DNA分子的结构和复制
高一生物必修二第三章DNA分子的结构和复制知识点总结

DNA分子的结构和复制、基因的本质一DNA分子的结构及特点1.DNA双螺旋模型构建者:沃森和克里克。
2.DNA双螺旋结构的形成3.DNA的双螺旋结构(1)DNA由两条脱氧核苷酸链组成,这两条链按反向平行的方式盘旋成双螺旋结构。
(2)外侧:脱氧核糖和磷酸交替连接,构成基本骨架。
(3)内侧:两条链上的碱基通过氢键连接成碱基对。
碱基互补配对遵循以下原则:A===T(两个氢键)、G≡C(三个氢键)。
类型决定因素多样性具n个碱基对的DNA具有4n种碱基的排列顺序特异性如每种DNA分子都有其特定的碱基的排列顺序稳定性磷酸与脱氧核糖交替连接形成的基本骨架不变,碱基之间互补配对形成氢键方式不变等补充:1. DNA分子中的数量关系(1)DNA分子中,脱氧核苷酸数∶脱氧核糖数∶磷酸数∶含氮碱基数=1∶1∶1∶1。
(2)配对的碱基,A与T之间形成2个氢键,G与C之间形成3个氢键,C—G 所占比例越大,氢键数目越多,DNA结构越稳定。
(3)每条脱氧核苷酸链上都只有一个游离的磷酸基团,因此DNA分子中含有2个游离的磷酸基团。
(4)对于真核细胞来说,染色体是基因的主要载体;线粒体和叶绿体中也存在基因。
(5)对于原核细胞来说,拟核中的DNA分子或者质粒DNA均是裸露的,并不与蛋白质一起构成染色体。
2. DNA中碱基的相关计算规律1.规律一:一个双链DNA分子中,A=T、C=G,则A+G=C+T,即嘌呤碱基总数等于嘧啶碱基总数。
2.规律二:在双链DNA分子中,A+TA+T+C+G=A1+T1A1+T1+C1+G1=A2+T2A2+T2+C2+G2。
3.规律三:在DNA双链中,一条单链的A1+G1T1+C1的值与其互补单链的A2+G2T2+C2的值互为倒数关系。
(不配对的碱基之和比例在两条单链中互为倒数) 提醒:在整个DNA分子中该比值等于1。
4.规律四:在DNA双链中,一条单链的A1+T1G1+C1的值,与该互补链的A2+T2G2+C2的值是相等的,也与整个DNA分子中的A+TG+C的值是相等的。
DNAA分子的结构和复制

答案:B
1.对基因本质的理解 (1)从结构上看 ①基因是DNA上一个个特定的片段,一个DNA分子上有许 多个基因。 ②基因与DNA结构一样,也是由四种脱氧核苷酸按一定顺 序排列而成的,也是双螺旋结构。
④双链DNA分子中,非互补碱基之和所占比例在两条互补 链中互为倒数。 设双链DNA分子中,一条链上: 则: =m,∴互补链上 = m,
简记为:“DNA两互补链中,不配对两碱基和的比值乘积
为1。”
2.DNA复制的有关计算 (1)DNA不论复制多少次,产生的子代DNA分子中含母链的 DNA分子数总是2个,含母链也总是2条。 (2)复制n代产生的子代DNA分子数为2n,产生的D的描述,错误的是(
)
A.基因在染色体上呈线性排列,染色体是基因的主要载体
B.遗传信息可以通过DNA复制传递给后代 C.互为等位基因的两个基因肯定具有相同的碱基数量 D.遗传信息是指DNA分子的脱氧核甘酸的排列顺序
[课堂笔记] 选 C
基因是具有遗传效应的DNA片段,是控
一、DNA分子的结构
1.DNA双螺旋结构特点 (1)两条链 反向平行 盘旋成双螺旋结构。 (2) 脱氧核糖 和磷酸 交替连接,排列在外侧,构成基本骨 架; 碱基 排列在内侧。 (3)两条链上的碱基通过 氢键 连接成碱基对。
2.碱基互补配对原则
A(腺嘌呤)一定与 T(胸腺嘧啶) 配对;G(鸟嘌呤)一定与
否定”等。
2.观察变量的确定
