线性代数标准化作业答案
最全线性代数习题及参考答案

第一章:一、填空题:1、若a a D ij n ==||,则=-=||ij a D ;解:a a a a a D aa a a a D n nnn nnnn nn )1(11111111-=----=∴==2、设321,,x x x 是方程03=++q px x 的三个根,则行列式132213321x x x x x x x x x = ; 解:方程023=+++d cx bx ax 的三个根与系数之间的关系为:a d x x x a c x x x x x x ab x x x ///321133221321-==++-=++所以方程03=++q px x 的三个根与系数之间的关系为:q x x x p x x x x x x x x x -==++=++3211332213210033)(3321221321333231132213321=--++-=-++=x x x q x x x p x x x x x x x x x x x x x x x3、行列式1000000019980001997002001000= ;解:原式按第1999行展开:原式=!19981998199721)1(0001998001997002001000219981999-=⨯⨯⨯-=+++4、四阶行列式4433221100000a b a b b a b a = ; 解:原式按第一行展开:原式=))(()()(000004141323243243214324321433221433221b b a a b b a a b b b b a a b a b b a a a a b a b b a b a a b b a a --=---=-5、设四阶行列式cdb a a cbda dbcd c ba D =4,则44342414A A A A +++= ;解:44342414A A A A +++是D 4第4列的代数余子式,44342414A A A A +++=0111111111111==d a c d d c c a bd b a c bdd b c c ba6、在五阶行列式中3524415312a a a a a 的符号为 ;解:n 阶行列式可写成∑-=n np p p ta a aD 2211)1(,其中t 为p 1p 2…p n 的逆序数所以五阶行列式中3524415312a a a a a 的符号为5341352412a a a a a 的符号,为1)1()1(5)3,1,5,4,2(-=-=-t7、在函数xx x xxx f 21112)(---=中3x 的系数是 ; 解:根据行列式结构,可知3x 须由a 11=2x ,a 33=x 和第二行的一个元素构成,但此时第三个元素只能取a 22(行、列数均不可重复),所以此式为3332211)3,2,1(2)1(x a a a t -=-,系数为-2。
吉林大学线性代数AB标准化作业

求 X.
5
6、设 A=
1 2 a b , B= , 若矩阵 A 与 B 可交换,求 a、b 的值. 1 1 3 2
7、设 A、B 均为 n 阶对称矩阵,证明 AB+BA 是 n 阶对称矩阵.
6
学院
班级
姓名
学号
第 二 章 作 业
(方阵的行列式) 1、填空题 (1)排列 52341 的逆序数是________,它是________排列; (2)排列 54321 的逆序数是________,它是________排列; (3)1~9 这九数的排列 1274i56j9 为偶排列,则 i_______, j_______; (4)4 阶行列式中含有因子 a11a23 的项为________________; (5)一个 n 阶行列式 D 中的各行元素之和为零,则 D =__________. 2、计算行列式
普通高等教育“十一五”国家级规划教材
线 性 代 数
标准化作业 (A、B)
吉林大学数学中心 2013.9
学院
班级
姓名
学号
第 一 章 作 业
(矩阵的运算与初等变换) 1、计算题
3 (1) 1, 2, 3 2 ; 1
2 (2) 1 1, 2, 1 ; 3
0 0 1 1
0 0 0 1
2 0 0 0
3 的逆矩阵. 0 0 0
12
4 、 已知 A
2 1 0
1 2 1
0 1 ,B 2
1 2
1 ,C = 3 3 2
2
2 4 ,求解下列矩阵方程: 1
(1)AX=X+C ;
(2) AXB=C.
5、设 A 为 n 阶可逆矩阵,将 A 的第 i 行和第 j 行对换后得矩阵 B,试证: (1)B 可逆; (2)求 AB-1.
线性代数复旦版课后习题标准答案

线性代数习题及答案习题一1. 求下列各排列的逆序数.(1) 341782659; (2) 987654321;(3) n (n -1)…321; (4) 13…(2n -1)(2n )(2n -2)…2. 【解】(1) τ(341782659)=11; (2) τ(987654321)=36;(3) τ(n (n -1)…3²2²1)= 0+1+2 +…+(n -1)=(1)2n n -;(4) τ(13…(2n -1)(2n )(2n -2)…2)=0+1+…+(n -1)+(n -1)+(n -2)+…+1+0=n (n -1).4. 本行列式4512312123122xx x D x xx=的展开式中包含3x 和4x 的项.解: 设 123412341234()41234(1)i i i i i i i i i i i i D a a a a τ=-∑,其中1234,,,i i i i 分别为不同列中对应元素的行下标,则4D 展开式中含3x 项有(2134)(4231)333(1)12(1)32(3)5x x x x x x x x x ττ-⋅⋅⋅⋅+-⋅⋅⋅⋅=-+-=-4D 展开式中含4x 项有(1234)4(1)2210x x x x x τ-⋅⋅⋅⋅=.5. 用定义计算下列各行列式.(1)2000010300004; (2)12300020304501.【解】(1) D =(-1)τ(2314)4!=24; (2) D =12.6. 计算下列各行列式.(1)2141312112325062-----; (2) ab ac ae bdcd de bf cf ef-------; (3)10011001101ab c d ---; (4)1234234134124123.【解】(1) 125062312101232562r r D+---=--;(2) 1114111111D abcdef abcdef --==------; 210110111(3)(1)111011111;bcD a a bcd c c dd ddabcd ab ad cd --⎡--⎤=+-=+++--⎢⎥⎣⎦=++++ 321221133142144121023410234102341034101130113(4)160.1041202220044101231114r r c c r r c c r r r r c c r r D -+-+-++---====-------7. 证明下列各式.(1) 22222()111aab baa b b a b +=-; (2)2222222222222222(1)(2)(3)(1)(2)(3)0(1)(2)(3)(1)(2)(3)aa a ab b b bc c c c dd d d ++++++=++++++;(3) 232232232111()111a a a ab b ab bc ca b b cccc=++(4) 20000()000nn aba b D ad bc cdcd==-;(5)121111111111111nni i i i na a a a a ==++⎛⎫=+ ⎪⎝⎭+∑∏. 【证明】(1)1323223()()()2()201()()()()()2()21c c c c a b a b b a b ba b a b b a b a b b a b a b b a b a b a b a b--+--=--+--+==-=-=--左端右端.(2) 32213142412222-2-2232221446921262144692126021446921262144692126c c c c c c c c c c aa a a aa b b b b b b c c c c c c dd d d dd ---++++++++====++++++++左端右端.(3) 首先考虑4阶范德蒙行列式:2323232311()()()()()()()(*)11x x x a a a f x x a x b x c a b a c b c b b b ccc==------从上面的4阶范德蒙行列式知,多项式f (x )的x 的系数为2221()()()()(),11a aab bc ac a b a c b c ab bc ac b b cc++---=++但对(*)式右端行列式按第一行展开知x 的系数为两者应相等,故231123231(1),11a ab b cc+-(4) 对D 2n 按第一行展开,得22(1)2(1)2(1)00000(),n n n n ab abab ab D abcdcdc d c d dcad D bc D ad bc D ---=-=⋅-⋅=-据此递推下去,可得22(1)2(2)112()()()()()()n n n n n nD ad bc D ad bc D ad bc D ad bc ad bc ad bc ----=-=-==-=--=-2().nn D ad bc ∴=-(5) 对行列式的阶数n 用数学归纳法.当n =2时,可直接验算结论成立,假定对这样的n -1阶行列式结论成立,进而证明阶数为n 时结论也成立.按D n 的最后一列,把D n 拆成两个n 阶行列式相加:112211211111011111110111111101111111.n n nn n n a a a a D a a a a a a D ---++++=++=+但由归纳假设11121111,n n n i i D a a a a ---=⎛⎫+= ⎪⎝⎭∑从而有11211211121111111111.n n n n n i i nnnn n i i i i i i D a a a a a a a a a a a a a a a ---=-===⎛⎫+=+ ⎪⎝⎭⎛⎫⎛⎫++== ⎪ ⎪⎝⎭⎝⎭∑∑∑∏8. 计算下列n 阶行列式.(1) 111111n x x D x =(2) 122222222232222n D n=; (3)0000000000n x y x y D x y yx=. (4)n ij D a =其中(,1,2,,)ij a i j i j n =-= ; (5)21000121000120000021012n D =.【解】(1) 各行都加到第一行,再从第一行提出x +(n -1),得11111[(1)],11n x D x n x =+-将第一行乘(-1)后分别加到其余各行,得1111110[(1)](1)(1).01n n x D x n x n x x --=+-=+---(2) 213111222210000101001002012n r r n r r r r D n ---=-按第二行展开222201002(2)!.002002n n -=---(3) 行列式按第一列展开后,得1(1)(1)(1)10000000000000(1)0000000(1)(1).n n n n n nn nx y y x y x y D x y x y x y y x xyx xy yx y +-+-+=+-=⋅+⋅-⋅=+-(4)由题意,知11121212221212110122103123n n n n n nnn a a a n a a a D n a a a n n n --==----012211111111*********1111n n ------------后一行减去前一行自第三行起后一行减去前一行01221122111111200002000020000000022n n n n --------=-按第一列展开1122000201(1)(1)(1)(1)22n n n n n n -----=---按第列展开.(5) 210002000001000121001210012100012000120001200000210002100021012012012n D ==+122n n D D --=-.即有 112211n n n n D D D D D D ----=-==-=由 ()()()112211n n n n D D D D D D n ----+-++-=-得11,121n n D D n D n n -=-=-+=+. 9. 计算n 阶行列式.121212111n n n na a a a a a D a a a ++=+【解】各列都加到第一列,再从第一列提出11ni i a =+∑,得232323123111111,11n n nn i n i na a a a a a D a a a a a a a =+⎛⎫=++ ⎪⎝⎭+∑将第一行乘(-1)后加到其余各行,得2311110011.001001n nnn i ii i a a a D a a ==⎛⎫=+=+ ⎪⎝⎭∑∑10. 计算n 阶行列式(其中0,1,2,,i a i n ≠= ).1111123222211223322221122331111123n n n n nn n n n n nn n n n n n n n n n n na a a a ab a b a b a b D a b a b a b a b b b b b ----------------=.【解】行列式的各列提取因子1(1,2,,)n j a j n -= ,然后应用范德蒙行列式.3121232222312112123111131212311211111()().n n n n n n n n n n n n n j i n n j i n i j b b b b a a a a b b b b D a a a a a a a b b b b a a a a b b a a a a a ------≤<≤⎛⎫⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫-= ⎪⎝⎭∏11. 已知4阶行列式41234334415671122D =;试求4142A A +与4344A A +,其中4j A 为行列式4D 的第4行第j 个元素的代数余子式. 【解】41424142234134(1)(1)3912.344344567167A A +++=-+-=+= 同理43441569.A A +=-+=- 12. 用克莱姆法则解方程组.