条件不存在垂线段——考虑通过作辅助线补出两条垂线段后,证明两条垂线段相等.专题一利用角的平分线的性质解题1.如图,在△ABC中,AC=AB,D在BC上,若DF⊥AB,垂足为F,DG⊥AC,垂足为G,且DF=DG.求证:AD⊥BC.2.如图,已知CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且AO平分∠BAC.求证:OB=OC.3.如图,在Rt △ABC 中,∠C=90°,,AD 是∠BAC 的角平分线,DE ⊥AB 于点E ,AC =3 cm ,求BE 的长.专题二 角平分线的性质的应用 4.如图,三条公路把A 、B 、C 三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在()A .在AC 、BC 两边高线的交点处B .在AC 、BC 两边中线的交点处C .在∠A 、∠B 两内角平分线的交点处D .在AC 、BC 两边垂直平分线的交点处5.如图,要在河流的南边,公路的左侧M 区处建一个工厂,位置选在到河流和公路的距离相等,并且到河流与公路交叉A 处的距离为1cm (指图上距离),则图中工厂的位置应在__________,理由是__________.21BAC B ∶∶∠∠6. 如图, ∠ B= ∠ C=90 °, M 是 BC 中点, DM 平分 ∠ ADC ,求证: AM 平分 ∠ DAB .7. 如图,已知 △ ABC 的周长是 22 , OB 、 OC 分别平分 ∠ ABC 和 ∠ ACB , OD ⊥ BC 于 D ,且 OD=3 , △ ABC 的面积是多少?8.如图,已知 ∠ 1= ∠ 2 , P 为 BN 上的一点, PF ⊥ BC 于 F , PA=PC ,求证: ∠ PCB+ ∠ BAP=180 º9.如图,△ ABC 中, P 是角平分线 AD , BE 的交点. 求证:点 P 在∠ C 的平分线上.10. 如图,在 △ ABC 中, BD 为 ∠ ABC 的平分线, DE ⊥ AB 于点 E ,且 DE=2cm , AB=9cm , BC=6cm ,求 △ ABC 的面积.21NP F C BA11.如图, D 、 E 、 F 分别是△ ABC 的三条边上的点, CE=BF ,△ DCE 和△ DBF 的面积相等.求证: AD 平分∠ BAC .。
全等三角形的性质和判定

全等三角形的性质和判定要点一、全等三角形的概念能够完全重合的两个三角形叫全等三角形。
要点二、对应顶点,对应边,对应角1. 对应顶点,对应边,对应角定义两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角.要点诠释:在写两个三角形全等时,通常把对应顶点的字母写在对应位置上,这样容易找出对应边、对应角.如下图,△ABC 与△DEF 全等,记作△ABC ≌△DEF ,其中点A 和点D ,点B 和点E ,点C 和点F 是对应顶点;AB 和DE ,BC 和EF,AC 和DF 是对应边;∠A 和∠D ,∠B 和∠E ,∠C 和∠F 是对应角.要点三、全等三角形的性质 全等三角形的对应边相等;全等三角形的对应角相等.要点四、全等三角形的判定(SSS 、SAS 、ASA 、AAS 、HL )全等三角形判定一(SSS ,SAS)全等三角形判定1-—“边边边”三边对应相等的两个三角形全等。
(可以简写成“边边边”或“SSS ”)。
要点诠释:如图,如果''A B =AB,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .要点二、全等三角形判定2——“边角边”1. 全等三角形判定2-—“边角边"两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边"或“SAS ”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2。
有两边和其中一边的对角对应相等,两个三角形不一定全等。
如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等。
全等三角形讲义

全等三角形讲义(总14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--全等三角形一、知识点:1.全等形的定义2.全等三角形的定义3.对应顶点、对应边、对应角的定义4.全等三角形的性质二、重难点:1.全等三角形的概念2.对应顶点、对应边、对应角的定义3.全等三角形的性质三、考点全等三角形的性质一、全等形1. 叫做全等形。
全等用符号表示,读作2.两个图形是否为全等形,关键是看两个图形的是否相同,是否相等,而与图形所在的无关;判断两个图形是否是全等形,只要把它们在一起,看是否完全;一个图形经过、、等变换后,所得到的图形与原图形全等。
例题:1.下列说法不正确的是()A.形状相同的两个图形是全等形 B.大小不同的两个图形不是全等形C. 形状、大小都相同的两个图形是全等形D.能够完全重合的两个图形是全等形2.下列说法正确的是()A.面积相等的两个图形是全等图形 B.周长相等的两个图形是全等图形C. 形状相同的两个图形是全等图形D.能够重合的两个图形是全等图形二、全等三角形1. 叫做全等三角形2. 两个全等三角形重合在一起,重合的顶点叫做,重合的边叫做,重合的角叫做3.寻找对应因素的方法:①全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;②全等三角形对应边所对的角是对应角,两个对应边所夹的角是对应角;③全等三角形的公共角是对应角;④全等三角形的公共边是对应边;⑤全等三角形中的对顶角是对应角;⑥全等三角形中一对最长(短)的边是对应边,一对最大(小)的角是对应角例题:1.下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、对应边、对应角oO BCDCDABCDCBD2.将ABC ∆沿直线BC 平移,得到DEF ∆,说出你得到的结论,说明理由B AD3.如图,,ACD ABE ∆≅∆AB 与AC ,AD 与AE 是对应边,已知: 30,43=∠=∠B A ,求ADC ∠的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形的性质及判定
知识要点
1、全等三角形概念:两个能完全重合的三角形叫做全等三角形.