因变量与观察变量有时是不同的,对于因变量不能直接
观察的,应该通过相应手段转换,将因变量间接展现出 来,便于观察。如细胞分裂中染色体可以通过染色、借 助显微镜观察,呼吸强度可通过测定密闭装置中气压变 化来表现等。
DNA分子结构与复制及基因概念2012.12.12

例如:已知某个DNA分子中, A=32%,其中 一 条单链中A占该链总碱基数的比例为24%, 则其互补链中A 所占的比例应为 40% 。
第二类 DNA分子复制中的有关计算
1、某DNA分子经复制n次后,所得的子代DNA数为2n 2、由n对碱基对组成的DNA分子的种类有4n种(注意 在不考虑DNA分子中每种碱基比例关系的情况下)
DNA
记忆口诀:空间结构双螺旋,糖酸成链两相间,
碱基配对靠氢键,A-T、G-C必相连
7、DNA分子的特性(见导学70页)
1.稳定性:DNA分子两条长链上的脱氧核糖与 磷酸交替排列的顺序和两条链之间碱基互补配 对的方式是稳定不变的,从而导致DNA分子的稳 定性。
2.多样性:DNA分子中碱基相互配对的方式虽 然不变,但长链中的碱基对的排列顺序是千变 万化的。如一个最短的DNA分子大约有4000个碱 基对,这些碱基对可能的排列方式就有 44000≈102408种。实际上构成DNA分子的脱氧核苷 酸数目是成千上万的,其排列种类几乎是无限 的,这就构成了DNA分子的多样性。
中带
实验步骤: (1)大肠杆菌在含15N标记的NH4Cl培养基中繁殖 几代,使DNA双链充分标记15N。 (2)将含15N的大肠杆菌转移到14N标记的普通培 养基中培养。 (3)在不同时刻收集大肠杆菌并提取DNA(间隔 的时间为大肠杆菌繁殖一代所需时间)。 (4)将提取的DNA进行离心,记录离心后试管中 DNA位置。
三、一半关系
1、两类不互补的碱基之和占整个DNA分子中总碱基 数的一半。 则:A+G = T+C = A+C = T+G = 50% 2、整个DNA分子中某一种碱基所占总碱基的比例等于 该种碱基在每一单链中所占比例的和的一半。则: A/(G+C+A+T)=1/2[A1/(G+C+A+T)1+A2/(G+C+A+T)2]
DNA的结构与复制

DNA的结构与复制DNA(脱氧核糖核酸)是一种重要的生物分子,它负责存储和传递生物遗传信息。
在本文中,我们将探讨DNA的结构及其在细胞中的复制过程。
一、DNA的结构DNA由两条互补的链组成,每条链都由一系列核苷酸单元连接而成。
每个核苷酸单元由一个含有糖分子(脱氧核糖)的核苷酸碱基、一个磷酸基团和一个含有氮碱基的碱基组成。
DNA分子的两条链通过碱基间的氢键互相结合,形成一个双螺旋结构。
DNA的碱基组成包括腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)和胞嘧啶(C)。
这些碱基按照一定的规则组合,形成了遗传信息的密码。
二、DNA的复制DNA复制是指在细胞中生成与原有DNA完全相同的新DNA分子的过程。
它是细胞分裂和生物遗传的基础。
1. 需要的材料和酶DNA复制需要一些材料和酶来完成。
首先,需要一个DNA模板,它提供了复制过程中所需的遗传信息。
其次,需要四种核苷酸单元,即腺苷酸(A)、胸苷酸(T)、鸟苷酸(G)和胞苷酸(C),它们将与模板DNA上的互补碱基配对。
最后,还需要DNA聚合酶等酶类来催化反应。
2. 复制的步骤DNA复制可以分为三个步骤:解旋、复制和连接。
(1)解旋:复制开始时,DNA双螺旋结构被酶解开,形成两条单链。
(2)复制:在每条单链上,核苷酸单元与模板DNA上的互补碱基配对。