(1) 123123412342345,2 1, 2 2, 23 3.x x x x x x x x x x x x x x++=⎧⎪+-+=⎪⎨+-+=⎪⎪++=⎩(2) 121232343454556 1,56 0, 56 0, 560,5 1.x x x x x x x x x x x x x +=⎧⎪++=⎪⎪++=⎨⎪++=⎪+=⎪⎩ 【解】方程组的系数行列式为1110111013113121110131180;121052*********23141230123D -------=====≠-----1234511015101111211118;36;2211121131230323115011152111211136;18.1221121201330123D D D D --====---====--故原方程组有惟一解,为312412341,2,2,1.D D D D x x x x D D D D ========-12345123452)665,1507,1145,703,395,212.15072293779212,,,,.66513335133665D D D D D D x x x x x ===-==-=∴==-==-=13. λ和μ为何值时,齐次方程组1231231230,0,20x x x x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩ 有非零解?【解】要使该齐次方程组有非零解只需其系数行列式110,11121λμμ= 即(1)0.μλ-=故0μ=或1λ=时,方程组有非零解. 14. 问:齐次线性方程组12341234123412340,20,30,0x x x ax x x x x x x x x x x ax bx +++=⎧⎪+++=⎪⎨+-+=⎪⎪+++=⎩ 有非零解时,a ,b 必须满足什么条件?【解】该齐次线性方程组有非零解,a ,b 需满足11112110,113111a ab =-即(a +1)2=4b .15. 求三次多项式230123()f x a a x a x a x =+++,使得(1)0,(1)4,(2)3,(3)16.f f f f -====【解】根据题意,得0123012301230123(1)0;(1)4;(2)2483;(3)392716.f a a a a f a a a a f a a a a f a a a a -=-+-==+++==+++==+++=这是关于四个未知数0123,,,a a a a 的一个线性方程组,由于012348,336,0,240,96.D D D D D ====-=故得01237,0,5,2a a a a ===-= 于是所求的多项式为23()752f x x x =-+16. 求出使一平面上三个点112233(,),(,),(,)x y x y x y 位于同一直线上的充分必要条件. 【解】设平面上的直线方程为ax +by +c =0 (a ,b 不同时为0)按题设有1122330,0,0,ax by c ax by c ax by c ++=⎧⎪++=⎨⎪++=⎩ 则以a ,b ,c 为未知数的三元齐次线性方程组有非零解的充分必要条件为1122331101x y x y x y = 上式即为三点112233(,),(,),(,)x y x y x y 位于同一直线上的充分必要条件.习题 二1. 计算下列矩阵的乘积.(1)[]11321023⎡⎤⎢⎥-⎢⎥-⎢⎥⎢⎥⎣⎦=; (2) 500103120213⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦; (3) []32123410⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (4) ()111213112321222323132333a a a x x x x a a a x a a a x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦; (5) 11121321222331323310001101a a a a a a a a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦; (6) 1210103101010121002100230303⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦. 【解】 (1) 32103210;64209630-⎡⎤⎢⎥--⎢⎥⎢⎥-⎢⎥-⎣⎦(2)531⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦; (3) (10);(4) 3322211122233312211213311323322311()()()iji j i j a x a x a x a a x x a a x x a a x x ax x ==++++++++=∑∑(5)111212132122222331323233a a a a a a a a a a a a +⎡⎤⎢⎥+⎢⎥⎢⎥+⎣⎦; (6) 12520124004309⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦. 2. 设111111111⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A ,121131214⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦B , 求(1)2-A B A ;(2) -A B B A ;(3) 22()()-=-A +B A B A B 吗? 【解】(1) 2422;400024⎡⎤⎢⎥-=⎢⎥⎢⎥⎣⎦A B A (2) 440;531311⎡⎤⎢⎥-=--⎢⎥⎢⎥--⎣⎦A B B A (3) 由于AB ≠BA ,故(A +B )(A -B )≠A 2-B 2.3. 举例说明下列命题是错误的.(1) 若2=A O , 则=A O ; (2) 若2=A A , 则=A O 或=A E ; (3) 若A X =A Y ,≠A O , 则X =Y . 【解】(1) 以三阶矩阵为例,取201,000000⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦0A A ,但A ≠0 (2) 令110000001-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,则A 2=A ,但A ≠0且A ≠E (3) 令11021,=,011121110⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=≠=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A Y X 0 则AX =AY ,但X ≠Y . 4. 设11A λ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦, 求A 2,A 3,…,A k . 【解】2312131,,,.010101kk λλλ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A A A 5. 10010λλλ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦A =, 求23A ,A 并证明: 121(1)2000kk k kk k kk k k k λλλλλλ----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A =. 【解】2322233223213302,03.0000λλλλλλλλλλλ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A =A = 今归纳假设121(1)2000kk k kk k kk k k k λλλλλλ----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A =那么11211111(1)1020100000(1)(1)2,0(1)00k kk k k k k kk kk k kk k k k k k k k k λλλλλλλλλλλλλλλ+---+-++=-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦+⎡⎤+⎢⎥⎢⎥=+⎢⎥⎢⎥⎣⎦AA A = 所以,对于一切自然数k ,都有121(1)2.000kk k kk k kk k k k λλλλλλ----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A = 6. 已知A P =PB ,其中10010000021001211⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦B =,P = 求A 及5A .【解】因为|P |= -1≠0,故由AP =PB ,得1100200,611-⎡⎤⎢⎥==⎢⎥⎢⎥--⎣⎦A PB P而51551()()100100100100210000210200.211001411611--==⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=--==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦⎣⎦A PB PP B P A 7. 设a b c d ba d cc d a b dcba ⎡⎤⎢⎥--⎢⎥⎢⎥--⎢⎥--⎣⎦A =,求|A |. 解:由已知条件,A 的伴随矩阵为22222222()()a b c d b a d ca b c d a b c d c d a b dcba *⎡⎤⎢⎥--⎢⎥-+++=-+++⎢⎥--⎢⎥--⎣⎦A =A 又因为*A A =A E ,所以有22222()a b c d -+++A =A E ,且0<A ,即 42222222224()()a b c d a b c d -++++++A=A A =AE于是有 2222422222()()a b c d a b c d =-+++=-+++A . 8. 已知线性变换112112212321331233232,3,232,2,45;3,x y y y z z x y y y y z z x y y y y z z =+=-+⎧⎧⎪⎪=-++=+⎨⎨⎪⎪=++=-+⎩⎩ 利用矩阵乘法求从123,,z z z 到123,,x x x 的线性变换. 【解】已知112233112233210,232415310,201013421124910116x y x y x y y z y z y z ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦-⎡⎤⎢⎥==-⎢⎥⎢⎥--⎣⎦X A Y Y B z X A Y A B z z, 从而由123,,z z z 到123,,x x x 的线性变换为11232123312342,1249,1016.x z z z x z z z x z z z =-++⎧⎪=-+⎨⎪=--+⎩ 9. 设A ,B 为n 阶方阵,且A 为对称阵,证明:'B A B 也是对称阵. 【证明】因为n 阶方阵A 为对称阵,即A ′=A , 所以 (B ′AB )′=B ′A ′B =B ′AB ,故'B A B 也为对称阵.10. 设A ,B 为n 阶对称方阵,证明:AB 为对称阵的充分必要条件是AB =BA . 【证明】已知A ′=A ,B ′=B ,若AB 是对称阵,即(AB )′=AB .则 AB =(AB )′=B ′A ′=BA , 反之,因AB =BA ,则(AB )′=B ′A ′=BA =AB ,所以,AB 为对称阵.11. A 为n 阶对称矩阵,B 为n 阶反对称矩阵,证明: (1) B 2是对称矩阵.(2) AB -BA 是对称矩阵,AB +BA 是反对称矩阵. 【证明】因A ′=A ,B ′= -B ,故(B 2)′=B ′²B ′= -B ²(-B )=B 2; (AB -BA )′=(AB )′-(BA )′=B ′A ′-A ′B ′= -BA -A ²(-B )=AB -BA ; (AB +BA )′=(AB )′+(BA )′=B ′A ′+A ′B ′= -BA +A ²(-B )= -(AB +BA ).所以B 2是对称矩阵,AB -BA 是对称矩阵,AB+BA 是反对称矩阵. 12. 求与A =1101⎡⎤⎢⎥⎣⎦可交换的全体二阶矩阵. 【解】设与A 可交换的方阵为ab cd ⎡⎤⎢⎥⎣⎦,则由 1101⎡⎤⎢⎥⎣⎦a b cd ⎡⎤⎢⎥⎣⎦=a b cd ⎡⎤⎢⎥⎣⎦1101⎡⎤⎢⎥⎣⎦, 得a cb d aa b cd cc d +++⎡⎤⎡⎤=⎢⎥⎢⎥+⎣⎦⎣⎦. 由对应元素相等得c =0,d =a ,即与A 可交换的方阵为一切形如0a b a ⎡⎤⎢⎥⎣⎦的方阵,其中a,b 为任意数. 13. 求与A =100012012⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦可交换的全体三阶矩阵. 【解】由于A =E +000002013⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦, 而且由111111222222333333000000,002002013013a b c a b c a b c a b c a b c a b c ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦可得111222333333232323023000023222.023333c b c c b c a b c c b c a a b b c c -⎡⎤⎡⎤⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦由此又可得1113232332322333230,230,20,30,2,3,232,233,c b c a a a c b c b b b c c b c c c =-==-===--=-=-所以2311233230,2,3.a a b c c b c b b ======-即与A 可交换的一切方阵为12332300203a b b b b b ⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦其中123,,a b b 为任意数.14. 求下列矩阵的逆矩阵.