湖北省荆州市沙市第五中学高中数学 1.1.1变化率问题教案 新人教版选修2-2

合集下载

高中数学选修2-2人教A教案导学案1.1.1变化率问题教案

高中数学选修2-2人教A教案导学案1.1.1变化率问题教案

§1.1.1变化率问题教学目标1.理解平均变化率的概念; 2.了解平均变化率的几何意义;3.会求函数在某点处附近的平均变化率教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一.创设情景为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线;三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。

导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。

导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. 二.新课讲授 (一)问题提出 问题1 气球膨胀率我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?⏹ 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是334)(r r V π=⏹ 如果将半径r 表示为体积V 的函数,那么343)(πV V r = 分析: 343)(πV V r =, ⑴ 当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈- 气球的平均膨胀率为)/(62.001)0()1(L dm r r ≈--⑵ 当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈- 气球的平均膨胀率为)/(16.012)1()2(L dm r r ≈--可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少?hto1212)()(V V V r V r --问题2 高台跳水在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系h (t )= -4.9t 2+6.5t +10.如何用运动员在某些时间段内的平均速v 度粗略地描述其运动状态?思考计算:5.00≤≤t 和21≤≤t 的平均速度v在5.00≤≤t 这段时间里,)/(05.405.0)0()5.0(s m h h v =--=;在21≤≤t 这段时间里,)/(2.812)1()2(s m h h v -=--=探究:计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题:⑴运动员在这段时间内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h (t )= -4.9t 2+6.5t +10的图像,结合图形可知,)0()4965(h h =, 所以)/(004965)0()4965(m s h h v =--=, 虽然运动员在49650≤≤t 这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态. (二)平均变化率概念: 1.上述问题中的变化率可用式子 1212)()(x x x f x f --表示, 称为函数f (x )从x 1到x 2的平均变化率2.若设12x x x -=∆, )()(12x f x f f -=∆ (这里x ∆看作是对于x 1的一个“增量”可用x 1+x ∆代替x 2,同样)()(12x f x f y f -=∆=∆)3. 则平均变化率为=∆∆=∆∆xfx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212思考:观察函数f (x )的图象 平均变化率=∆∆x f1212)()(x x x f x f --表示什么?直线AB 的斜率三.典例分析例1.已知函数f (x )=x x +-2的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-,则=∆∆xy. 解:)1()1(22x x y ∆+-+∆+--=∆+-,∴x xx x x y ∆-=∆-∆+-+∆+--=∆∆32)1()1(2 例2. 求2x y =在0x x =附近的平均变化率。