例如,A与T配对,G与C配对。
DNA聚合酶能够催化这些核苷酸单元的连接,形成新的DNA链。
(3)连接:新合成的DNA链与原有的DNA链连接在一起,形成完整的双螺旋结构。
这一过程由DNA连接酶完成。
三、DNA复制的意义DNA复制是细胞生命周期中一个重要的过程,它具有以下几个重要的意义:1. 遗传信息的传递:通过复制,细胞能够将遗传信息传递给下一代细胞。
这样,生物的遗传特征得以传承和保持。
2. 细胞分裂的基础:DNA复制是细胞分裂过程中的关键步骤。
在细胞分裂时,新生成的细胞需要获得与母细胞完全相同的DNA。
3. 突变和进化的基础:在DNA复制过程中,有时会发生错误。
DNA分子的结构和DNA分子的复制

运用同位素示踪技术及密度梯度离心方法进行了 DNA复制方式
的探索实验,实验内容及结果见下表。
组别 培养液中唯 一氮源
繁殖代数
1组
14NH Cl 4
2组
15NH Cl 4
3组
14NH Cl 4
4组
14NH Cl 4
培养产物
操作
多代 A
多代 B
一代
两代
B的子Ⅰ代
B的子Ⅱ代
1/2轻带 (14N/14N) 1/2中 带(15N/14N)
⑩子代DNA
2.时间:细胞有丝分裂的 ⑪间期 和减数 ⑫第一次 分 裂前的间期。 3.场所:主要是 ⑬细胞核 。
4.过程
5.结果:形成两个与 DNA分子。 6.意义:将
⑳亲代DNA分子完全相同的子代
遗传信息
从亲代传给了子代,从而保
持了遗传信息的连续性。
7.特点:(1)
边解旋边复制;(2)
半保留复制 。
解析: 本题考查对核酸的生物合成相关基础知识的理解能 力。DNA复制需要消耗能量;在逆转录过程中,以RNA为模板 合成DNA;真核生物由于DNA主要存在于细胞核中,所以DNA 的复制和转录主要发生在细胞核中。真核细胞染色体 DNA的复
制发生在分裂间期。
答案:D
3 . [2010· 北京高考, 30] 科学家以大肠杆菌为实验对象,
解旋酶作用于⑨氢键处。 每条链上相邻的脱氧核苷酸以磷酸二酯键相 连,限制酶、DNA连接酶和 DNA聚合酶均可作 用于磷酸二酯键。
先画出简图,根据碱基互补配对原则推知规律
规律1:在双链DNA分子中,互补碱基两两 相等,A=T,C=G,A+G=C+T,即嘌 呤碱基总数等于嘧啶碱基总数。
先画出简图,根据碱基互补配对原则推知规律
DNA分子的结构和复制

目前DNA分子广泛用于刑事案件侦破等方面
(1)把案犯在现场留下的毛发,血等进行分析作 为破案的证据,与DNA有关。 (2)DNA分子是亲子鉴定的主要证据之一
DNA指纹技术
DNA 指 纹 图
生物所以有遗传现象,是不遗传物质DNA的复制有关系的。
以亲代DNA分子为模板合成子代DNA分子的过程
对DNA分子复制的推测:
DNA分子中碱基配对时,为什么总是一个 嘌呤和一个嘧啶配对呢?
两者空间一大一小,适合DNA两条链间的距离。 A不T间两个氢键相连,G不C间三个氢键相连。
比较以下两个DNA谁更稳定
3、DNA的空间结构:
A C A A C
T G T T G
你注意到了吗?
两条长链上的脱 氧核糖不磷酸交 替排列的顺序是 稳定丌变的。 长链中的碱基对 的排列顺序是千 变万化的。
DNA复制有何重要的意义?
保持前后代遗传信息的连续性。
• 解旋酶作用于何结构? 氢键 • 为什么说DNA的复制是半保留复制? 新的DNA的两条链中一条是母链,一条是 新合成的子链 • 新合成的两条子链有何关系? 互补 • 为什么复制能准确无误地进行? DNA分子独特的双螺旋结构,为复制提供 了精确的模板;
G
A
C
T
G
C
你注意到了吗?