(1) 1225⎡⎤⎢⎥⎣⎦; (2) 123012001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; (3)121342541-⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦; (4) 1000120021301214⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (5) 520021000083052⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (6) ()1212,,,0n n a a a a a a ⎡⎤⎢⎥⎢⎥≠⎢⎥⎢⎥⎣⎦,未写出的元素都是0(以下均同,不另注). 【解】(1) 5221-⎡⎤⎢⎥-⎣⎦; (2) 12101201-⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦;(3) 12601741632142-⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦; (4) 100011002211102631511824124⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦; (5) 120025000023058-⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦; (6) 12111n a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 15. 利用逆矩阵,解线性方程组12323121,221,2.x x x x x x x ++=⎧⎪+=⎨⎪-=⎩【解】因123111102211102x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,而111002211≠- 故112311101111122.0221113122110221112x x x -⎡⎤⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥-⎣⎦⎣⎦16. 证明下列命题:(1) 若A ,B 是同阶可逆矩阵,则(AB )*=B *A *. (2) 若A 可逆,则A *可逆且(A *)-1=(A -1)*. (3) 若AA ′=E ,则(A *)′=(A *)-1.【证明】(1) 因对任意方阵c ,均有c *c =cc *=|c |E ,而A ,B 均可逆且同阶,故可得|A |²|B |²B *A *=|AB |E (B *A *)=(AB ) *AB (B *A *)=(AB ) *A (BB *)A *=(AB ) *A |B |EA *=|A |²|B |(AB ) *.∵ |A |≠0,|B |≠0,∴ (AB ) *=B *A *.(2) 由于AA *=|A |E ,故A *=|A |A -1,从而(A -1) *=|A -1|(A -1)-1=|A |-1A . 于是A * (A -1) *=|A |A -1²|A |-1A =E ,所以(A -1) *=(A *)-1.(3) 因AA ′=E ,故A 可逆且A -1=A ′. 由(2)(A *)-1=(A -1) *,得(A *)-1=(A ′) *=(A *)′.17. 已知线性变换11232123312322,35,323,x y y y x y y y x y y y =++⎧⎪=++⎨⎪=++⎩ 求从变量123,,x x x 到变量123,,y y y 的线性变换. 【解】已知112233221,315323x y x y x y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦X A Y 且|A |=1≠0,故A 可逆,因而1749,637324---⎡⎤⎢⎥==-⎢⎥⎢⎥-⎣⎦Y A X X 所以从变量123,,x x x 到变量123,,y y y 的线性变换为112321233123749,637,324,y x x x y x x x y x x x =--+⎧⎪=+-⎨⎪=+-⎩ 18. 解下列矩阵方程.(1) 12461321-⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦X =; (2)211211210210111111--⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦X ; (3) 142031121101⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦X =; (4) 01010004310000120101010120-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦X .【解】(1) 令A =1213⎡⎤⎢⎥⎣⎦;B =4621-⎡⎤⎢⎥⎣⎦.由于13211--⎡⎤=⎢⎥-⎣⎦A 故原方程的惟一解为13246820.112127----⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦X A B 同理 (2) X =10001001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; (3) X =11104⎡⎤⎢⎥⎢⎥⎣⎦; (4) X =210.03412-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦19. 若k A =O (k 为正整数),证明:121()k --- E A =E +A +A ++A.【证明】作乘法212121()()k k k kk----=-----=-=E A E +A +A ++A E +A +A ++A A A A A E A E ,从而E -A 可逆,且121()k --- E A =E +A +A ++A20.设方阵A 满足A 2-A -2E =O ,证明A 及A +2E 都可逆,并求A -1及(A +2E )-1. 【证】因为A 2-A -2E =0,故212().2-=⇒-=A A E A E A E由此可知,A 可逆,且11().2-=-AA E同样地2220,64(3)(2)41(3)(2)4--=--=--+=---+=A A E A A E E ,A E A E E ,A E A E E.由此知,A +2E 可逆,且1211(2)(3)().44-+=--=-A E A E A E21. 设423110123⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦A =,2AB =A +B ,求B . 【解】由AB =A +2B 得(A -2E )B =A .而22310,1102121==-≠---A E 即A -2E 可逆,故11223423(2)110110121123143423386.1531102961641232129--⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==----⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦B A E A22. 设1-PAP =Λ. 其中1411--⎡⎤⎢⎥⎣⎦P =,1002-⎡⎤⎢⎥⎣⎦=Λ, 求10A . 【解】因1-P 可逆,且1141,113-⎡⎤=⎢⎥--⎣⎦P 故由1Λ-A =P P 得10110101101012121010()()141410331102113314141033110211331365136412421.34134031242--==⎡⎤⎢⎥---⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥--⎢⎥⎣⎦⎡⎤⎢⎥--⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥--⎢⎥⎣⎦⎡⎤-+-+⎡⎤==⎢⎥⎢⎥----⎣⎦⎣⎦AP P P PΛΛ23. 设m 次多项式01()m m f x a a x a x =+++ ,记01()mm f a a a =+++ A E A A ,()f A 称为方阵A 的m 次多项式.(1)12λλ⎡⎤⎢⎥⎣⎦A =, 证明12kk k λλ⎡⎤⎢⎥⎣⎦A =,12()()()f f f λλ⎡⎤=⎢⎥⎣⎦A ; (2) 设1-A =P BP , 证明1k k -B =PA P ,1()()f f -=B P A P . 【证明】 (1)232311232200,0λλλλ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦A A 即k =2和k =3时,结论成立. 今假设120,0kkk λλ⎡⎤=⎢⎥⎣⎦A 那么111111222000,00kk k k k k λλλλλλ+++⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦AA A = 所以,对一切自然数k ,都有120,0kkk λλ⎡⎤=⎢⎥⎣⎦A 而011101220111012212()1100().()mm mm m m m m m f a a a a a a a a a a a a f f λλλλλλλλλλ=⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤+=⎢⎥+⎣⎦⎡⎤=⎢⎥⎣⎦A E +A ++A++++++ (2) 由(1)与A =P -1BP ,得B =PAP -1.且B k =( PAP -1)k = PA k P -1,又0111011011()()().mm mm mm f a a a a a a a a a f ----=+++=+++=++=B E B BE PA PPA PP E A +A P P A P24. a b cd ⎡⎤⎢⎥⎣⎦A =,证明矩阵满足方程2()0x a d x ad bc -++-=.【证明】将A 代入式子2()x a d x ad bc -++-得222222()()10()()010000.00a d ad bc a b a b a d ad bc cd cd ad bca bc ab bd a adab bd ad bc ac cd cb d ac cdad d -++-⎡⎤⎡⎤⎡⎤=-++-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦-⎡⎤⎡⎤++++⎡⎤=-+⎢⎥⎢⎥⎢⎥-++++⎣⎦⎣⎦⎣⎦⎡⎤==⎢⎥⎣⎦A A E 0 故A 满足方程2()0x a d x ad bc -++-=. 25. 设n 阶方阵A 的伴随矩阵为*A ,证明:(1) 若|A |=0,则|*A |=0;(2) 1n *-=A A .【证明】(1) 若|A |=0,则必有|A *|=0,因若| A *|≠0,则有A *( A *)-1=E ,由此又得A =AE =AA *( A *)-1=|A |( A *)-1=0,这与| A *|≠0是矛盾的,故当|A | =0,则必有| A *|=0. (2) 由A A *=|A |E ,两边取行列式,得|A || A *|=|A |n ,若|A |≠0,则| A *|=|A |n -1 若|A |=0,由(1)知也有| A *|=|A |n -1.26. 设520032002100450000730041052062⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A =,B . 求(1) A B ; (2)B A ; (3) 1-A ;(4)|A |k(k 为正整数). 【解】 (1)232000109000046130329⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A B =; (2) 1980030130000331405222⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦B A =;(3) 1120025000023057--⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦A =; (4)(1)kk=-A .27. 用矩阵分块的方法,证明下列矩阵可逆,并求其逆矩阵.(1)1200025000003000001000001⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (2)003100212100230-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦; (3)20102020130010*******1⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 【解】(1) 对A 做如下分块 12⎡⎤=⎢⎥⎣⎦A A A 00 其中1230012;,0102501⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦A A 12,A A 的逆矩阵分别为1112100523;,01021001--⎡⎤⎢⎥-⎡⎤⎢⎥==⎢⎥-⎢⎥⎣⎦⎢⎥⎣⎦A A 所以A 可逆,且1111252000210001.0000300010001----⎡⎤⎢⎥-⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦A AA 同理(2)11112121310088110044.110055230055----⎡⎤-⎢⎥⎢⎥⎢⎥⎡⎤⎢⎥⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦A A AA A (3)1110012211300222.001000001001-⎡⎤--⎢⎥⎢⎥⎢⎥--⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A习题 三1. 略.见教材习题参考答案.2. 略.见教材习题参考答案.3. 略.见教材习题参考答案.4. 略.见教材习题参考答案.5.112223334441,,,=+=+=+=+βααβααβααβαα,证明向量组1234,,,ββββ线性相关.