2、全等三角形性质:(1)两全等三角形的对应边相等,对应角相等.
(2)全等三角形的对应边上的高相等,
对应边上的中线相等,
对应角的平分线相等.
(3)全等三角形的周长、面积相等.
3、全等三角形判定方法:
(1)全等判定一:三条边对应相等的两个三角形全等(SSS)
(2)全等判定二:两角和它们的夹边对应相等的两个三角形全等(ASA)
(3)全等判定三:两角及其中一个角的对边对应相等的两个三角形全等(AAS) (4)全等判定四:两边和它们的夹角对应相等的两个三角形全等(SAS)
专题一、全等图形的性质——全等图形的对应边(对应中线、角平分线、高线)、对应角、对应周长、对应面积相等
例题1:下列说法,正确的是()
A.全等图形的面积相等
B.面积相等的两个图形是全等形
C.形状相同的两个图形是全等形
D.周长相等的两个图形是全等形
例题2:如图1,折叠长方形ABCD,使顶点D与BC边上的N点重合,如果AD=7cm,DM=5cm,∠DAM=39°,则AN=____cm,NM=____cm,NAB
= .
E C
D A
【仿练1】如图2,已知ABC ADE ∆≅∆,AB AD =,BC DE =,那么与BAE ∠相等的角是 .
【仿练2】如图3,ABC ADE ∆≅∆,则AB= ,∠E= _.若∠BAE=120°,∠BAD=40°,则∠BAC= .
、
三角形全等的判定一(SSS )
相关几何语言考点
∵AE=CF ∵CM 是△的中线
∴_____________( )
F
E
C
A
C
M
B
A
∴____________________
∴__________( )
或 ∵AC=EF
∴____________________
∴__________( )
AB=AB ( )
在△ABC 和△DEF 中
∵⎪⎩
⎪
⎨⎧___________________________ ∴△ABC ≌△DEF ( )
例1.如图,AB =AD ,CB =CD .△ABC 与△ADC 全等吗?为什么?
F
E
D
C
B
A
B
A
例2.如图,C 是AB 的中点,AD =CE ,CD =BE .
求证△ACD ≌△CBE .
例3.如图,点B ,E ,C ,F 在一条直线上,AB =DE ,AC =DF ,BE =CF . 求证∠A =∠D . 练习
1..如图,AB=CD ,AD=CB ,那么下列结论中错误的是( )
A .∠A=∠C
B .AB=AD
C .A
D ∥BC D .AB ∥CD
2、如图所示,在△ABC 中,AB=AC ,BE=CE ,则由“SSS ”可以判定( )
A .△ABD ≌△ACD
B .△BDE ≌△CDE
C .△ABE ≌△ACE
D .以上都不对
D
A
C
B
E
3.如图,AB=AC,BD=CD,则△ABD≌△ACD的依据是()
A.SSS B.SAS C.AAS D.HL
4.如图,AB=AC,D为BC的中点,则△ABD≌_________.
5.如图,已知AB=DE,BC=EF,若要使△ABC≌△DEF,那么还要需要一个条件,这个条件可以是:.
6.如图,AB=AC,BD=DC,∠BAC=36°,则∠BAD的度数是°.
7、.如图,AB=AE,AC=AD,BD=CE,求证:△ABC≌ADE。
作业:
1、如图,已知AB=AD,需要条件(用图中的字母表示),可得△ABC≌△ADC,根据是.
2、如图,已知B、E、F、C在同一直线上,BF=CE,AF=DE,则添加条件,可以判断△ABF≌△DCE.
9题图
3、如图,AC=AD,BC=BD,则△ABC≌△;应用的判定方法是(简
写).
4、.如图,已知AE=DF、EC=BF,添加,可得△AEC≌△DFB.