高中数学选修2-2教学设计10:1.1.1 变化率问题教案

高中数学选修2-2教学设计10:1.1.1 变化率问题教案

1.1.1 变化率问题教学目标 1.了解导数概念的实际背景.2.会求函数在某一点附近的平均变化率.教学导入知识点一函数的平均变化率假设如图是一座山的剖面示意图,并建立如图所示平面直角坐标系.A是出发点,H是山顶.爬山路线用函数y=f(x)表示.自变量x表示某旅游者的水平位置,函数值y=f(x)表示此时旅游者所在的高度.设点A的坐标为(x1,y1),点B的坐标为(x2,y2).思考1若旅游者从点A爬到点B,自变量x和函数值y的改变量分别是多少?[答案]自变量x的改变量为x2-x1,记作Δx,函数值的改变量为y2-y1,记作Δy.思考2怎样用数量刻画弯曲山路的陡峭程度?[答案]对山路AB来说,用ΔyΔx=y2-y1x2-x1可近似地刻画其陡峭程度.梳理(1):ΔyΔx=f(x2)-f(x1)x2-x1.(2) 函数y=f(x)从x1到x2的平均变化率定义式实质:函数值的增量与自变量的增量之比.(3)作用:刻画函数值在区间[x1,x2]上变化的快慢.(4)几何意义:已知P1(x1,f(x1)),P2(x2,f(x2))是函数y=f(x)的图象上两点,则平均变化率表示割线P1P2的斜率Δy Δx =f (x 2)-f (x 1)x 2-x 1. 知识点二 瞬时速度思考1 物体的路程s 与时间t 的关系是s (t )=5t 2.试求物体在[1,1+Δt ]这段时间内的平均速度.[答案] Δs =5(1+Δt )2-5=10Δt +5(Δt )2,v =Δs Δt=10+5Δt . 思考2 当Δt 趋近于0时,思考1中的平均速度趋近于多少?怎样理解这一速度?[答案] 当Δt 趋近于0时,Δs Δt趋近于10,这时的平均速度即为当t =1时的瞬时速度. 梳理 瞬时速度(1)物体在某一时刻的速度称为瞬时速度.(2)一般地,设物体的运动规律是s =s (t ),则物体在t 0到t 0+Δt 这段时间内的平均速度为Δs Δt=s (t 0+Δt )-s (t 0)Δt .如果Δt 无限趋近于0时,Δs Δt无限趋近于某个常数v ,我们就说当Δt 趋近于0时,Δs Δt的极限是v ,这时v 就是物体在时刻t =t 0时的瞬时速度,即瞬时速度v =lim Δt →0 Δs Δt = lim Δt →0 s (t 0+Δt )-s (t 0)Δt . 题型探究类型一 函数的平均变化率 命题角度1 求函数的平均变化率例1 求函数y =f (x )=x 2在x =1,2,3附近的平均变化率,取Δx 都为13,哪一点附近的平均变化率最大?解 在x =1附近的平均变化率为k 1=f (1+Δx )-f (1)Δx =(1+Δx )2-1Δx=2+Δx ;在x =2附近的平均变化率为k 2=f (2+Δx )-f (2)Δx =(2+Δx )2-22Δx=4+Δx ;在x =3附近的平均变化率为k 3=f (3+Δx )-f (3)Δx =(3+Δx )2-32Δx=6+Δx .当Δx =13时,k 1=2+13=73, k 2=4+13=133,k 3=6+13=193. 由于k 1<k 2<k 3,所以在x =3附近的平均变化率最大.反思与感悟 求平均变化率的主要步骤(1)先计算函数值的改变量Δy =f (x 2)-f (x 1).(2)再计算自变量的改变量Δx =x 2-x 1.(3)得平均变化率Δy Δx =f (x 2)-f (x 1)x 2-x 1. 跟踪训练1 (1)已知函数y =f (x )=x 2+2x -5的图象上的一点A (-1,-6)及邻近一点B (-1+Δx ,-6+Δy ),则Δy Δx=________. (2)如图所示是函数y =f (x )的图象,则函数f (x )在区间[-1,1]上的平均变化率为________;函数f (x )在区间[0,2]上的平均变化率为________.[答案](1)Δx (2)12 34[解析](1)Δy Δx =f (-1+Δx )-f (-1)Δx=(-1+Δx )2+2(-1+Δx )-5-(-6)Δx=Δx .(2)函数f (x )在区间[-1,1]上的平均变化率为f (1)-f (-1)1-(-1)=2-12=12. 由函数f (x )的图象知,f (x )=⎩⎨⎧ x +32,-1≤x ≤1,x +1,1<x ≤3.所以函数f (x )在区间[0,2]上的平均变化率为f (2)-f (0)2-0=3-322=34. 命题角度2 平均变化率的几何意义例2 过曲线y =f (x )=x 2-x 上的两点P (1,0)和Q (1+Δx ,Δy )作曲线的割线,已知割线PQ 的斜率为2,求Δx 的值.