【证明】因为1234123412341312342()2()0+++=+++⇒+++=+⇒-+-=ββββααααββββββββββ 所以向量组1234,,,ββββ线性相关.6. 设向量组12,,,r ααα线性无关,证明向量组12,,,r βββ也线性无关,这里12.i i +++ β=ααα【证明】 设向量组12,,,r βββ线性相关,则存在不全为零的数12,,,,r k k k 使得1122.r r k k k +++= 0βββ把12i i +++ β=ααα代入上式,得121232()()r r r r k k k k k k k +++++++++=0 ααα.又已知12,,,r ααα线性无关,故1220,0,0.r r r k k k k k k +++=⎧⎪++=⎪⎨⎪⎪=⎩该方程组只有惟一零解120r k k k ==== ,这与题设矛盾,故向量组12,,,r βββ线性无关.7. 略.见教材习题参考答案.8. 12(,,,),1,2,,i i i in i n ααα== α.证明:如果0ij a ≠,那么12,,,n ααα线性无关. 【证明】已知0ij a =≠A ,故R (A )=n ,而A 是由n 个n 维向量12(,,,),i i i in ααα= α1,2,,i n = 组成的,所以12,,,n ααα线性无关.9. 设12,,,,r t t t 是互不相同的数,r ≤n .证明:1(1,,,),1,2,,n i i i t t i r -== α是线性无关的.【证明】任取n -r 个数t r +1,…,t n 使t 1,…,t r ,t r +1,…,t n 互不相同,于是n 阶范德蒙行列式21111212111121110,11n n r r r n r r r n nnnt t t t t t t t tt t t ---+++-≠从而其n 个行向量线性无关,由此知其部分行向量12,,,r ααα也线性无关.10. 设12,,,s ααα的秩为r 且其中每个向量都可经12,,,r ααα线性表出.证明:12,,,r ααα为12,,,s ααα的一个极大线性无关组.【证明】若 12,,,r ααα (1) 线性相关,且不妨设12,,,t ααα (t <r ) (2)是(1)的一个极大无关组,则显然(2)是12,,,s ααα的一个极大无关组,这与12,,,s ααα的秩为r 矛盾,故12,,,r ααα必线性无关且为12,,,s ααα的一个极大无关组. 11. 求向量组1α=(1,1,1,k ),2α=(1,1,k ,1),3α=(1,2,1,1)的秩和一个极大无关组. 【解】把123,,ααα按列排成矩阵A ,并对其施行初等变换.1111111111111120010010101101001000111011001000k k k k kk k k ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥=→→→⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦A 当k =1时,123,,ααα的秩为132,,αα为其一极大无关组. 当k ≠1时,123,,ααα线性无关,秩为3,极大无关组为其本身.12. 确定向量3(2,,)a b =β,使向量组123(1,1,0),(1,1,1),==βββ与向量组1α=(0,1,1), 2α=(1,2,1),3α=(1,0,-1)的秩相同,且3β可由123,,ααα线性表出.【解】由于123123011120(,,);120011111000112112(,,),11010102a b b a ⎡⎤⎡⎤⎢⎥⎢⎥==→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥==→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦A B αααβββ而R (A )=2,要使R (A )=R (B )=2,需a -2=0,即a =2,又12330112120(,,,),12001121112aa b b a ⎡⎤⎡⎤⎢⎥⎢⎥==→⎢⎥⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦c αααβ 要使3β可由123,,ααα线性表出,需b -a +2=0,故a =2,b =0时满足题设要求,即3β=(2,2,0). 13. 设12,,,n ααα为一组n 维向量.证明:12,,,n ααα线性无关的充要条件是任一n 维向量都可经它们线性表出.【证明】充分性: 设任意n 维向量都可由12,,,n ααα线性表示,则单位向量12,,,n εεε,当然可由它线性表示,从而这两组向量等价,且有相同的秩,所以向量组12,,,n ααα的秩为n ,因此线性无关.必要性:设12,,,n ααα线性无关,任取一个n 维向量α,则12,,,n ααα线性相关,所以α能由12,,,n ααα线性表示.14. 若向量组(1,0,0),(1,1,0),(1,1,1)可由向量组α1,α2,α3线性表出,也可由向量组β1,β2,β3,β4线性表出,则向量组α1,α2,α3与向量组β1,β2,β3,β4等价.证明:由已知条件,1001103111R ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,且向量组(1,0,0),(1,1,0),(1,1,1)可由向量组α1,α2,α3线性表出,即两向量组等价,且123(,,)3R =ααα,又,向量组(1,0,0),(1,1,0),(1,1,1)可由向量组β1,β2,β3,β4线性表出,即两向量组等价,且1234(,,,)3R =ββββ,所以向量组α1,α2,α3与向量组β1,β2,β3,β4等价.15. 略.见教材习题参考答案.16. 设向量组12,,,m ααα与12,,,s βββ秩相同且12,,,m ααα能经12,,,s βββ线性表出.证明12,,,m ααα与12,,,s βββ等价.【解】设向量组12,,,m ααα (1)与向量组12,,,s βββ (2)的极大线性无关组分别为12,,,r ααα (3)和12,,,r βββ (4)由于(1)可由(2)线性表出,那么(1)也可由(4)线性表出,从而(3)可以由(4)线性表出,即1(1,2,,).ri ijjj ai r ===∑ αβ因(4)线性无关,故(3)线性无关的充分必要条件是|a ij |≠0,可由(*)解出(1,2,,)j j r = β,即(4)可由(3)线性表出,从而它们等价,再由它们分别同(1),(2)等价,所以(1)和(2)等价.17. 设A 为m ³n 矩阵,B 为s ³n 矩阵.证明:m ax{(),()}()()R R R R R ⎡⎤≤≤+⎢⎥⎣⎦A AB A B B .【证明】因A ,B 的列数相同,故A ,B 的行向量有相同的维数,矩阵⎡⎤⎢⎥⎣⎦A B 可视为由矩阵A 扩充行向量而成,故A 中任一行向量均可由⎡⎤⎢⎥⎣⎦A B 中的行向量线性表示,故()R R ⎡⎤≤⎢⎥⎣⎦A A B同理()R R ⎡⎤≤⎢⎥⎣⎦A B B故有m ax{(),()}R R R ⎡⎤≤⎢⎥⎣⎦A AB B又设R (A )=r ,12,,,i i ir ααα是A 的行向量组的极大线性无关组,R (B )=k , 12,,,j j jkβββ是B 的行向量组的极大线性无关组.设α是⎡⎤⎢⎥⎣⎦A B 中的任一行向量,则若α属于A 的行向量组,则α可由12,,,i i ir ααα表示,若α属于B 的行向量组,则它可由12,,,j j jkβββ线性表示,故⎡⎤⎢⎥⎣⎦A B 中任一行向量均可由12,,,i i ir ααα,12,,,j j jkβββ线性表示,故()(),R r k R R ⎡⎤≤+=+⎢⎥⎣⎦A AB B 所以有m ax{(),()}()()R R R R R ⎡⎤≤≤+⎢⎥⎣⎦A AB A B B .18. 设A 为s ³n 矩阵且A 的行向量组线性无关,K 为r ³s 矩阵.证明:B =KA 行无关的充分必要条件是R (K )=r .【证明】设A =(A s ,P s ³(n -s )),因为A 为行无关的s ³n 矩阵,故s 阶方阵A s 可逆. (⇒)当B =KA 行无关时,B 为r ³n 矩阵.r =R (B )=R (KA )≤R (K ),又K 为r ³s 矩阵R (K )≤r ,∴ R (K )=r . (⇐)当r =R (K )时,即K 行无关, 由B =KA =K (A s ,P s ³(n -s ))=(KA s ,KP s ³(n -s)) 知R (B )=r ,即B 行无关. 19. 略.见教材习题参考答案.20. 求下列矩阵的行向量组的一个极大线性无关组.(1)2531174375945313275945413425322048⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (2)1122102151203131141⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦. 【解】(1) 矩阵的行向量组1234⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦αααα的一个极大无关组为123,,ααα;(2) 矩阵的行向量组1234⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦αααα的一个极大无关组为124,,ααα.21. 略.见教材习题参考答案.22. 集合V 1={(12,,,n x x x )|12,,,n x x x ∈R 且12n +++ x x x =0}是否构成向量空间?为什么? 【解】由(0,0,…,0)∈V 1知V 1非空,设121122(,,,),(,,,),n n V V k =∈=∈∈x x x y y y αβR )则112212(,,,)(,,,).n n n x y x y x y k kx kx kx +=+++= αβα因为112212121212()()()()()0,()0,n n n n n n x y x y x y x x x y y y kx kx kx k x x x ++++++=+++++++=+++=+++= 所以11,V k V +∈∈αβα,故1V 是向量空间.23. 试证:由123(1,1,0),(1,0,1),(0,1,1)===ααα,生成的向量空间恰为R 3.【证明】把123,,ααα排成矩阵A =(123,,ααα),则11020101011==-≠A , 所以123,,ααα线性无关,故123,,ααα是R 3的一个基,因而123,,ααα生成的向量空间恰为R 3.24. 求由向量1234(1,2,1,0),(1,1,1,2),(3,4,3,4),(1,1,2,1)====αααα所生的向量空间的一组基及其维数. 【解】因为矩阵12345(,,,,)113141131411314214150121301213,113260001200012024140241400=⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥--------⎢⎥⎢⎥⎢⎥=→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A ααααα ∴124,,ααα是一组基,其维数是3维的.25. 设1212(1,1,0,0),(1,0,1,1),(2,1,3,3),(0,1,1,1)===-=--ααββ,证明:1212(,)(,)L L =ααββ.【解】因为矩阵1212(,,,)1120112010110131,01310000013100=⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥=→⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦A ααββ 由此知向量组12,αα与向量组12,ββ的秩都是2,并且向量组12,ββ可由向量组12,αα线性表出.由习题15知这两向量组等价,从而12,αα也可由12,ββ线性表出.所以1212(,)(,)L L =ααββ.26. 在R 3中求一个向量γ,使它在下面两个基123123(1)(1,0,1),(1,0,0)(0,1,1)(2)(0,1,1),(1,1,0)(1,0,1)==-==-=-=αααβββ下有相同的坐标.【解】设γ在两组基下的坐标均为(123,,x x x ),即111232123233112233(,,)(,,),11001100111011101x x x x x x x x x x x x ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦-⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦γαααβββ即1231210,1110x x x --⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦求该齐次线性方程组得通解123,2,3x k x k x k ===- (k 为任意实数)故112233(,2,3).x x x k k k =++=-γεεε27. 验证123(1,1,0),(2,1,3),(3,1,2)=-==ααα为R 3的一个基,并把1(5,0,7),=β2(9,8,13)=---β用这个基线性表示.【解】设12312(,,),(,),==A B αααββ又设11112123132121222323,x x x x x x =++=++βαααβααα,即11121212321223132(,)(,,),x x x x x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ββααα 记作 B =AX .则2321231235912359()111080345170327130327131235910023032713010330022400112r r r r r r -+↔--⎡⎤⎡⎤⎢⎥⎢⎥=−−−→−−−→---⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦-⎡⎤⎡⎤⎢⎥⎢⎥−−−−−→--⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦A B 作初等行变换。
线性代数课后练习参考答案(初稿)

