动态磁滞回线实验研究实验报告及数据处理

合集下载

磁滞回线实验报告

磁滞回线实验报告

磁滞回线实验报告磁滞回线实验报告引言:磁滞回线实验是物理学中的基础实验之一,通过观察和分析磁场强度与磁化强度之间的关系,可以了解材料的磁性特性。

本实验旨在探究不同材料的磁滞回线形状及其对磁场的响应。

实验原理:磁滞回线是指在磁场强度逐渐增加和减小的过程中,磁化强度发生变化的曲线。

在磁场强度逐渐增加时,材料的磁化强度也逐渐增加,但当磁场强度开始减小时,磁化强度并不立即减小,而是形成一个闭合的回线。

这种现象被称为磁滞回线。

实验步骤:1. 准备实验所需材料:磁铁、铁砂、铁钉、铜线、磁场强度计等。

2. 将铁砂填充至玻璃试管中,并用胶带封口,确保铁砂不会外溢。

3. 将铁钉缠绕铜线,形成线圈,并将线圈固定在试管外部。

4. 将磁场强度计放置在试管旁边,并将其连接至计算机。

5. 将磁铁靠近试管,使磁场强度计读数开始增加。

6. 缓慢移动磁铁,观察磁场强度计读数的变化,并记录下来。

7. 当磁场强度计读数达到最大值后,缓慢将磁铁远离试管,继续观察并记录读数的变化。

8. 根据记录的数据,绘制磁滞回线图。

实验结果及分析:通过实验观察和数据记录,我们得到了一条典型的磁滞回线。

在磁场强度逐渐增加时,磁化强度也随之增加,但在磁场强度减小时,磁化强度并不立即减小,而是形成一个闭合的回线。

根据实验结果,我们可以得出以下几点结论:1. 不同材料的磁滞回线形状不同。

铁砂的磁滞回线相对较宽,而铁钉的磁滞回线相对较窄。

这是因为不同材料的磁性特性不同,磁滞回线的形状取决于材料的磁化过程和磁化强度的变化。

2. 磁滞回线的形状与外加磁场的变化速度有关。

当外加磁场的变化速度较快时,磁滞回线的形状可能会发生变化,呈现出不规则的曲线。

这是因为快速变化的磁场会导致材料内部的磁畴无法充分调整,从而影响磁滞回线的形状。

3. 磁滞回线的形状与材料的磁饱和性有关。

磁饱和性是指材料在外加磁场作用下,磁化强度达到最大值后无法继续增加的能力。

当材料的磁饱和性较强时,磁滞回线的形状相对较窄,而当磁饱和性较弱时,磁滞回线的形状相对较宽。

磁滞回线实验报告精选全文完整版

磁滞回线实验报告精选全文完整版

〖实验三十〗用示波器观测动态磁滞回线〖目的要求〗1、学习使用示波器对动态磁滞回线进行观察和测量,了解磁感应强度和磁场强度的测量方法;2、学习应用RC 积分电路;3、了解铁磁性材料的动态磁化特性。

〖仪器用具〗动态磁滞回线测量仪(包括正弦波信号源、待测铁磁样品及绕组、积分电路所用的电阻和电容),双踪读出示波器,直流电源,数字多用表,滑线变阻器。

〖实验原理〗1、铁磁材料的磁化特性把物体放在外磁场H 中,物体就会被磁化,其内部产生磁场。

设其内部磁化强度为M ,磁感应强度为B ,可以定义磁化率m χ和相对磁导率r μ表征物质被磁化的难易程度:0m r M H B Hχμμ==物质的磁性按磁化率m χ可以分为抗磁性、顺磁性和铁磁性三种。

抗磁性物质的磁化率为负值,通常在5610~10--的量级,且几乎不随温度变化;顺磁性物质的磁化率通常为2410~10--之间,且随温度线性增大;而铁磁性物质的磁化率通常远大于1,且随温度增高而变小。

除了磁导率高以外,铁磁材料还具有特殊的磁化规律。

对一个处于磁中性状态(H=0且B=0)的铁磁材料加上由小变大的磁场H 进行磁化时,磁感应强度B 随H 的变化曲线称为起始磁化曲线,它大致分为三个阶段:①可逆磁化阶段,当H 很小的时候,B 随H 变化可逆,见图中OA 段,若减小H ,B 会沿AO返回至原点;②不可逆磁化阶段,见图中AS 段,若减小H ,B 不会沿SA 返回(比如当磁场从D 点的D H 减小到D H H -∆,再从D H H -∆增大到D H ,B-H 轨迹会是图中点线所示的回线样式);③饱和磁化阶段,见图中SC 段,在S 点材料已经被磁化至饱和状态,继续增大H ,磁化强度M 不再增大,由于0(M H)βμ=+,B 会随H 线性增大,但增量极小。

