冲激函数和阶跃函数的傅里叶变换

合集下载

阶跃函数的傅里叶变换

阶跃函数的傅里叶变换
2 T21 4 an T1 f (t ) cos(n1t )dt f (t ) cos(n1t )dt T1 0 T1 2
T1 2
2 T21 bn T1 f (t )sin(n1t )dt 0 T1 2
三角级数只含有直流和余弦项,不含有正弦项。
an jbn an Fn 2 2
n1 E Fn Sa( ) T1 2

E n1 E Sa Fn Sa T1 T1 2 n1 2
0 n 或 n , Sa 1 2 n , Sa 1 2 0 0
1 Fn F n cn 2 cn Fn F n
3. 指数形式的信号频谱
Fn Fn e
Fn ~ n1
幅度频谱
jn

Fn 是 n 的偶函数
n
是 n 的奇函数
n ~ n1 相位频谱
E 例:周期矩形脉冲 f (t ) T1
实数

双边频谱
n1 jn1t Sa( 2 )e n
c0 a0 ,
cn a b ,
2 n 2 n
n tan1 (
bn ) an
an , bn , cn ,n 都是 n1 的函数。
cn ~ n1 关系曲线,称为信号的 幅度频谱。
n

n1 关系曲线,称为信号的 相位频谱。
周期矩形脉冲 f (t ) E 2 E T1 T1
1 t0 T1 {a0 [an cos(n1t ) bn sin(n1t )]}2 dt T1 t0 n1
1 2 2 a0 (an bn2 ) 2 n1

几种常见函数的傅里叶变换及推导

几种常见函数的傅里叶变换及推导

几种常见函数的傅里叶变换及推导傅里叶变换是数学中一种非常重要的变换方法,它可以将一个函数在时域(或空域)中的表达转换为频域中的表达。

在信号处理、图像处理、通信等领域中被广泛应用。

本文将介绍几种常见函数的傅里叶变换及推导过程。

1. 方波函数的傅里叶变换方波函数是一种周期函数,它在每个周期内以不同的幅度交替出现。

方波函数的傅里叶变换可以通过将方波函数表示为一系列正弦函数的和来推导得到。

假设方波函数为f(t),其周期为T,傅里叶变换为F(ω)。

根据傅里叶级数展开的性质,方波函数可以表示为:f(t) = (1/2) + (2/π)sin(ωt) + (2/π)sin(2ωt) + (2/π)sin(3ωt) + ...其中,ω = 2π/T是方波函数的角频率。

根据傅里叶变换的定义,可以得到方波函数的傅里叶变换为:F(ω) = (1/2)δ(ω) + (1/2π)[δ(ω-ω0) - δ(ω+ω0)] + (1/2π)[δ(ω-2ω0) - δ(ω+2ω0)] + (1/2π)[δ(ω-3ω0) - δ(ω+3ω0)] + ...其中,δ(ω)是狄拉克函数,表示单位冲激函数。

傅里叶变换的结果是一系列的冲激函数,每个冲激函数对应一个正弦函数的频谱分量。

2. 高斯函数的傅里叶变换高斯函数是一种常用的连续函数,其在数学和物理学中有广泛的应用。

高斯函数的傅里叶变换可以通过将高斯函数表示为指数函数的平方和来推导得到。

假设高斯函数为f(t),傅里叶变换为F(ω)。

根据高斯函数的定义,可以得到:f(t) = e^(-αt^2)其中,α是常数。

根据傅里叶变换的定义,可以得到高斯函数的傅里叶变换为:F(ω) = √(π/α)e^(-ω^2/(4α))高斯函数的傅里叶变换仍然是一个高斯函数,只是幅度和频率发生了变化。

3. 矩形函数的傅里叶变换矩形函数是一种常见的函数,它在一个有限区间内的值为常数,而在其他区间内的值为零。

矩形函数的傅里叶变换可以通过将矩形函数表示为两个单位阶跃函数的差来推导得到。

常用傅里叶逆变换公式

常用傅里叶逆变换公式

常用傅里叶逆变换公式傅里叶变换和逆变换是信号处理领域中非常基础的数学工具。

在现代数字信号处理领域中,它们被广泛应用于信号滤波、数据压缩和频谱分析等方面。

作为傅里叶变换的逆运算,傅里叶逆变换起着重要的作用。

在这篇文章中,我们将详细介绍一些常用的傅里叶逆变换公式,并说明它们在实际应用中的作用。

傅里叶逆变换的定义在深入讨论傅里叶逆变换公式之前,我们需要先了解一下傅里叶逆变换的定义。

傅里叶逆变换是指将复频域信号转换成复时域信号的过程。

与傅里叶变换不同的是,逆变换是不可逆的。

即使我们进行完傅里叶逆变换之后,再进行傅里叶变换,也不能恢复原来的复频域信号。

傅里叶逆变换的数学表达式如下:$$x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(j\omega)e^{j\omega t}d\omega$$其中,$x(t)$是时域信号,$X(j\omega)$是傅里叶变换后的频域信号,$j$是虚数单位,$\omega$是频率,$t$是时间。