线性代数课后练习参考答案(初稿)线性代数课后习题参考答案(初稿)习题一1. 用行列式定义计算下列各题(1)4245322635-=-?-?=-(2)12130111110101(1)(1)21011110++=-+-= (3)13120010020020030(1)3002(1)243000040040004++=-=?-=-(4)111213100002300234645(1)4562(1)3(1)4045681089891078910+++=-=?-+?-=2. 利用行列式的性质计算下列各题(1)2 1412141312150620123212325625062-==(2)2851285110513102531906196512511310805120512121117609712--------==---=----=----------(3)111111111ab ac ae b c e bdcd de adf b c e adfbce bfcfefbce----=-=----111024020adfbce adfbce -== (4)3300011()()010a b b ba b b b a b a b a b a a b a a b a a b a a b b a a b b b b ab a b a-==--=--------(5)x a a aa x a aa a x a a a ax =(1)(1)(1)(1)x n a a a ax n a xa a x n a a x a x n a a a x+-+-+-+- =[(1)]x n a +-1111a aa x a a a x a a ax=[(1)]xn a+-1001001001x ax a x a---[(1)]x n a =+-1()n x a --(6)2222222222222222222(1)(2)(3)212325(1)(2)(3)2123250(1)(2)(3)212325(1)(2)(3)212325a a a a a a a ab b b b b b b bc c c c c c c cd d d d d d d d ++++++++++++==++++++++++++(7)12311000011231110001223110200(1)!1232110020123111001n n n n n n n n n n n n n nn -+-+-==--+----+-(8)012111110001012111 11200213111112201231230 123241n n n n n n n n n n n n n --------==-----------------12(1)2(1)n n n --=--3. 证明下列各题(1)111111111111111122222222222222223333333333333333a b b c c a a b c c a b b c c a a b b c c a a b c c a b b c c a a bb c c a a b c c a b b c c a ++++++++++=++++++++++++111111*********22222222222223333333333333a b c c b c c a a b c b c a a b c c b c c a a b c b c a a b c c b c c a a b c b c a ++=+++=+++ 1112223332a b c a b c a b c = (2)0()()()()00x y z x z y x y z y z x z x y x y z y z x zy x =-+++-+-+-(证明略)(3)11111111111111111110111111111110111111111110111xx x xxy y y y yy+---=++++---21000111111111001111110111001111110111000x x x x y xy x y y yy y y y-?-?- ?=++=++++ ?---??22222210011001100y xy x y x xy xy x y x y y y + ?=+-=-+= ?- ?-?(4)设012110001000100n n n a a x D a x a x----=-,则按最后一行展开,可得011132 10001101(1)00110n n n n n a a x x D a xa x x a x+-------=-+--211122122()n n n n n n n n a xD a x a xD a xa x D --------=+=++=++.332123223321123210n n n n n n n n n n na xa a x a x x D a xa a x a x a x a x -----------= =+++++=++++++4. 解法参考例 1.11.5. 问齐次线性方程组123123123(1)2402(3)0(1)0x x x x x x x x x λλλ--+=??+-+=??++-=? 有非零解时,必须满足什么条件?解:齐次线性方程组有非零解,当且仅当1242310111λλλ---=-.又124111111231231012111112403(1)(3)λλλλλλλλλλλλ-----=--=--------+-(2)(3)0,λλλ=---=解得,0,λ=或2λ=,或3λ=.所以,当0,λ=或2λ=,或3λ=,齐次线性方程组有非零解.习题二 1. 1654127,2211210712A B A B -+=-=---2. 解:由A X B +=,得020133.221X B A -??=-=-- ? ?--?? 3. 解:213220583221720,0564292290T AB A A B -???? ? ?-=--=- ? ? ? ?- 4. 解:(1)()31,2,32132231101?? ?=?+?+?= ? (2)()22411,212336-???? ? ?-=- ? ? ? ?-????,(3)12110162134021311491231042217--?????? ??? ?= -(4) 1312140012678113413120510402??--???? ?= ? ? ?---????5. 解:(1)错误,令1101,,0111A B == ? ?则有AB BA ≠;(2)错误,令1101,,0111A B == ? ?则有222()2.A B A AB B +≠++(3) 错误,令1101,,0111A B == ? ?则可得22()().A B A B A B +-≠- (4) 错误,设00,10A ??=则有20A =,但0.A ≠(5)错误,设10,00A ??=则有2A A =,但.A I ≠6.解:2221010(),0101AB A B -== ? ?-7.证明:因为A 为对称矩阵,所以T A A =. 故(),T T T T T B AB B A B B AB ==因此,T B AB 是对称矩阵.8. 证明:因为(),(),T T T T T T A A A A AA AA == 所以,T T A A AA 是对称矩阵.9. 解:由32,A X B -=得43/211(3)15/2127/211/25/2X B A -?? ?=--=- ? ???. 10. 2cos 2sin 2,sin 2cos 2A θθθθ-??=cos sin sin cos n n n A n n θθθθ-??=对n 作数学归纳法. 当2n =时,22222cos 2s in 2cos sin 2cos sin sin 2cos 22cos sin cos sin A θθθθθθθθθθθθ-??--??==-??, 结论成立. 假设, 当n k =时, 结论成立, 即cos sin sin cos k k k A k k θθθθ-??=. 下证1n k =+结论成也立. 由归纳假设可得,1k A+=cos sin cos sin sin cos sin cos k k k A A k k θθθθθθθθ--=cos cos sin sin cos sin sin cos cos sin sin cos cos cos sin sin k k k k k k k k θθθθθθθθθθθθθθθθ---??=+-??cos(1)sin(1)sin(1)cos(1)k k k k θθθθ+-+??=++??因此,由归纳法可得cos sin sin cos n n n A n n θθθθ-??=. 11. (1)解:由初等行变换可得,111031113111031107221240012200122001043314500244000390001311118002150000000000A -------???????? ?----=→→→ ? ? ? ?------ ?-(2)解:由初等行变换可得,111111107125016016234000000 ? ? ?-→-→- ? ? ? ? ? ?-12. 解法见第38页例2.14.13. (1) 解:22222311111111111011111110111λλλλλλλλλλλλλλλλλλλ→→--- ? ? ? ? ? ?---?2221101100(1)(2)(1)(1)λλλλλλλλλλ?? ?→--- ? ?-+-+?,当2λ=-时,方程组无解,当1λ=时,方程组的增广矩阵为111100000000??因此方程组的解为12111010001k k --++ ? ? ? ? ? ???????, 12,k k 为任意常数,当1λ≠,且2λ≠-时,方程组有唯一解,221211(1)(1),,222x x x λλλλλλλ+++=-=-+=-+++(2)解:322111************213221λλλλλλλλλλλλ---??--→-- ? ? ? ?---?112111210111011101(2)(1)2(1)00(1)(3)1λλλλλλλλλλλλλλλ--???? ? ?→-+--→--- ? ? ? ?-------当1λ=时,方程组无解,方程组的增广矩阵为111100000000??因此方程组的解为12111010001k k --++ ? ? ? ? ? ???????, 12,k k 为任意常数,当3λ=时,方程组无解,当3λ≠且1λ≠时,方程组有唯一解,123411,,.33x x x λλλ-=-==-- 14. 解:通过初等变换,可得A 的标准型矩阵为,17100010101002800105100015?- ? ? ? ? ? ? ? ? ?-?15. 解析:通过初等行变换可将矩阵()A I 化为()()A I I B →,则1A B -= 例如(1)通过初等行变换,121012101052250101210121-→→ ? ? ?--,故 112522521--= ? ?-相类似的方法可求的其余矩阵的逆矩阵,答案见教材第177页. 16. 解:原线性方程组可写成123123122103430x x x= ??? ? ??? ???????,因此,11231123132210234301x x x -??==- ? ? ? ? ? ? ? ?17.(1)由原矩阵方程可得121122111321182431511133X --??-??-?? ? ?== ? ? ?-- ??? ?-,(2)由原矩阵方程可得1111143120112011104X --???????? ?== ? ??? ?---??????(3)由原矩阵方程可得11010143100210100201001134001120010102X ----???????? ? ??? ?=-=- ? ??? ? ? ??? ?--????????18证明:因为21()()k k I A I A A A I A I +-++++=-=,所以12()()k I A I A A A --=++++19.解:由220A A I --=,得()2A I AI -=,3(2)4A IA I I -+=-,因此,1(),2A I A --=13(2)4A IA I --+=-20. 证明:由220A AB B ++=,且B 可逆得,22[()],()A A B B E B A A B E ---+=-+=,因此,,A A B +可逆,且1212(),().A A B B A B B ----=-++=- 21. 令11123,01121001B C ??== ? ??? ?,则111311044,0111100122B C --??-??- ? ?==--,因此1111130004411000002200001100001100001B B A A A ----??- ? ?-=== ?- ? ?- ?. 22. 证明:若,B C 可逆,则有11000B C I CB --= ? ?,所以A 可逆,且1110.0C A B---??= 反之,若A 可逆, 设其逆为X Y Z V ??,则, 000B X Y I o CZ V I= ??? ???????,因此,,BZ I CY I ==,因此,B C 可逆.23. 证明:用反证法. 假设A 是奇异矩阵,则由2A A =,得211A A AA --=,即A E =,这与已知条件矛盾,所以A 是非奇异矩阵.习题三 1. (3,8,7)T β=2. 解: 设11223344,x x x x βαααα=+++ 即12341111121111,1111111111x x x x ? ? ? ? ?-- ? ? ? ? ?=+++ ? ? ? ? ?-- ? ? ? ? ?-- 解得, 12345111 ,,,4444x x x x ===-=-, 因此12345111.4444βαααα=+--3. 解: 由3(),αβαβ-=+ 得117(1,,2,)222T αα=-=---. 4. 类似第2题的解法,可得1234243.βαααα=+-+ 5. (1) 解: 设1122330,x x x ααα++= 即1231111260133x x x++= ? ? ? ? ? ???????,上面方程组只有零解,所以123,,ααα线性无关. (2) 因为111111111141406120612117024000A ? ? ?=-→-→- ? ? ? ? ? ?-, 所以秩(A)=2, 故123,,ααα线性相关. 6. 用反证法容易证明结论成立. 7. 证明: (1) 设11220,m m x x x βββ+++= 则有11220,m m x x x ααα+++= 又因为12,,,m ααα线性无关, 所以120,m x x x ==== 因此12,,,,mβββ线性无关.(2) 若12,,,,m βββ线性相关, 则存在不全为零的数12,,,,m x x x 使得11220,m m x x x βββ+++= 因此11220,m m x x x ααα+++= 故而12,,,m ααα线性相关.8. 