图中S H 和S B 表示M 刚刚达到饱和值时的H 和B 的值,分别称为饱和磁场强度和饱和磁感应强度。

如果将铁磁材料磁化到饱和状态(图中S 点)后再减小磁场H ,那么磁感应强度B 会随H 减小而减小,但并不沿起始磁化曲线SAO 减小,而会沿着SP 这条更缓慢的曲线减小。

动态磁滞回线实验报告

动态磁滞回线实验报告

动态磁滞回线实验报告
目录
1. 实验目的
1.1 实验原理
1.1.1 动态磁滞回线的概念
1.1.2 动态磁滞回线的影响因素
1.2 实验材料
1.3 实验步骤
1.3.1 准备工作
1.3.2 进行实验
1.4 实验结果分析
1.5 实验结论
实验目的
本实验旨在通过实验观察和测量动态磁滞回线,了解其特性及影响因素,从而加深对磁滞现象的理解。

实验原理
动态磁滞回线的概念
动态磁滞回线是指在磁场强度变化的作用下,磁介质磁化强度随着磁场的变化而发生的磁化-消磁过程。

它是磁介质对外加磁场响应的特征之一。

动态磁滞回线的影响因素
动态磁滞回线的形状和特性受到多种因素的影响,包括磁性材料的种类、外加磁场的频率和强度等。

实验材料
本实验所需材料包括磁性材料样品、磁场强度测量仪器、交变磁场发生器等。

实验步骤
准备工作
1. 将磁性材料样品置于磁场强度测量仪器中。

2. 调节交变磁场发生器的频率和强度参数。

进行实验
1. 开启磁场强度测量仪器和交变磁场发生器。

2. 调节磁场强度测量仪器测量动态磁化曲线。

3. 记录实验数据并进行分析。

实验结果分析
通过实验数据分析,可以观察到动态磁滞回线的形状、变化规律,进一步探讨其在不同条件下的变化趋势和影响因素。

实验结论
根据实验结果分析,可以得出关于动态磁滞回线特性和影响因素的结论,进一步加深对磁滞现象的理解和认识。

动态法测量磁滞回线和磁化曲线实验报告

动态法测量磁滞回线和磁化曲线实验报告

1. 动态法测量磁滞回线和磁化曲线实验报告2. 引言在材料科学和物理学领域,磁性材料的性质对于电磁器件和磁性储存系统的设计和性能起着至关重要的作用。

磁滞回线和磁化曲线是描述磁性材料特性的重要参数,它们对于磁性材料的应用和应力分析具有重要意义。

本实验旨在通过动态法测量磁滞回线和磁化曲线,研究和分析磁性材料的特性,以期能更深入地理解和应用这些理论知识。

3. 实验目的本次实验旨在探索磁性材料的磁滞回线和磁化曲线特性,通过动态法测量并分析磁性材料的磁滞回线和磁化曲线,了解磁性材料在外加磁场作用下的磁性响应规律,并对实验结果进行分析和讨论。

4. 实验原理磁滞回线是描述磁性材料在外加磁场变化时磁化状态的变化规律的曲线。

而磁化曲线则是描述磁性材料在外加磁场的作用下,磁化强度随磁场强度的变化关系。

通过动态法测量磁滞回线和磁化曲线,可以得到材料的磁滞回线图形和磁化曲线图形,并通过分析曲线的各项参数,揭示材料中的一些重要性质。

5. 实验步骤(1)准备工作:准备好磁性材料样品、测量设备和外加磁场设备。

(2)动态法测量磁滞回线:将样品置于外加磁场设备中,通过改变外加磁场的大小和方向,观察样品的磁化状态变化,并记录数据。

(3)动态法测量磁化曲线:在不同外加磁场下,测量样品的磁化强度,并记录数据。

(4)数据处理和分析:根据实验数据,绘制磁滞回线图和磁化曲线图,并分析曲线的各项参数,如剩磁、矫顽力等。

6. 实验结果通过动态法测量,我们得到了样品的磁滞回线和磁化曲线图形,并对实验数据进行了分析。

在磁滞回线图中,我们观察到样品在外加磁场作用下出现了明显的磁滞现象,磁滞回线的形状反映了样品的磁滞性能;在磁化曲线图中,我们观察到了样品在不同外加磁场下磁化强度的变化规律,通过对曲线参数的分析,我们可以得到材料的一些重要性能指标。