解 割线PQ 的斜率即为函数f (x )从1到1+Δx 的平均变化率Δy Δx. ∵Δy =f (1+Δx )-f (1)=(1+Δx )2-(1+Δx )-(12-1)=Δx +(Δx )2,∴割线PQ 的斜率k =Δy Δx=1+Δx . 又∵割线PQ 的斜率为2,∴1+Δx =2,∴Δx =1.反思与感悟 函数y =f (x )从x 1到x 2的平均变化率的实质是函数y =f (x )图象上两点P 1(x 1,f (x 1)),P 2(x 2,f (x 2))连线P 1P 2的斜率,即12p p k =Δy Δx =f (x 2)-f (x 1)x 2-x 1. 跟踪训练2 甲、乙两人走过的路程s 1(t ),s 2(t )与时间t 的关系如图所示,则在[0,t 0]这个时间段内,甲、乙两人的平均速度v 甲,v 乙的关系是( )A .v 甲>v 乙B .v 甲<v 乙C .v 甲=v 乙D .大小关系不确定[答案]B[解析]设直线AC ,BC 的斜率分别为k AC ,k BC ,由平均变化率的几何意义知,s 1(t )在[0,t 0]上的平均变化率v 甲=k AC ,s 2(t )在[0,t 0]上的平均变化率v 乙=k BC .因为k AC <k BC ,所以v 甲<v 乙. 类型二 求瞬时速度例3 某物体的运动路程s (单位:m)与时间t (单位:s)的关系可用函数s (t )=t 2+t +1表示,求物体在t =1 s 时的瞬时速度.解 ∵Δs Δt =s (1+Δt )-s (1)Δt=(1+Δt )2+(1+Δt )+1-(12+1+1)Δt=3+Δt ,∴lim Δt →0 Δs Δt =lim Δt →0(3+Δt )=3. ∴物体在t =1处的瞬时变化率为3.即物体在t =1 s 时的瞬时速度为3 m/s.引申探究1.若例3中的条件不变,试求物体的初速度.解 求物体的初速度,即求物体在t =0时的瞬时速度.∵Δs Δt =s (0+Δt )-s (0)Δt=(0+Δt )2+(0+Δt )+1-1Δt=1+Δt ,∴lim Δt →0(1+Δt )=1. ∴物体在t =0时的瞬时变化率为1,即物体的初速度为1 m/s.2.若例3中的条件不变,试问物体在哪一时刻的瞬时速度为9 m/s.解 设物体在t 0时刻的瞬时速度为9 m/s.又Δs Δt =s (t 0+Δt )-s (t 0)Δt=(2t 0+1)+Δt . lim Δt →0 Δs Δt =lim Δt →0(2t 0+1+Δt )=2t 0+1. 则2t 0+1=9,∴t 0=4.则物体在4 s 时的瞬时速度为9 m/s.反思与感悟 (1)不能将物体的瞬时速度转化为函数的瞬时变化率是导致无从下手解答本类题的常见错误.(2)求运动物体瞬时速度的三个步骤①求时间改变量Δt 和位移改变量Δs =s (t 0+Δt )-s (t 0);②求平均速度v =Δs Δt; ③求瞬时速度,当Δt 无限趋近于0时,Δs Δt无限趋近于的常数v 即为瞬时速度,即v =lim Δt →0 Δs Δt . 跟踪训练3 一质点M 按运动方程s (t )=at 2+1做直线运动(位移单位:m ,时间单位:s),若质点M 在t =2 s 时的瞬时速度为8 m/s ,求常数a 的值.解 质点M 在t =2时的瞬时速度即为函数在t =2处的瞬时变化率.∵质点M 在t =2附近的平均变化率为Δs Δt =s (2+Δt )-s (2)Δt =a (2+Δt )2-4a Δt=4a +a Δt , ∴lim Δt →0 Δs Δt=4a =8,即a =2. 当堂检测1.设函数y =f (x )=x 2-1,当自变量x 由1变为1.1时,函数的平均变化率为( )A .2.1B .1.1C .2D .0[答案]A[解析]Δy Δx =f (1.1)-f (1)1.1-1=0.210.1=2.1. 2.如图,函数y =f (x )在[x 1,x 2],[x 2,x 3],[x 3,x 4]这几个区间上,平均变化率最大的一个区间是________.[答案][x 3,x 4][解析]由平均变化率的定义可知,函数y =f (x )在区间[x 1,x 2],[x 2,x 3],[x 3,x 4]上平均变化率分别为f (x 2)-f (x 1)x 2-x 1,f (x 3)-f (x 2)x 3-x 2,f (x 4)-f (x 3)x 4-x 3,结合图象可以发现函数y =f (x )的平均变化率最大的一个区间是[x 3,x 4].3.一物体的运动方程为s (t )=7t 2-13t +8,则t 0=________时该物体的瞬时速度为1.[答案]1[解析]lim Δt →0 s (t 0+Δt )-s (t 0)Δt=lim Δt →0 7(t 0+Δt )2-13(t 0+Δt )+8-(7t 20-13t 0+8)Δt=lim Δt →0(14t 0-13+7Δt ) =14t 0-13=1,得t 0=1.。