证明: ()?设112223331()()()0,k k k αααααα+++++= 整理得,131122233()()()0k k k k k k ααα+++++=,因为123,,ααα线性无关, 所以131223000k k k k k k +=??+=??+=? 又因为1011100011≠, 所以上面方程组只有零解, 故122331,,αααααα+++线性无关.()? 设1122330,k k k ααα++= 整理得,123121232312331111()()()()()()0,222k k k k k k k k k αααααα+-++-++++-++= 又因为122331,,αααααα+++线性无关,所以123123123(000k k k k k k k k k +-=??-++=??-+=? 解得上面方程组只有零解,因此,123,,ααα线性无关. 证明: 9.(?)设1mi i i k αα==∑,和10.mi i i l α==∑ 则,111()mmmi i i i i i i i i i k l k l αααα====+=+∑∑∑,又α的表达式唯一,因此,i i i k l k += 即0,i l = 故,12,,,m ααα 线性无关.(?)设11m m i i i i i i k l ααα====∑∑,则1()0mi i i i k l α=-=∑,因为12,,,m ααα 线性无关,所以,,i i k l =故α的表达式唯一.10. 证明:因为12,,,m ααα 线性相关,则存在不全为零的数12,,,m k k k 使得,10.mi ii k α==∑若有某个0i k =,不妨设10k =,则有20,mi ii k α==∑ 又任一1m -向量都线性无关,因此230m k k k ====,这与12,,,m k k k 不全为零矛盾,因此12,,,m k k k 全不为零,命题得证. 11. 答案见教材178页. 12. 解: (1) 因为13213213221307107132076005A c c c ? ? ?=-→--→-- ? ? ? ? ? ?--+-+所以,当50,c -+≠ 即5c ≠时,123,,ααα线性无关.(2 ) 当5c =时,123,,ααα线性相关,且312111.77ααα=+ 13. 解:(1)因为2344112311231123112323440501005010326132610501000001021102101020000A --------=→→→ ? ? ? ?------因此,向量组1234,,,αααα的秩为2,12,αα是一个极大线性无关组,且314122,2.ααααα==-+用类似的方法可求(2),(3),答案见教材.14. (1) 因为120131(,)1224αα?? ?-= ? ???,有一个二阶子式01331=--,所以秩(12,αα)=2,即12,αα线性无关.(2)容易计算124,,ααα线性无关. 15. 答案见教材.16. (1)任取()()12121,,,,,,,,,n n x x x y y y V k R ∈∈则有11220n n x y x y x y ++++++=,120n kx kx kx +++=所以()()()121211221,,,,,,,,,n n n n x x x y y y x y x y x y V +=+++∈,12121(,,,)(,,,)n n k x x x kx kx kx V =∈,因此,1V 是线性空间.(2) 任取()()12122,,,,,,,n n x x x y y y V ∈,则有11222n n x y x y x y ++++++=,因此, ()()()121211222,,,,,,,,,.n n n n x x x y y y x y x y x y V +=+++? 因此,2V 不是线性空间. 17. 证明:因为01101111101101211110011==-=--,所以123,,ααα线性无关,即秩(123,,ααα)=3,故123,,ααα生成的子空间就是R .18. 因为 12311160,032-=-≠ 所以,秩(123,,ααα)=3,故123,,ααα是R 的一组基.令1112233k k k βααα=++,即123(5,0,7)(1,1,0)(2,1,3)(3,1,2).k k k =-++ 因此123123232350327k k k k k k k k ++=??-++=??+=?,解得,1232,3,1,k k k ===- 所以112323βααα=+-.19. 方法见例3.17. 20. 见教材答案21. 证明:因为A 是正交阵,所以21,1T A A A -==.又*,A A A E = 即*1A A A -=.因此,2**()T A A A E E ==,故*A 是正交阵. 习题四 1. 解(1)1251251251320170171490214000378017000?????? ? ?--- ? ? ?→→-- ? ?-, 所以,原方程组与下面方程组同解,1232325070x x x x x ++=??-=?选取3x 作为自由未知量,解得基础解系为1971-?? ? ? ???,因此,方程组的解为1971k -?? ? ? ???(2)313411311131159815980467113131340000--------→--→-- ? ? ? ? ? ?----,选取选取34,x x 作为自由未知量,解得基础解系为3/23/43/27/4,1001-故方程组的同解为123/23/43/27/41001k k -+ ? ? ? ?????(3)见教材答案(4)见教材答案2. (1)对增广矩阵做行初等变换得1121011210(,)211210*********/200031/2A b --???? ? ?=--→ ? ? ? ?----解得特解为5/6101/6??-??,对应的齐次线性方程组的基础解系为3510-?? ?- ? ? ???,因此方程组的同解为5/6101/6?? ? ? ? ?-??+3510k -?? ?- ? ? ???(2)答案见教材 3. (略)4. 证明:令i e 为n 阶单位矩阵的第i 列,即(0,0,,1,0,,0)Ti ie =, 则有0,1,2,,i Ae i n ==,因此12(,,,)0,n A e e e AI == 故0A =。
线性代数标准化作业答案

线性代数标准化作业答案第一章:行列式基础必做题:(一) 一、填空题:1、3,n (n-1);2、1222+++c b a ;3、70,-14;4、-3M ;5、1 二、选择题:1、C2、D3、D4、A5、C 三、计算题: 1、解:原式1111001)1()1(11111C 12111++++=--⋅-⋅-+--⋅-++cd ad ab abcd dc dc ba ()(展开按2、解:原式31323121)c b a ()c b a (000)c b a (0111)c b a (2cr r 2br r ba c 2c2c2b a c b 2b111)c b a (2222++=++-++-++------++----++++++++提公因子b a c ccb ac b b c b a c b a c b a r r r r四、解:))()()((0000001)(1111)()(c x b x a x c b a x cx bc ab b x a b a xc b a c b a x xcbc x b c b x c b a c b a x x f ---+++=------+++=+++=因,0)(=x f 故,,,c b a x =或)(c b a ++-。
基础必做题(二) 一、填空题:1、6,8;2、0;3、0,0;4、4;5、24 二、选择题:1、D ;2、C ;3、A ;4、A ;5、A,B,D 三、1、解:原式1)1)(1(10001011111)1(011111110111111)1(---=---=-=n n n n2、解:原式[][][]1)()1(00001)1(111)1(--⋅-+=---+=-+=n b a b n a ba b a b b b b n a abbb b a b b b b n a四、解:0111144342414==+++dbac bd d b c c b a A A A A五、解:1,0,1,20281142102,0321112112,20382141101,2038114202321321=======-==---==--==---=DD z DD y DD x D D D D 故提高选做题: 一、证明: 证法1:12113(0)2240,(1)22401111f f ====- 由罗尔定理知,至少存在一点ξ,使得()0,(0,1)f ξξ'=∈,故有一个小于1的正根。
线性代数标准化作业

经济数学基础线性代数标准化作业吉林大学数学中心2006.2学院班级姓名学号第一章作业(行列式)1、计算下列各行列式的值:(1)2116415012051422D--=----;(2)1111222111122211112221111222D=;(3)112233100110011011b b b D b b b --=----;(4)222b c c a a bD a b c a b c +++=;(5)1111111111111111a a D b b +-=+-;(6)11()11nDαβαβαβαβαβαβαβαβαβαβ+++=≠++;(7)102200302004D= 。
2、设4阶行列式的第2列元素依次为2、m、k、3,第2列元素的余子式依次为1、-1、1、-1,第4列元素的代数余子式依次为3、1、4、2,且行列式的值为1,求m、k的值。
3、用克拉默法则解方程组123123123241,52,4 3.x x x x x x x x x+-=⎧⎪++=⎨⎪-++=⎩4、已知齐次线性方程组有非零解,求λ。
123123123230,220,50.x x x x x x x x xλ++=⎧⎪+-=⎨⎪-+=⎩学院 班级 姓名 学号第 二 章 作 业(矩阵)1、是非题(设A 、B 、C 均为n 阶的方阵) (1)(A +B )(A -B )=A 2-B 2; ( ) (2)若AX =AY ,则X =Y ,其中X 、Y 都是n ×m 矩阵; ( ) (3)若A 2=O ,则A =O ; ( ) (4)若AB =O ,则A =O ,或B =O ; ( ) (5)(ABC )T = C T B T A T 。
( )2、填空题(1)设3阶方阵B≠0,A =⎪⎪⎪⎭⎫ ⎝⎛35342531t ,且AB =0,则t = ;(2)设A =⎪⎪⎪⎭⎫⎝⎛543022001,A *为A 的伴随矩阵,则(A *)1-= ;(3)设A 为4阶数量矩阵,且|A |=16,则A = ,A 1-= , A *= ;(4)设A 1-=⎪⎪⎭⎫ ⎝⎛8642,则A = ,│4A 1-│= ,(A T )1-= ; (5)设A =⎪⎪⎪⎪⎪⎭⎫⎝⎛-1100210000120025,则│A │= ,A 1-= ; (6)设实矩阵A 33⨯=≠)(ij a 0,且011≠a ,ij ij A a =(ij A 为ij a 的代数余子式),则│A │= ;(7)设A 为二阶方阵,B 为三阶方阵,且│A │=1B=21,则1(2)--O B A O = ;(8)设A 为四阶可逆方阵,且│A 1-│=2,则│3(A *)1--2A │= ;(9)设A =⎪⎪⎭⎫ ⎝⎛-133121,且A 6=E ,则A 11= ; (10)设A 为5阶方阵,且A 2 = O ,则R (A *)=___________.3、选择题(1)设同阶方阵A 、B 、C 、E 满足关系式ABC =E ,则必有( ) (A )ACB =E ; (B ) CBA =E ; (C ) BAC =E ; (D ) BCA =E 。
《线性代数》作业参考答案

《线性代数》作业参考答案一、选择题1.D 2.B 3.A 4.D 5.B 6.C 7.B 8.B 9 .A 10.C 11.D 12.B 二、填空题1.相等2.;kn k m C C ⋅3.n 个线性无关的特征向量; 4.不变 5.t=-3 6.B AP P =-17.n n n λλλ 212)1()1(--8.1=k 9.1≠λ且2≠λ 10.2,-211.k=75-12.04321=+++a a a a13. -9 ; 14. 3 ; 15. ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-03100302100201410001A 16. 81; 17. ⎪⎪⎪⎭⎫ ⎝⎛---212424212299; 18. 2;三、证明题1.证:由题设A 是三阶方阵,41=A , 223131111)41(1)41()41(4121)2(A A A A A A A A A ==⋅===⋅-=-----*-。
2.证:由0432=--E A A ,即:E A A 432=-E E A A 4)3(=- E E A A =-)4341( 即A 可逆,且E A A 43411-=-。
3.证:由题设:E A A AA TT== E B B BB TT==所以2()()T T T T TA B BB A BA A B B A A B B A A A A B +=+=+=⋅+=-+即:0)1(2=++B A A 只有0=+B A 证毕。
4.因r n i A b A i -===,,2,1,0,0 γγ,则,b A i =η因此r n -ηηηη,,,,210 是方程组(*)的线性无关解。
设,0221100=++++--r n r n ηληληληλ 则,0)(2211010=+++++++---r n r n r n γλγλγληλλλ 两边左乘A 得,,0)(10=+++-b r n λλλ 有,010=+++-r n λλλ 于是,02211=+++--r n r n ηληληλ 可得r n -ηηηη,,,,210 线性无关。
线性代数课后练习参考答案(初稿)