稳定性
DNA分子的特 异性就体现在特定 的碱基(对)排列 顺序中。
两条长链上的脱 氧核糖不磷酸交 替排列的顺序是 稳定丌变的。
长链中的碱基对 的排列顺序是千 多样性 变万化的。
三、DNA分子的结构特性
1)多样性:碱基对的排列顺序的千变万化,构成了 DNA分子的多样性。 在生物体内,一个最短DNA分子也大约有4000 个碱基对,碱基对有:A—T、T—A、G—C、C—G。 请同学们计算DNA分子有多少种? 4000
高中生物dna分子的结构和复制的发现史

高中生物dna分子的结构和复制的发现史
DNA(脱氧核糖核酸)是生物体内含有遗传信息的分子,它的结构和复制过程的发现历史是一个充满着科学探索和发现的故事。
以下是关于DN A分子结构和复制的发现史的简要概述:
1.DNA分子结构的发现:
1869年,瑞士生物化学家弗里德里希·米歇尔斯首次提出了核酸的概念。
1953年,詹姆斯·沃森和弗朗西斯·克里克在剑桥大学的实验室中提出了DNA的双螺旋结构模型。
这个模型是基于X射线衍射数据和罗莎琳德·富兰克林的工作。
1962年,詹姆斯·沃森、弗朗西斯·克里克和莫里斯·威尔金斯因他们在D NA结构研究中的贡献而获得了诺贝尔生理学或医学奖。
2.DNA复制的发现:
1958年,美国生物学家马修·梅塞尔森和弗兰克林·斯托尔提出了半保留复制的概念,即DNA分子的每条链作为模板用于合成新的DNA链。
1959年,美国生物学家亚瑟·科恩伯格和保罗·贝格在细菌中首次证明了DNA的复制是半保留的过程。
1960年代,研究人员进一步探索了DNA复制的详细机制,包括DNA 聚合酶等酶的作用。
这些科学家们的研究成果为我们揭示了DNA分子的结构和复制过程,为遗传学和分子生物学领域的发展奠定了基础。
他们的发现对于我们理解生命的遗传机制和DNA的重要性具有深远的影响。
生物必修二dna的复制知识点梳理

生物必修二dna的复制知识点梳理DNA复制的意义在于将遗传信息从亲代传给了子代,从而保证了遗传信息的连续性。
DNA分子的复制方式为半保留复制。
下面是店铺为大家整理的生物必修二dna的复制知识点,希望对大家有所帮助! 生物必修二dna的复制知识点梳理一、DNA分子的结构5种元素:C、H、O、N、4种脱氧核苷酸3个小分子:磷酸、脱氧核糖、含氮碱基2条脱氧核苷酸长链1种空间结构——双螺旋结构(沃森和克里克)双螺旋结构(1)由两条反向平行脱氧核苷酸长链盘旋而成得双螺旋结构(2)磷酸和脱氧核糖交替连接构成基本骨架(3)碱基排列在内侧,通过氢键相连,遵循碱基互补配对原则A=T(2个氢键) G=C(3个氢键) G、C含量丰富,DNA结构越稳定。
DNA分子中,脱氧核苷酸数=脱氧核糖数=磷酸数=含氮碱基数(1个磷酸可连接1个或2个脱氧核糖)二、互补配对原则及其推论(双链DNA分子)A=T G=C A+G=C+T=(A+G+C+T)嘌呤碱基总数=嘧啶碱基总数2个互补配对的碱基之和与另外两个互补配对碱基之和相等2个不互补配对的碱基之和占全部碱基数的一半三、DNA分子的复制1、复制时间:有丝分裂间期和减数第一次分裂间期2、复制场所:(只要有DNA得地方就有DNA复制和DNA转录)A 真核生物:细胞核(主要)、线粒体、叶绿体B 原核生物:拟核、细胞核(基质)C宿主细胞内3、复制条件:①模板:亲代DNA的两条链②原料:4种尤里的脱氧核苷酸③能量:ATP④酶:DNA解旋酶、RNA聚合酶4、复制特点:①边解旋边复制②半保留复制5、准确复制的原因①DNA分子独特的双螺旋结构提供精确模板②碱基互补配对原则保证复制准确进行6、复制的意义:讲遗传信息从亲代传给子代,保持了遗传信息的连续性四、DNA复制的有关计算1、1个DNA分子复制n次,形成2n 