湖北省荆州市沙市第五中学人教版高中数学教案选修2-21-1-1变化率问题

湖北省荆州市沙市第五中学人教版高中数学教案选修2-21-1-1变化率问题

学科: 数学学段:高二年级课题: §1.1.1变化率问题教学目标:1. 理解平均变化率的概念; 2.了解平均变化率的几何意义;3.会求函数在某点处附近的平均变化率教学重点: 平均变化率的概念、函数在某点处附近的平均变化率; 教学难点::平均变化率的概念.教学过程与设计:详细过程一.创设情景 为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线;三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。

导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。

导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. 二.新课讲授 (一)问题提出 问题1 气球膨胀率我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?⏹ 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是334)(r r V π=⏹ 如果将半径r 表示为体积V 的函数,那么343)(πV V r = 分析: 343)(πV V r =, ⑴ 当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈- 气球的平均膨胀率为)/(62.001)0()1(L dm r r ≈--⑵ 当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈-新建教案hto五.回顾总结1.平均变化率的概念2.函数在某点处附近的平均变化率六.布置作业。

最新人教A版选修2-2高中数学1.1变化率问题1.2导数的概念教学设计

最新人教A版选修2-2高中数学1.1变化率问题1.2导数的概念教学设计

§3.1.1 变化率问题
§3.1.2 导数的概念
【学情分析】:
本节的中心任务是形成导数的概念.概念形成划分为两个层次:
1、借助气球膨胀率问题,了解变化率的含义;借助高台跳水问题,明确瞬时速度的含义.
2、以速度模型为出发点,结合其他实例抽象出导数概念,使学生认识到导数就是瞬时变化率,了解导数内涵.
学生对导数概念的理解会有些困难,所以要对课本上的两个问题进行深入的探讨,以便顺利地使学生形成导数的概念。

【教学目标】:
知道了物体的运动规律,用极限来定义物体的瞬时速度,学会求物体的瞬时速度掌握导数的定义.
【教学重点】:
理解掌握物体的瞬时速度的意义和导数的定义.
【教学难点】:
理解掌握物体的瞬时速度的意义和导数的定义.
【教学过程设计】:
x
x f
x
x
f
x
∆-

+ =
)
(
)
(
)
1
1
1
?。

变化率问题(1)课时教学设计-高中数学人教版选择性必修第二册

变化率问题(1)课时教学设计-高中数学人教版选择性必修第二册

5.1.1 变化率问题(1)(一)教学内容通过实例分析,经历由平均速度过渡到瞬时速度的过程,体会求瞬时速度的一般方法.(二)教学目标通过实例分析,理解平均速度与瞬时速度的概念及关系,经历由平均速度过渡到瞬时速度的过程,不断渗透"用运动变化的观点研究问题""逼近(极限)"等微积分的重要思想。

引导学生发现求瞬时速度的一般方法,发展学生的数学抽象核心素养.(三)教学重点及难点1.重点理解平均速度、瞬时速度的概念及算法.2.难点平均速度与瞬时速度.(四)教学过程问题1:学生阅读教材本章引言,简要回答本章的内容。

师生活动:(1)学生阅读课本,教师适时引导.(2)在教师的引导下,学生应明确以下内容:一是微积分是数学家的创造。

二是微积分的创立主要源自四个科学问题;三是导数是微积分的主要内容;四是导数主要是在定量的刻画函数局部的变化。

同时,学生还要注意在本章的学习过程中,还会接触到一个重要的数学思想和数学运算——极限。

设计意图:通过章引言的学习,让学生明晰下一阶段的学习目标,初步构建学习内容的思维框架.为发展学生数学抽象、数学运算、数学建模的核心素养埋下伏笔.问题2:请同学们回忆一下初中及高一学习过的函数的单调性的相关知识?师生活动:(1)大部分的学生应该都能够说出一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数的单调性。

(2)一部分学生能指出底数对指数函数、对数函数单调性的影响,需要类讨论。

教师应适时指出这种影响在一次函数、二次函数、反例函数中也是存在的。

同学们却有意无意只是在指数函数、对数函数中才意识到这个问题的存在。

(3)少数学生还能够强调指出反比例函数、正切函数的分段单调性。

(4)教师要密切关注,争取能在学生发现以下反馈:在必修第一册中,我们研究了函数的单调性,并利用函数单调性等知识,定性的研究了一次函数、指数函数、对数函数增长速度的差异,知道“对数增长”是越来越慢的,“指数爆炸”比“直线上升”快得多.(5)追问:在前面这些学习的基础上,能否进一步精确定量的刻画变化速度的快慢呢?设计意图:通过对函数学习的回顾,帮助学生发现和感受不同函数变化快慢的问题,同时引入新课.问题3:在一次高台跳水运动中,某运动员在运动过程中的重心相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系2() 4.9 4.811h t t t =-++.现在的问题是:如何描述运动员从起跳到入水的过程中运动的快慢程度呢?师生活动:(1)学生可能会从多个角度回答。