线性代数课后习题参考答案(初稿)习题一1. 用行列式定义计算下列各题(1)4245322635-=-⨯-⨯=-(2)12130111110101(1)(1)21011110++=-+-=(3)1312001002020030(1)3002(1)243000040040004++=-=⨯-=- (4)11121310000230234645(1)4562(1)3(1)4045681089891078910+++=-=⨯-+⨯-= 2. 利用行列式的性质计算下列各题(1)214121413121506201232123250625062-== (2)28512851105131025319061906512511310805120512121100107609712--------==---=----=----------(3)111111111abac aebcebdcdde adf b c e adfbce bfcfef b c e ----=-=----111024020adfbce adfbce -== (4)3300011()()01000a b b b a b b b ab a b a b a a b a a b a a b a a b b a a b b b b a b a b a -==--=-------- (5)x a a aa x aa a ax a a a ax =(1)(1)(1)(1)x n a a aax n a x a ax n a a x a x n a a ax+-+-+-+- =[(1)]x n a+-1111a aa x a a a x a a ax=[(1)]x na +-1001001001x ax a x a---[(1)]x n a =+-1()n x a --(6)22222222222222222222(1)(2)(3)212325(1)(2)(3)2123250(1)(2)(3)212325(1)(2)(3)212325a a a a a a a ab b b b b b b bc c c c c c c cd d d d d d d d ++++++++++++==++++++++++++(7)12311000011231110001223110200(1)!1232110020123111001n n n n n n n n n n n n n nn -+-+-==--+----+-(8)0121111110001012111112002131111122012301230123241n n n n n n n n n n n n n --------==-----------------12(1)2(1)n n n --=--3. 证明下列各题(1)111111111111111122222222222222223333333333333333a b b c c a a b c c a b b c c a a b b c c a a b c c a b b c c a a b b c c a a b c c a b b c c a ++++++++++=++++++++++++111111111111112222222222222233333333333333a b c c b c c a a b c b c a a b c c b c c a a b c b c a a b c c b c c a a b c b c a ++=+++=+++ 1112223332a b c a b c a b c = (2)00()()()()00x y z x z yx y z y z x z x y x y z y z x z y x =-+++-+-+-(证明略)(3)11111111111111111110111111111110111111111110111x x x x x y y y y y y+---=++++--- 21000111111111001111110111001111110111000x x x x y xy x y y y y y y y-⎛-⎫- ⎪=++=++++ ⎪ ⎪---⎝⎭- 222222210011001100y xy x y x xy xy x y x y y y ⎛⎫+ ⎪=+-=-+= ⎪- ⎪-⎝⎭(4)设01211000100010n n n a a x D a x a x----=-, 则按最后一行展开,可得01113210001101(1)0011n n n n n a a x xD a x a x x a x+-------=-+--211122122()n n n n n n n n a xD a x a xD a xa x D --------=+=++=++. 332123223321123210n n n n n n n n n n n a xa a x a xx D a xa a x a x a x a x -----------==+++++=++++++4. 解法参考例 1.11.5. 问齐次线性方程组123123123(1)2402(3)0(1)0x x x x x x x x x λλλ--+=⎧⎪+-+=⎨⎪++-=⎩ 有非零解时,必须满足什么条件? 解:齐次线性方程组有非零解,当且仅当1242310111λλλ---=-. 又124111111231231012111112403(1)(3)λλλλλλλλλλλλ-----=--=--------+-(2)(3)0,λλλ=---=解得,0,λ=或2λ=,或3λ=.所以,当0,λ=或2λ=,或3λ=,齐次线性方程组有非零解.习题二 1. 1654127,2211210712A B A B -⎛⎫⎛⎫+=-=⎪ ⎪---⎝⎭⎝⎭2. 解:由A X B +=, 得020133.221X B A -⎛⎫⎪=-=-- ⎪ ⎪--⎝⎭ 3. 解:213220583221720,0564292290T AB A A B -⎛⎫⎛⎫ ⎪ ⎪-=--=- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ 4. 解:(1)()31,2,32132231101⎛⎫ ⎪=⨯+⨯+⨯= ⎪ ⎪⎝⎭ (2)()22411,212336-⎛⎫⎛⎫ ⎪ ⎪-=- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭, (3)12110162134021311491231042217--⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭(4) 131********78113413120510402⎛⎫⎪--⎛⎫⎛⎫⎪= ⎪ ⎪ ⎪---⎝⎭⎝⎭⎪⎝⎭5. 解: (1) 错误,令1101,,0111A B ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭则有AB BA ≠;(2)错误,令1101,,0111A B ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭则有222()2.A B A AB B +≠++(3) 错误,令1101,,0111A B ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭则可得22()().A B A B A B +-≠- (4) 错误, 设00,10A ⎛⎫= ⎪⎝⎭则有20A =,但0.A ≠(5)错误, 设10,00A ⎛⎫= ⎪⎝⎭则有2A A =,但.A I ≠6. 解:2221010(),0101AB A B -⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭7. 证明: 因为A 为对称矩阵,所以T A A =. 故(),T T T T T B AB B A B B AB ==因此,T B AB 是对称矩阵.8. 证明: 因为(),(),T T T T T T A A A A AA AA == 所以,T T A A AA 是对称矩阵.9. 解: 由32,A X B -=得43/211(3)15/2127/211/25/2X B A -⎛⎫ ⎪=--=- ⎪ ⎪⎝⎭. 10. 2cos 2sin 2,sin 2cos 2A θθθθ-⎛⎫=⎪⎝⎭cos sin sin cos n n n A n n θθθθ-⎛⎫= ⎪⎝⎭对n 作数学归纳法. 当2n =时,22222cos 2sin 2cos sin 2cos sin sin 2cos 22cos sin cos sin A θθθθθθθθθθθθ-⎛⎫--⎛⎫==⎪ ⎪-⎝⎭⎝⎭, 结论成立. 假设, 当n k =时, 结论成立, 即cos sin sin cos k k k A k k θθθθ-⎛⎫=⎪⎝⎭. 下证1n k =+结论成也立. 由归纳假设可得,1k A+=cos sin cos sin sin cos sin cos k k k A A k k θθθθθθθθ--⎛⎫⎛⎫=⎪⎪⎝⎭⎝⎭cos cos sin sin cos sin sin cos cos sin sin cos cos cos sin sin k k k k k k k k θθθθθθθθθθθθθθθθ---⎛⎫=⎪+-⎝⎭cos(1)sin(1)sin(1)cos(1)k k k k θθθθ+-+⎛⎫=⎪++⎝⎭因此,由归纳法可得cos sin sin cos n n n A n n θθθθ-⎛⎫=⎪⎝⎭. 11. (1)解: 由初等行变换可得,11103111031110311007221240012200122001043314500244000390001311118002150000000000A -------⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪----⎪ ⎪ ⎪ ⎪=→→→⎪ ⎪ ⎪ ⎪------ ⎪⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭⎝⎭(2)解: 由初等行变换可得,111111107125016016234000000⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-→-→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭12. 解法见第38页 例2.14. 13. (1)解:22222311111111111011111110111λλλλλλλλλλλλλλλλλλλ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪→→---⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭2221101100(1)(2)(1)(1)λλλλλλλλλλ⎛⎫ ⎪→--- ⎪ ⎪-+-+⎝⎭, 当2λ=-时, 方程组无解, 当1λ=时,方程组的增广矩阵为111100000000⎛⎫⎪ ⎪ ⎪⎝⎭因此方程组的解为12111010001k k --⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 12,k k 为任意常数, 当1λ≠, 且2λ≠-时,方程组有唯一解,221211(1)(1),,222x x x λλλλλλλ+++=-=-+=-+++(2)解:322111************213221λλλλλλλλλλλλ---⎛⎫⎛⎫ ⎪⎪--→-- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭ 112111210111011101(2)(1)2(1)00(1)(3)1λλλλλλλλλλλλλλλ--⎛⎫⎛⎫⎪ ⎪→-+--→--- ⎪ ⎪ ⎪ ⎪-------⎝⎭⎝⎭当1λ=时,方程组无解,方程组的增广矩阵为111100000000⎛⎫⎪ ⎪ ⎪⎝⎭因此方程组的解为12111010001k k --⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 12,k k 为任意常数,当3λ=时,方程组无解,当3λ≠且1λ≠时,方程组有唯一解,123411,,.33x x x λλλ-=-==-- 14. 解: 通过初等变换,可得A 的标准型矩阵为,17100010101002800105100015⎛⎫- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭15. 解析:通过初等行变换可将矩阵()A I 化为()()A I I B →,则1A B -= 例如(1)通过初等行变换,121012101052250101210121-⎛⎫⎛⎫⎛⎫→→ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭, 故 112522521--⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭相类似的方法可求的其余矩阵的逆矩阵,答案见教材第177页. 16. 解: 原线性方程组可写成123123122103430x x x ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,因此,11231123132210234301x x x -⎛⎫⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭17.(1) 由原矩阵方程可得121122111321182431511133X --⎛⎫-⎛⎫-⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪-- ⎪⎝⎭ ⎪-⎝⎭⎝⎭, (2) 由原矩阵方程可得1111143120112011104X --⎛⎫⎛⎫⎛⎫⎛⎫ ⎪== ⎪ ⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭(3)由原矩阵方程可得11010143100210100201001134001120010102X ----⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪=-=- ⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭18证明: 因为21()()k k I A I A A A I A I +-++++=-=, 所以12()()k I A I A A A --=++++19. 解: 由220A A I --=, 得()2A I AI -=,3(2)4A IA I I -+=-, 因此,1(),2A I A --=13(2)4A IA I --+=- 20. 证明: 由220A AB B ++=, 且B 可逆得,22[()],()A A B B E B A A B E ---+=-+=,因此,,A A B +可逆,且1212(),().A A B B A B B ----=-++=-21. 