这个公式的意思是,我们可以通过对傅里叶变换后的复频域信号做积分,得到复时域信号$x(t)$。

傅里叶逆变换的性质在实际应用中,我们常常需要使用傅里叶逆变换公式对信号进行处理。

为了更好地利用傅里叶逆变换公式,我们需要了解一些它的性质。

下面是一些常见的性质:1. 线性性质:傅里叶逆变换具有线性性,即如果$x_1(t)$的傅里叶变换是$X_1(j\omega)$,$x_2(t)$的傅里叶变换是$X_2(j\omega)$,那么$ax_1(t)+bx_2(t)$的傅里叶逆变换就是$aX_1(j\omega)+bX_2(j\omega)$。

2. 时移性质:如果$x(t)$的傅里叶变换为$X(j\omega)$,那么$x(t-t_0)$的傅里叶逆变换就是$e^{-j\omega t_0}X(j\omega)$,其中$t_0$是一个常数。

3. 频移性质:如果$x(t)$的傅里叶变换为$X(j\omega)$,那么$x(t)e^{j\omega_0t}$的傅里叶逆变换就是$X(j(\omega-\omega_0))$,其中$\omega_0$是一个常数。

信号与系统第三章

信号与系统第三章
T1 t0
1
2 t0 T1
2 t0 T1
2
[ T1
t0
f (t) cos n 1tdt
j T1
t0
f (t) sin n 1tdt]
1 t0 T1
T1 t0 f (t)[cos n 1t j sin n 1t]dt
1 t0 T1 f (t)
T1 t0
2e jn 1t dt
2
1 t0
T1
f (t)e
jn 1t dt
1768年生于法国 1807年提出“任何周
期信号都可用正弦函 数级数表示”
拉格朗日,拉普拉斯 反对发表
1822年首次发表在 “热的分析理论”
一书中
一、频域分析
从本章开始由时域转入变换域分析,首先讨 论傅里叶变换。傅里叶变换是在傅里叶级数正交 函数展开的基础上发展而产生的,这方面的问题 也称为傅里叶分析(频域分析)。将信号进行正 交分解,即分解为三角函数或复指数函数的组合。
t0 T1 t0
f (t)e jn1tdt
n 0,1, 2,3 。
Fn
1 t0
T1
f (t)e
jn 1t dt
T1 t0
n 0, 1, 2, 3 。
为了积分方便,通常取积分区间为:0
~
T1或
T1 2
~
T1 2
推导完毕
f (t)
n
Fne jn 1t F0
Fne jn 1t
n1
1
Fne jn 1t
n
(形式一) f (t) a0 an cos(n1t) bn sin(n1t) n1
傅氏级数展开实质就是确定展开式中各分量系数
确定系数:
f (t) a0 an cos(n1t) bn sin(n1t) n1

014第三章-5常用信号的傅里叶变换

014第三章-5常用信号的傅里叶变换

jct
jc t
F ( j( c ))
相乘,等效于在
频域中将整个频谱向频率增加方向搬移c
F f (t )e

jct
f (t )e

jct jt
e
dt dt F j jc



f (t )e
j c t
例:已知 f (t ) F ( j ) 求 f (t ) cosc t 的频谱。 解:
四、尺度变换特性(时域频域成反比)
1 若:f (t ) F ( j ) 则 f (at) F ( j ) a a
扩展
压缩
压缩
扩展
2 A Sa( )
ASa (

2
)
A Sa ( ) 2 4
四、尺度变换特性(时域频域成反比)
1 若:f (t ) F ( j ) 则 f (at) F ( j ) a a
t
记 f1 (t ) e (t )
1 F f1 (t ) j
则 f (t ) e
|t|
t f1 (t ) f1 (t )
F ( j) F[ f1 (t )] F[ f1 (t )]
F1 ( j) F ( j)
* 1
F f at


f at e
若不符合绝对可积条件则不能直接计算, 但可通过其它变换对推出,并且一般含有 冲激函数。
常用信号的傅氏变换—8 8、周期性冲激序列δT(t)
间隔为T的均匀冲激序列, 以符号δT(t)表示
δT(t)是一个周期函数,可以展开成傅里叶级数:
1 jnt T (t ) (t nT ) An e 2 n n