7. 实验分析通过对实验数据的分析,我们可以发现磁滞回线和磁化曲线反映了磁性材料在外加磁场作用下的磁性响应规律。

动态磁滞回线的测量实验报告

动态磁滞回线的测量实验报告

物理实验报告实验名称:动态磁滞回线的测量学院:安全与应急管理工程学院专业班级:安全1802学号:2018003964学生姓名:王朝春实验成绩实验预习题成绩:一、选择题1、当材料磁化的时候,磁感应强度B和磁场强度H之间的关系因为磁滞的原因,B和H并不是一一对应的关系。

但是当H足够大的时候,H继续增大,B 几乎不变此时用Bs表示,称为(A)。

A.饱和的磁感应强度B.剩余磁感应强度C.测量磁感应强度2、当磁化饱和之后,若去掉磁场,材料仍保留一定的磁性,此时用Br表示,称为(B)。

A.饱和的磁感应强度B.剩余磁感应强度C.测量磁感应强度3、加足够反向磁场,材料才完全退磁,使材料完全退磁所需的反向磁场,用Hc表示,称为(A)。

A.矫顽力B.临界磁场强度C.磁导率4、不断地(C)增加磁场,磁化曲线成为一闭合曲线,这个闭合曲线称为磁滞回线。

A.正向B.反向C.正向或反向交替5、示波器测量磁滞回线的原理中,Ux(x轴输入)与磁场强度H成(),Uy (y轴输入)与磁感应强度B成(A)。

A.正比;正比B.反比;反比C.正比;反比二、判断题1、静态测量的损耗较动态测量要大。

(×)2、测量动态磁滞回线的时候,铁磁材料中不仅有磁滞损耗,还有电流和磁场的变化造成的涡流电流产生的损耗。

(√)3、磁滞回线的形状和大小只与铁磁材料的种类有关。

(×)4、当正向磁场持续增加,铁磁质的磁化可达到反向饱和。

反向磁场减小到零,同样出现剩磁现象。

(√)5、软磁材料的磁滞回线窄,矫顽磁力小(一般小于120安/米),但它的磁导率和饱和磁感应强度大,容易磁化和去磁,故常用于制造电机、变压器和电磁铁。

(√)原始数据记录成绩:1.测饱和磁滞回线80V 的电流=0.62A 。

电源电压V=80V.记录饱和磁滞回线的Hm、Bm、Hc、Br:2.测量基本磁化曲线记录示波器CH1和CH2的增益分别为:50mv和0.1v;调节电源电压,使磁化电流从零逐渐增大,记录对应的磁滞回线顶点坐标值Bm 和Hm:其中,用到的公式:格数*增益=电压;lR N 11x U H =;S N C R 22c U B =;H B =μ;已知参数:F1C ;k 11;2;5003273.1;75;123.47600210221μ=Ω=Ω=Ω=====R R R cm S N cm l N ;测量量Hm Bm Hc Br -Hc -Br -Hc -Hm -Bm 示波器对应的格数17.511.58.88.39.08.59.217.812.2电压102030405060708090100Ux(小格) 4.0 5.0 5.6 6.58.010.513.517.021.026.0Uy(小格) 2.0 3.0 4.5 6.27.89.210.212.012.613.0Hm(A/m)25.4731.8335.6541.3850.9366.8585.95108.23133.69165.52Bm(T)0.0440.0660.0990.1370.1720.2030.2250.2650.2780.287相对磁导率rμ1374.722062.083093.124280.375373.906342.457029.818279.568685.728966.92实验报告正文成绩:一、实验名称:动态磁滞回线的测量二、实验目的:1、学习示波器测量动态磁滞回线的原理和方法2、学习磁性材料的基本磁化特征3、掌握磁化曲线和磁滞回线的测量方法4、进一步熟悉模拟示波器的使用三、实验仪器:交流电流表,示波器,螺绕环,电阻,电容,可调隔离变压器,若干导线。

用示波器测动态磁滞回线 实验数据及处理

用示波器测动态磁滞回线 实验数据及处理
动态法测量磁滞回线和磁化曲线实验是通过施加变化的磁场强度H,并测量相应的磁感应强度B来进行的。实验中,我们使用示波器来观察和记录磁滞回线的动态变化度B的测量值。这些测量值反映了材料在磁化过程中的行为,包括磁化的难易程度、磁饱和现象以及磁滞现象等。文档中的数据表格展示了在不同H值下测量得到的B值,这些数据是实验结果的直接体现,可以用于进一步的数据处理和分析,如绘制磁滞回线图和计算磁化曲线参数等。通过对这些数据的分析,我们可以更深入地了解材料的磁性能,为材料的应用和开发提供重要依据。