个DNA分子2、1个DNA分子含有某种碱基m个,则经复制n次,需游离的该种碱基为m(2n-1),第n次复制需游离的该种脱氧核苷算m﹡2n-13、一个含15N的DNA分子,放在含14N的培养基上培养n次,后代中含有15N的DNA分子有2个,后代中含有15N的DNA链有2条,含有14N的DNA分子有2n个,含14N的DNA链有2n+1-2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.DNA复制过程中的有关计算 (1)DNA的复制为半保留复制,一个DNA分子复制n次, 则①子代DNA分子数=2n个;②含有亲代DNA链 的子代DNA分子数=2个;③不含亲代链的子代DNA 分子数=(2n-2)个;④含有亲代DNA链的DNA分子数 占子代DNA分子数的2/2n(或1/2n-1)。 (2)消耗的脱氧核苷酸数 若一亲代DNA分子含有某种脱氧核苷酸m个,经过n次 复制需要消耗该脱氧核苷酸m·(2n-1)个。
(1)DNA分子是由两条长链组成的,并按反向平行 方 式盘旋成双螺旋 结构。
(2)DNA分子两条链上的核苷酸碱基由氢键 连接。
(3)DNA分子中碱基含量的卡伽夫法则:A=T,G=C,
但 A+T 的量不一定等于G+C 的量。
三、DNA的复制过程
1.探究DNA的复制过程所用方法:同位素示踪实验法 。
想一想
。
2.在DNA分子的一条单链中相邻的碱基A与T的连接是通
过
(D )
A.肽键
B.-磷酸-脱氧核糖-磷酸-
C.氢键
D.-脱氧核糖-磷酸-脱氧核糖-
解析 DNA分子单链上相邻碱基A与T的连接方式如图:
由此可知是通过“-脱氧核糖-磷酸-脱氧核糖-”连接 起来的。
考点二 DNA的复制 1.研究DNA复制的常用方法
结构 越稳定。 ②在DNA分子中,多数磷酸连接2个脱氧核糖,多数
脱 氧核糖连接2个磷酸。 ③在同一条脱氧核苷酸链中,相邻2个碱基之间通过脱 氧核糖和磷酸之间的化学键连接。
3.DNA分子的特点 (1)稳定性:使DNA双螺旋结构稳定的因素取决于: ①碱基对间的氢键;②疏水作用(或碱基的堆积力): 疏水的碱基彼此堆积,避开了水相,一般认为后者
内,
和
边解旋边复制 半保留复制
内也可有进丝行分。裂间期 减数第一次分裂
5 (M. ⅠD)前的N间期A 复 制 的 特 点 :
和
。
6.DNA复制的时间:
和
。
四、DNA半保留复制的观察
1.DNA复制的过程也是染色体形成两条染色单体 的过
程。
5-溴尿嘧啶脱氧核苷
2.将植物根尖分生组织放在含有
胸腺嘧啶脱
பைடு நூலகம்
的氧培核养苷液中进行培养,BrdU在结构上与
二、DNA的分子结构和特点
1.核苷酸是核苷 和磷酸 连接起来的结构单元,其中的
核苷又是 含氮碱基 与戊糖 结合形成的单位。
2.DNA分子的基本单位是脱氧核苷酸 ,脱是氧核苷酸
的多聚体。4种脱氧核苷酸分别是腺嘌呤脱氧核苷酸 、 鸟嘌呤脱氧核苷酸 胞、嘧啶脱氧核苷酸 胸腺嘧和啶
脱氧核苷酸
。
3.DNA分子结构的特点
(1)每个DNA片段中,游离的磷酸基团有
个。
(2)○、 、 之间的数量关系
。
(3)○和 之间的化学键为
,用
处理
可
切断,用
处理可连接。
(4) — 之间以
相连,可用解旋酶断裂,也可
断裂。
(5)每个脱氧核糖连接着
个磷酸,如在3号、5号
碳
原子上相连接。
(6)若碱基对为n,则氢键数为