常用函数的傅里叶变换

常用函数的傅里叶变换

常用函数的傅里叶变换傅里叶变换是一种将时域信号转换为频域信号的方法,常用于信号处理、通信、图像处理等领域。

在实际应用中,有很多常用的函数需要进行傅里叶变换,本文将介绍一些常用函数的傅里叶变换公式。

1. 正弦函数和余弦函数正弦函数和余弦函数是最基本的周期函数,它们的傅里叶变换公式如下:$$begin{aligned}mathcal{F}(sin(omega_0t)) &= frac{j}{2}[delta(omega-omega_0)-delta(omega+omega_0)]mathcal{F}(cos(omega_0t)) &= frac{1}{2}[delta(omega-omega_0)+delta(omega+omega_0)]end{aligned}$$其中,$omega_0$表示正弦函数和余弦函数的基频,$delta(omega)$表示狄拉克脉冲函数,$j$表示虚数单位。

2. 矩形函数矩形函数是一个限制在有限区间的常数函数,它的傅里叶变换公式如下:$$mathcal{F}(mathrm{rect}(t/T)) = Tmathrm{sinc}(omega T) $$其中,$mathrm{sinc}(x)=frac{sin(pi x)}{pi x}$为正弦积分函数。

3. 三角函数三角函数包括正弦函数、余弦函数、正切函数等,它们的傅里叶变换公式如下:$$begin{aligned}mathcal{F}(sin^2(omega_0t)) &= frac{j}{4}[delta(omega-2omega_0)-delta(omega)-delta(omega+2omega_0)]mathcal{F}(cos^2(omega_0t)) &= frac{1}{4}[delta(omega-2omega_0)+2delta(omega)+delta(omega+2omega_0)]mathcal{F}(tan(omega_0t)) &= -jfrac{pi}{2}mathrm{sgn}(omega-omega_0)-jfrac{pi}{2}mathrm{sgn}(omega+omega_0)end{aligned}$$其中,$mathrm{sgn}(x)$为符号函数。

上海大学通信学院学科复习资料-信号

上海大学通信学院学科复习资料-信号
(6)、
拉氏变换基本性质
一、线性(叠加)
若 ,则
二、微分
若 ,则 .[若积分从 开始,则 取 ].
三、积分
若 ,则
四、延时(时域平移)
五、 域平移
六、尺度变换
七、初值
八、终值
九、卷积
十、相乘
十一、对 微分
第五章傅利叶变换应用于通信系统
一、系统函数H(jw)
稳定系统,零状态响应
冲激响应与系统函数之间傅利叶变换关系
阶跃函数
3.7傅利叶变换的基本性质
(一)对称性

(二)线性叠加


(三)奇偶虚实性
(1)f(t)为实函数
(2)f(t)为虚函数
(四)、尺度变换特性
若 ,则 (a为非零实常数)
(五)、时移特性
若 ,则
(六)频移特性
若 ,则
(七)、微分特性
若 ,则 ,
频域微分特性 ,
(八)、积分特性
若 ,则
3.8卷积特性(卷积定理)
一个系统输出只取决于该时刻输入,该系统称为无记忆系统(即时系统)。
反之则为记忆系统)(动态系统)。
例:电容器: .
iii、集总参数系统与分布参数系统;
iv、线性系统与非线性系统。
令 是一个连续时间系统,对 响应, 是对应于 的输出,则1、 是 的响应;(叠加性)
2、 是 响应;( 为任意常数)(齐次性,均匀性,比例性)
(一)、时域卷积定理
若 , 则
(二)、频域卷积定理
若 , 则
3.9周期信号傅利叶变换
( 为单脉冲傅利叶变换)
第四章拉普拉斯变换、 域分析
单边拉氏变换
乘以衰减因子 后要满足绝对可积条件, 取值范围称为收敛域。