用示波器观测铁磁材料的动态磁滞回线(实验报告)

用示波器观测铁磁材料的动态磁滞回线(实验报告)
六、课后题
1、如果示波器上显示的磁滞回线是饱和磁滞回线,当调节X、Y电压灵敏度时,磁滞回线形状是否改变?饱和磁感应强度BS、饱和磁场强度HS、矫顽力、磁化曲线数值是否改变?
如图4,设L为环形样品的平均磁路长度,若在线圈N1中通过励磁电流I1时,此电流在样品内产生磁场,磁场强度H的大小根据安培环路定律:

即: I1
R1两端电压U1为: U1= I1R1= H (1)
由(1)式可知,若将电压U1输入示波器 X偏转板时,示波器上任一时刻电子束在X轴的偏转正比于磁场强度H。
为了追踪测量样品内的磁感应强度B,在截面面积为S的样品中缠绕副线圈N2,B可通过副线圈N2中由于磁通量变化而产生的感应电动势ε来测定。根据电磁感应定律:
2、显示和观察两种样品的交流信号下的磁滞回线图形(先测量样品1)
1)单调增加磁化电流,即缓慢顺时针调节幅度调节旋钮,使示波器显示的磁化曲线上B值增加缓慢,达到饱和。改变示波器上X、Y轴的灵敏度,调节R1、R2的大小,使示波器显示出典型美观的磁滞回线图形。
2)分别观测频率为25.0Hz、50.0Hz、100.0Hz、150.0Hz,不同频率下的磁滞回线形状(注意:由于铁磁材料的磁化状态与磁化历史有关,磁滞回线又与其起始端点的磁化状态有关。观测每一频率下的磁滞回线前,必须使幅度值降为零。否则,观测无意义)。
即:ε=- )
B=-
为了获得与B相关联的电压数值(因示波器只接收电压),在副线圈上串联一个电阻R2与电容C,电阻R2与电容C构成一个积分电路,此时ε=iR2+Uc(i为感生电流,Uc为积分电容两端电压),适当选择R2与电容C,使R2 则电容两端的电压Uc为:
Uc= (2)
由(2)式可知,若将电压Uc输入示波器的Y偏转板,示波器上任一时刻电子束在Y轴的偏转正比于样品中的磁感应强度B。

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告一、实验目的1、认识铁磁物质的磁化规律,比较两种典型的铁磁物质的动态磁化特性。

2、测定样品的基本磁化曲线,作μ-H 曲线。

3、测定样品的 Hc、Br、Bm 和(Hm,Bm)等参数。

4、了解磁滞回线的概念以及如何用示波器观察磁滞回线。

二、实验原理1、铁磁材料的磁化特性铁磁物质是一种性能特异,用途广泛的材料。

铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。

其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。

另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图 1 为铁磁物质的磁感应强度B 与磁化场强度 H 之间的关系曲线。

图 1 铁磁质 B H 曲线铁磁材料的磁化过程为:其未被磁化时的状态称为去磁状态,这时若在铁磁材料上加一个由小到大的磁化场 H,则铁磁材料内部的磁场强度 B 随 H 的增加而增加,开始时 B 的增加较慢,而后随着 H 的增加,B 的增加变快,再继续增加 H 时,B 的增加又变慢,当 H 增加到 Hm 时,B 达到饱和值Bm 。

从图中可以看出,B 和H 的关系不是线性的,而是非线性的。

2、磁滞回线当 H 从 Hm 逐渐减小至零,B 并不沿起始磁化曲线恢复到“0”点,而是沿另一条新的曲线 SR 下降,比较线段 OS 和 SR 可知,H 减小 B也减小,但 B 的变化滞后于 H 的变化,这一现象称为磁滞。

当 H = 0 时,B = Br,Br 称为剩余磁感应强度。

要使 B 减到 0,必须加一反向磁场 Hc,Hc 称为矫顽力。

若再使反向磁场逐渐增加到 Hm,B 就沿图 1 中 S'R'C'变化,继而在 Hm 到 0 时,B 又沿 S'C 变化。

当 H 在 0 和 Hm 之间反复变化时,就得到一系列闭合的 B H 曲线,称为磁滞回线。

3、基本磁化曲线对于同一铁磁材料,选择不同的最大磁化电流 I,可得到不同的磁滞回线,将各条磁滞回线的顶点连接起来,所得到的曲线称为基本磁化曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档