5、.如图,已知AB=DE,BC=EF,AF=DC,求证∠EFD=∠BCA,
三角形全等的判定二(SAS)
相关的几何语言
∠1=∠2 ( ) ∠A=∠A ( )
∵∠EAB=∠DAC
∴____________________
在△ABC 和△DEF 中
∵⎪⎩
⎪
⎨⎧___________________________ ∴△ABC ≌△DEF ( )
∴__________ 或
2
1
A
1
E
D
C
B
A F
E D
C B
A
∵∠EAC=∠DAB
∴____________________
∴__________
例1.如图,AC和BD相交于点O,OA=OC,OB=OD.求证DC∥AB.
例2.已知:如图,AD∥BC,AD=CB,求证:△ADC≌△CBA.
D
A
B C
例3.已知:如图AD ∥BC ,AD=CB ,AE=CF 。
求证:△AFD ≌△CEB .
例4.已知,如图,AB=AC ,AD=AE ,∠1=∠2。
求证:△ABD ≌△ACE .
例5.已知:如图,点B,E,C,F 在同一直线上,AB ∥DE,且AB=DE,BE=CF. 求证:AC ∥DF .
例6.已知:如图,AD 是BC 上的中线 ,且DF=DE .求证:BE ∥CF .
A
E
B
C
F
D
2 A
C B
E
D
1
例7.已知:如图,正方形ABCD ,BE =CF ,求证:(1)AE =BF ; (2)AE ⊥BF . 练习
1.如图,点E 、F 在AC 上,AD=BC ,DF=BE ,要使△ADF ≌△CBE ,还需要添加一个条件是( )
A .AD ∥BC
B .DF ∥BE
C .∠D=∠B
D .∠A=∠C
2.如图,若已知AE=AC ,用“SAS ”说明△ABC ≌△ADE ,还需要的一个条件是( )
A .BC=DE
B .AB=AD
C .BO=DO
D .EO=CO
G F E
D
C
A
B
3.如图,AB=CD,AB∥CD,判定△ABC≌△CDA的依据是()
A.SSS B.SAS C.ASA D.HL
4.如图所示,AB=BD,BC=BE,要使△ABE≌△DBC,需添加条件()
A.∠A=∠D B.∠C=∠E C.∠D=∠E D.∠ABD=∠CBE 5.如图,AD∥BC,AD=CB,要使△ADF≌△CBE,需要添加的下列选项中的一个条件是()
A.AE=CF B.DF=BE C.∠A=∠C D.AE=EF
6.如图,点A、D、C、E在同一条直线上,AB∥EF,AB=EF,AD=EC,AE=10,AC=6,则CD
的长为.
7.如图,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还须补充一个条件.(只要填一个)
8.如图,△ABC中,AB=AC,点D,E在BC边上,当时,△ABD≌△ACE.(添加一个适当的条件即可)
9.如图,已知AC=AE,∠1=∠2,要使△ABC≌△ADE,还需添加的条件是(只需填一
个).
10.如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D,下列结论:
①∠EAB=∠FAC;②∠C=∠EFA;③AD=AC;④AF=AC.
其中正确的结论是(填写所有正确结论的序号).
11.如图所示,CD=CA,∠1=∠2,EC=BC,求证:△ABC≌△DEC.
12如图,在△ABD和△FEC中,点B,C,D,E在同一直线上,且AB=FE,BC=DE,∠B=∠E.求证:∠ADB=∠FCE.
13、如图,AC=DF,AC//DF,AE=DB,求证:BC//EF
三角形全等的判定三、四(ASA 、AAS )
在△ABC 和△DEF 中
∵⎪⎩⎪⎨⎧
_________
__________________
∴△ABC ≌△DEF ( )
F E D C B A D
A
在△ABC 和△DEF 中
∵⎪⎩
⎪⎨⎧___________________________
∴△ABC ≌△DEF ( )
例1.如图,点B ,F ,C ,E 在一条直线上,FB =CE ,AB ∥ED ,AC ∥FD .求证AB =DE ,AC =DF .
例2已知:如图 , 四边形ABCD 中 , AB ∥CD , AD ∥BC .求证:△ABD ≌△CDB
例3如图, AD=EB,AC ∥DF ,BC ∥EF .求证:ABC DEF ∆≅∆
A C F
E
D
B
1.如图,已知:∠A=∠D,∠1=∠2,下列条件中能使△ABC≌△DEF的是()
A.∠E=∠B B.ED=BC C.AB=EF D.AF=CD
2.如图:AB=AC,∠B=∠C,且AB=5,AE=2,则EC的长为()
A.2 B.3 C.5 D.2.5
3.如图,AB=AC,要使△ABE≌△ACD,依据ASA,应添加的一个条件是.
4.如图,∠1=∠2,∠3=∠4,BC=5,则BD= .
5、.如图,点A,B,C,D在同一条直线上,AB=FC,∠A=∠F,∠EBC=∠FCB.求证:BE=CD.。