令11123,01121001B C ⎛⎫⎛⎫ ⎪== ⎪ ⎪⎝⎭ ⎪⎝⎭,则111311044,0111100122B C --⎛⎫-⎛⎫- ⎪ ⎪==-⎪ ⎪ ⎪ ⎪- ⎪⎝⎭⎝⎭, 因此1111130004411000002200001100001101B B A A A ----⎛⎫- ⎪ ⎪ ⎪-⎛⎫⎛⎫⎪=== ⎪⎪ ⎪⎝⎭⎝⎭- ⎪ ⎪- ⎪⎝⎭. 22. 证明: 若,B C 可逆,则有11000B C I CB --⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭, 所以A 可逆,且1110.0C A B---⎛⎫= ⎪⎝⎭ 反之,若A 可逆, 设其逆为XY Z V ⎛⎫⎪⎝⎭, 则, 000B X Y I o C Z V I ⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, 因此,,BZ I CY I ==, 因此,B C 可逆.23. 证明:用反证法. 假设A 是奇异矩阵,则由2A A =, 得211A A AA --=, 即A E =, 这与已知条件矛盾,所以A 是非奇异矩阵.习题三 1. (3,8,7)T β=2. 解: 设11223344,x x x x βαααα=+++ 即12341111121111,1111111111x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪=+++ ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 解得, 12345111,,,4444x x x x ===-=-, 因此12345111.4444βαααα=+--3. 解: 由3(),αβαβ-=+ 得117(1,,2,)222T αα=-=---. 4. 类似第2题的解法,可得1234243.βαααα=+-+ 5. (1) 解: 设1122330,x x x ααα++= 即1231111260133x x x ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 上面方程组只有零解,所以123,,ααα线性无关. (2) 因为111111111141406120612117024000A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-→-→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭, 所以秩(A)=2, 故123,,ααα线性相关. 6. 用反证法容易证明结论成立.7. 证明: (1) 设11220,m m x x x βββ+++= 则有11220,m m x x x ααα+++= 又因为12,,,m ααα线性无关, 所以120,m x x x ==== 因此12,,,,mβββ线性无关.(2) 若12,,,,m βββ线性相关, 则存在不全为零的数12,,,,m x x x 使得11220,m m x x x βββ+++= 因此11220,m m x x x ααα+++= 故而12,,,m ααα线性相关.8. 证明: ()⇒设112223331()()()0,k k k αααααα+++++= 整理得,131122233()()()0k k k k k k ααα+++++=,因为123,,ααα线性无关, 所以131223000k k k k k k +=⎧⎪+=⎨⎪+=⎩ 又因为1011100011≠, 所以上面方程组只有零解, 故122331,,αααααα+++线性无关.()⇐ 设1122330,k k k ααα++= 整理得,123121232312331111()()()()()()0,222k k k k k k k k k αααααα+-++-++++-++= 又因为122331,,αααααα+++线性无关, 所以123123123(000k k k k k k k k k +-=⎧⎪-++=⎨⎪-+=⎩ 解得上面方程组只有零解, 因此,123,,ααα线性无关. 证明: 9.(⇒)设1mi i i k αα==∑, 和10.mi i i l α==∑ 则,111()mmmi i i i i i i i i i k l k l αααα====+=+∑∑∑,又α的表达式唯一,因此,i i i k l k += 即0,i l = 故,12,,,m ααα 线性无关.(⇐)设11m m i i i i i i k l ααα====∑∑, 则1()0mi i i i k l α=-=∑,因为12,,,m ααα 线性无关,所以,,i i k l =故α的表达式唯一.10. 证明:因为12,,,m ααα 线性相关, 则存在不全为零的数12,,,m k k k 使得,10.mi i i k α==∑若有某个0i k =, 不妨设10k =,则有20,mi i i k α==∑ 又任一1m -向量都线性无关,因此230m k k k ====, 这与12,,,m k k k 不全为零矛盾,因此12,,,m k k k 全不为零, 命题得证. 11. 答案见教材178页. 12. 解: (1) 因为13213213221307107132076005A c c c ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-→--→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--+-+⎝⎭⎝⎭⎝⎭所以, 当50,c -+≠ 即5c ≠时,123,,ααα线性无关.(2 ) 当5c =时,123,,ααα线性相关, 且312111.77ααα=+ 13. 解: (1)因为234411231123112311232344050100501032613261050100000102110210120000A ------⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪-- ⎪ ⎪ ⎪ ⎪=→→→⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎪------⎝⎭⎝⎭⎝⎭⎝⎭因此,向量组1234,,,αααα的秩为2, 12,αα是一个极大线性无关组, 且314122,2.ααααα==-+用类似的方法可求(2), (3), 答案见教材.14. (1) 因为120131(,)1224αα⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭, 有一个二阶子式01331=--,所以秩(12,αα)=2, 即12,αα线性无关.(2) 容易计算124,,ααα线性无关. 15. 答案见教材.16. (1)任取()()12121,,,,,,,,,n n x x x y y y V k R ∈∈则有11220n n x y x y x y ++++++=,120n kx kx kx +++=所以()()()121211221,,,,,,,,,n n n n x x x y y y x y x y x y V +=+++∈,12121(,,,)(,,,)n n k x x x kx kx kx V =∈,因此,1V 是线性空间.(2) 任取()()12122,,,,,,,n n x x x y y y V ∈,则有11222n n x y x y x y ++++++=,因此, ()()()121211222,,,,,,,,,.n n n n x x x y y y x y x y x y V +=+++∉ 因此,2V 不是线性空间. 17. 证明: 因为111111101101211110011==-=--,所以123,,ααα线性无关, 即秩(123,,ααα)=3,故123,,ααα生成的子空间就是R .18. 因为 12311160,032-=-≠ 所以,秩(123,,ααα)=3,故123,,ααα是R 的一组基.令1112233k k k βααα=++, 即123(5,0,7)(1,1,0)(2,1,3)(3,1,2).k k k =-++ 因此123123232350327k k k k k k k k ++=⎧⎪-++=⎨⎪+=⎩, 解得,1232,3,1,k k k ===- 所以112323βααα=+-.19. 方法见例3.17. 20. 见教材答案21. 证明: 因为A 是正交阵, 所以21,1T A A A -==.又*,A A A E = 即*1A A A -=.因此,2**()T A A A E E ==, 故*A 是正交阵. 习题四 1. 解(1)1251251251320170171490214000378017000⎛⎫⎛⎫⎛⎫⎪ ⎪⎪---⎪ ⎪ ⎪→→⎪ ⎪ ⎪-- ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭, 所以,原方程组与下面方程组同解,1232325070x x x x x ++=⎧⎨-=⎩选取3x 作为自由未知量, 解得基础解系为1971-⎛⎫ ⎪ ⎪ ⎪⎝⎭, 因此, 方程组的解为1971k -⎛⎫ ⎪ ⎪ ⎪⎝⎭(2)313411311131159815980467113131340000------⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪--→--→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭, 选取选取34,x x 作为自由未知量, 解得基础解系为3/23/43/27/4,1001-⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭故方程组的同解为123/23/43/27/41001k k -⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(3)见教材答案 (4)见教材答案2. (1) 对增广矩阵做行初等变换得1121011210(,)211210*********/200031/2A b --⎛⎫⎛⎫ ⎪ ⎪=--→ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭解得特解为5/6101/6⎛⎫⎪ ⎪ ⎪ ⎪-⎝⎭, 对应的齐次线性方程组的基础解系为3510-⎛⎫ ⎪- ⎪ ⎪ ⎪⎝⎭, 因此方程组的同解为5/6101/6⎛⎫ ⎪ ⎪ ⎪ ⎪-⎝⎭+3510k -⎛⎫ ⎪- ⎪ ⎪ ⎪⎝⎭(2) 答案见教材 3. (略)4. 证明: 令i e 为n 阶单位矩阵的第i 列,即(0,0,,1,0,,0)Ti ie =, 则有0,1,2,,i Ae i n ==,因此12(,,,)0,n A e e e AI == 故0A =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数标准化作业答案
第一章:行列式
基础必做题:(一) 一、填空题:
1、3,n (n-1);
2、1222+++c b a ;
3、70,-14;
4、-3M ;
5、1 二、选择题:
1、C
2、D
3、D
4、A
5、C 三、计算题: 1、解:原式
11
110
01)1()1(1
11
11C 1
21
11++++=--⋅-⋅-+--⋅-++cd ad ab abcd d
c d
c b
a ()(展开按2、解:原式
3
1
323
121)
c b a ()
c b a (0
00)
c b a (0
111
)c b a (2cr r 2br r b
a c 2c
2c
2b a c b 2b
111
)c b a (2222++=++-++-++------++----++++++++提公因子b a c c
c
b a
c b b c b a c b a c b a r r r r
四、解:
)
)()()((0
000001)
(1
111
)
()(c x b x a x c b a x c
x b
c a
b b x a b a x
c b a c b a x x
c
b
c x b c b x c b a c b a x x f ---+++=------+++=+++=
因,0)(=x f 故,,,c b a x =或)(c b a ++-。
基础必做题(二) 一、填空题:
1、6,8;
2、0;
3、0,0;
4、4;
5、24 二、选择题:
1、D ;
2、C ;
3、A ;
4、A ;
5、A,B,D 三、1、解:原式
1
)
1)(1(1
0001011111)
1(0
1
1
1
1
1110111111
)
1(---=---=-=n n n n
2、解:原式
[]
[]
[]1
)
()1(0
0001)1(1
11
)1(--⋅-+=---+=-+=n b a b n a b
a b a b b b b n a a
b
b
b b a b b b b n a
四、解:0111144342414==
+++d
b
a
c b
d d b c c b a A A A A
五、解:
1
,0,1,202
81
142
1
02
,03
2
1
112
112
,20382141
101,20381142
02321321=======-==---==--==---=D
D z D
D y D
D x D D D D 故提高选做题: 一、证明: 证法1:
12
1
13(0)2
240,(1)22401
1
1
1
f f ====- 由罗尔定理知,至少存在一点ξ,使得()0,(0,1)f ξξ'=∈,故有一个小于1的正根。
证法2:
)(4)
2(2)
1(2211
)2(2)
1(202101
422
21)(2
2
2
2
2
x x x x x x x
x
x x x x x x
x
x
x x
x f -=+-++-=
-+-++-=-+=
且0)21(4)(=-='x x f ,故2
1=x 。
二、证明:
0)(1
0110
01000011
010*******
010000110001000102
2
22
2
≠++-=-=-==
-
==
c b a c
b c b a c
b c b a a c
b c b a a c b c b a a c b a c b a D
三、解: n b a D )(22-= ( 同书上15页例11类似) 四、解: ,,αβγ 是30x px q ++=的根,所以有
()()()0x x x αβγ---= (1)
将(1)式展开得,32()()0x x x αβγαββγαγαβγ-+++++-=(2) (2)式与原方程对应系数相等,得0αβγ++=。
又0αβγαβγ
αβγ
αβγ
γ
αβγαββ
γ
α
β
γ
α
++++++==。