信号与系统第3章傅里叶变换

信号与系统第3章傅里叶变换

*本章要点
1.利用傅立叶级数的定义式分析周期信号的离散谱。 2.利用傅立叶积分分析非周期信号的连续谱。 3.理解信号的时域与频域间的关系。 4.用傅立叶变换的性质进行正逆变换。 5.掌握抽样信号频谱的计算及抽样定理
将信号表示为不同频率正弦分量的线性组合意义
1.从信号分析的角度 将信号表示为不同频率正弦分量的线性组合,为不同信号之 间进行比较提供了途径。
发展历史
•1822年,法国数学家傅里叶(J.Fourier,1768-1830)在研究热传导 理论时发表了“热的分析理论”,提出并证明了将周期函数展 开为正弦级数的原理,奠定了傅里叶级数的理论基础。 •泊松(Poisson)、高斯(Guass)等人把这一成果应用到电学中去, 得到广泛应用。 •19世纪末,人们制造出用于工程实际的电容器。 •进入20世纪以后,谐振电路、滤波器、正弦振荡器等一系列具 体问题的解决为正弦函数与傅里叶分析的进一步应用开辟了广 阔的前景。 •在通信与控制系统的理论研究和工程实际应用中,傅里叶变换 法具有很多的优点。 •“FFT”快速傅里叶变换为傅里叶分析法赋予了新的生命力。
一.三角函数形式的傅里叶级数
1.正交三角函数集
三角函数系1, cos x,sin x, cos 2x,sin 2x,..., cos nx,sin nx,...
在区间[-π,π]上正交,是指在三角函数系中任何不同的两个函 数的乘积在区间的积分等于零,即
cosnxdx 0(n 1,2,3,...)
傅里叶生平
1768年生于法国 1807年提出“任何周期信号
都可用正弦函数级数表示” 1829年狄里赫利第一个给出
收敛条件 拉格朗日反对发表 1822年首次发表“热的分析
理论”中
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
其傅里叶变换为:
F () j,
F ()

( )


22,
,
0 0
(纯虚函数)
0
t
1
F (w)
0
w
(w)
2
0
w
2
推导:
解: IFT : (t) 1 e jwtdw
两边求导:
2
d (t) 1 ( jw)e jwt dw
dt
2
得:
d (t) FT jw
dt
推广:
d n (t) FT( jw)n
dt n
tn
FT 2
(
j)n
d
n (w)
dwn
三、阶跃信号的傅里叶变换
阶跃函数:u(t) 1 1 sgn( t) 22
阶跃函数u(t)不满足绝 对可积条件,但它仍 存在傅里叶变换。
即:u(t)含有直流分量。
此外:由于u(t)不是纯直流信号,它在t=0点有跳变, 因此在频谱中还存在其他频率分量。
思考题
• 1. 冲激函数的傅立叶变换及其反变换的公 式?
• 2. 阶跃函数的傅立叶变换公式?
2
若令
[] lim k Sa(kw) k
k 比较上两式可得到:
2
F[w] 2E (w)
当E=1时, F[w] 2(w)
(t) FT1 1FT2(w)
二、冲激偶信号的傅里叶变换
冲激偶函数: f (t) '(t)
f (t) '(t)
§ 3.6 冲激函数和阶跃函数的傅里叶变换
• 主要内容
•冲激函数的傅里叶变换 •冲激偶的傅里叶变换 •阶跃函数的傅里叶变换
• 重点:冲激函数和阶跃函数傅里叶变换
• 难点:傅立叶变换的推导
一、冲激函数的傅里叶变换
(t)
(1)冲激函数的傅里叶正变换
(1)
f(t)= d(t)
其傅里叶变换为:
F () 1,

u

t

2

频谱变化
F ()

E
Sa

2

0
t
的极限而求得。
f (t)
E
0
t
2
0 2
w
(w)
(2E)
0
w
当 时,矩形脉冲成为直流信号f(t)=E,其
傅氏变换为:
F[w] lim E Sa( w )

F () 1 ,
j
(复函数)

F ()


2
2



12ຫໍສະໝຸດ 0, 0



(
)



2


2
,
,
0 0
f (t) u(t)
1
F()

2
2



1 2

0
t
0
w
可见:
单位阶跃函数u(t)的频谱在w=0点存在一个冲激函数,
F () 1 () 0
(正实函数)
0 F (w)
t
1
0
w
单位冲激函数的频谱等于常数,即:在整个频率范 围内频谱是均匀分布的。
在时域中变化异常剧烈的冲激函数包含幅度相等的 所有频率分量。
称此频谱为“均匀谱”或“白色谱”。
(2)冲激函数的傅里叶反变换
冲激函数的频谱等于常数。
反过来,直流信号的频谱是冲激函数。 (w)
1
F(w) (w)
求f(t)
0
w
直流信号 f(t)=E
f (t)
1 2
其傅里叶变换为:
0
F() 2 E ,
F() 2 E
() 0
t
(正实函数)
求解直流信号的傅里叶变换 解:采用宽度为的矩形脉冲
f
(t)

E
u

t

2

相关文档
最新文档