之间,若已知A有
m
个,则氢键数为
2.DNA分子的立体结构层次——“点、线、面、体” (1)点:基本元素组成:C、H、O、N、P 5种元素。 基本组成单位:4种脱氧核苷酸,每个脱氧核苷酸由 3种小分子化合物构成,即:磷酸、脱氧核糖、含氮 碱基。其结构关系如图所示。
(2)线:脱氧核苷酸链,由多个脱氧核苷酸分子聚合 形
成脱氧核苷酸长链(如图)。
构建知识网络
高频考点突破
考点一 DNA分子的结构和特点 1.DNA与RNA在化学组成和分布上的区别
DNA特有
共有
RNA特有
脱氧核糖
磷酸 腺嘌呤(A)
核糖
胸腺嘧啶(T)
鸟嘌呤(G) 胞嘧啶(C)
尿嘧啶(U)
DNA是高等生物染色体的主要成分,主要存在 于细胞核中,但在线粒体、叶绿体等细胞器内也 有少量存在。RNA则存在于细胞核和细胞质中
同位素标记法和离心法。用同位素3H、15N或32P对 DNA进行标记,然后离心,分析试管中条带的位置。 2.复制的过程 (1)解旋:利用细胞提供的能量,在解旋酶的作用下, 两条螺旋的双链解开。 (2)合成子链:以亲代DNA分子的两条链为模板,在 DNA聚合酶等酶的作用下,利用细胞中游离的4种脱 氧核苷酸为原料,按碱基互补配对原则合成互补的子链。 (3)形成子代DNA:每条新链(子链)与其对应的模板链 (母链)盘绕成双螺旋结构。
对双螺旋的稳定性贡献最大。
(2)多样性:碱基对(或脱氧核苷酸对)排列顺序的千 变万化,构成了DNA的多样性→遗传信息的多样性
决定 生物多样性。
(3)特异性:每个DNA分子的碱基对的排列顺序是 特定的,构成了每个DNA分子的特异性决定 遗传信 息的特异性决定 生物的特异性。
对位训练 1. 下图是DNA的结构,回答下列问题:
怎样使大肠杆菌DNA的两条链都标记上
15N?
提示 将大肠杆菌放入以15NH4Cl为唯一氮源的培 养液中培养若干代,使大肠杆菌的DNA都被放射性
同位素15N标记。
2.DNA复制的方式:半保留复制
。
3 . D N 模板A 复原料 制能量 的 酶 条
件:
、
、细胞核、 。线粒体
4.D叶N绿A体复制的场所:主要在
(3)面:两条脱氧核苷酸链组成平面结构,特点如下: ①两条链反向平行。 ②外侧由脱氧核糖和磷酸交替排列构成基本骨架。 ③内侧由碱基通过氢键连接成碱基对,碱基对的形成 遵循碱基互补配对原则。 (4)体:两条脱氧核苷酸链盘旋成立体双螺旋结构。
特别提醒 ①配对的碱基,A与T之间形成2个氢键,G 与C之间形成3个氢键,G与C占比例越大,DNA分子
第19讲 DNA分子的结构和复制
必备知识梳理
回扣基础要点
一、DNA和RNA化学成分的比较
1.DNA和RNA在细胞内存在部位的差异
(1)DNA主要存在于 细胞核 中,但线在粒体
、
叶绿体 等细胞器内也有少量存在。
(2)RNA则存在于细胞核 和细胞质
中。
2.DNA和RNA在化学成分上的区别
(1)碱基不同:不同碱基分别是T 和U 。 (2)戊糖不同:不同戊糖分别是脱氧核糖 核和糖 。
类似,能够代替后者与腺嘌呤配对,掺入到
新合成的一条DNA链中。 3.色差很染浅色(浅体蓝出色现)的原因:含BrdU深的蓝脱氧核苷酸链着
色
,与母链的着色(
色)明显不同。
色差染色体的出现又一次证明了DNA的半保留复制。
练一练 下列关于DNA复制的叙述,正确的是(A ) A.在细胞有丝分裂间期,发生DNA复制 B.DNA通过一次复制后产生四个DNA分子 C.DNA双螺旋结构全部解链后,开始DNA的复制 D.单个脱氧核苷酸在DNA酶的作用下连接合成新的 子链