人教A版选修2-2 第一章 第一节 1.1.1变化率问题 教案

人教A版选修2-2   第一章 第一节 1.1.1变化率问题  教案

§1.1.1变化率问题教学目标:1.理解平均变化率的概念;2.了解平均变化率的几何意义;3.会求函数在某点处附近的平均变化率教学重点:平均变化率的概念、函数在某点处附近的平均变化率;教学难点:平均变化率的概念.教学过程设计(一)、情景引入,激发兴趣。

【教师引入】:“生活中存在大量变化快慢的量,如我国国内生产总值在不同年内的增长、某一股票在某一时间内的价格、去年上海商品房在不同月内的价格(幻灯片展示)。

如何从数学的角度解释量的变化快慢问题呢?这节课我们一起学习与变化率有关的问题。

板书课题《变化率问题》【教师过渡】:“为解决这一问题,我们先研究一些生活中的具体实例”(二)、探究新知,揭示概念实例一:气温的变化问题现有南京市某年3月18日-4月20日每天气温最高温度统计图:(注:3月18日为第一天)1、你从图中获得了哪些信息?2 、在“4月18日到20日”,该地市民普遍感觉“气温骤增”,而在“3月18日到4月18日”却没有这样的感觉,这是什么原因呢?3、怎样从数学的角度描述“气温变化的快慢程度”呢?师生讨论,教师板书总结:分析:这一问题中,存在两个变量“时间”和“气温”,当时间从1到32,气温从3.5o C 增加到18.6o C ,气温平均变化当时间从32到34,气温从18.6o C 增加到33.4o C ,气温平均变化因为7.4>0.5, 所以,从32日到34日,气温变化的更快一些。

【教师过渡】:“18.6 3.50.5321-≈- 表示时间从“3月18日到4月18日”时,气温的平均变化率。

提出问题:先说一说“平均”的含义,再说一说你对 “气温平均变化率”的理解。

实例二:气球的平均膨胀率问题。

【提出问题】:回忆吹气球的过程,随着气球内空气容量的增加,气球半径增长的快慢相同吗? 学生思考回答。

假设每次吹入气球内的空气容量是相等的,如何从数学的角度解释“随着气球内空气容量的增加,气球半径增长的越来越慢”这一现象呢?思考:1、 这一问题与“气温的变化问题”有哪些相同的地方?你打算怎样做呢?2、如何从数学的角度解释“随着气球内空气容量的增加,气球半径增长的越来越慢”这一现象呢?先独立思考,再在小组内交流你的想法。

人教版高中数学选修2-2:1.1.1变化率问题讲案(教师用)

人教版高中数学选修2-2:1.1.1变化率问题讲案(教师用)

课题: 1.1.1 变化率问题【学习目标】(1)了解函数的平均变化率的概念,会求函数的平均变化率.(2)知道函数的瞬时变化率的概念.(3)掌握与理解导数的定义和物理意义第一环节:导入学习1 函数的平均变化率 Δy Δx =f (x 2)-f (x 1)x 2-x 1注意:①平均变化率Δy Δx =f (x 2)-f (x 1)x 2-x 1=f (x 1+Δx )-f (x 1)Δx ,式子中Δx 、Δy 的值可正、可负,但Δx 的值不能为0,而Δy 的值可以为零,若函数f (x )为常数函数,此时Δy =0.②平均变化率的几何意义是函数曲线上两点割线的斜率,即Δy Δx =f (x 2)-f (x 1)x 2-x 1=k AB ,其中点A (x 1,f (x 1)),点B (x 2,f (x 2)),如图.2 求函数f (x )的平均变化率的步骤(1)求函数增量:Δy =f (x 2)-f (x 1) (2)求平均变化率:Δy Δx =f (x 2)-f (x 1)x 2-x 13 平均速度重点1 理解函数的平均变化率的概念和几何意义.重点2 会求函数的平均变化率. 重点3 求物体运动的平均速度的步骤:(1)求位移增量Δs =s (t +Δt )-s (t );(2)求平均速度v =Δs Δt ;(3)求错误!未指定书签。

ΔsΔt=错误!未指定书签。

s (t +Δt )-s (t )Δt;错误!未指定书签。

.第二环节:自主学习1(1)计算函数f (x )=x 2从x =1到x =1+Δx 的平均变化率,其中Δx 的值为①2②1③0.1④0.01. (2)思考:当|Δx |越来越小时,函数f (x )在区间[1,1+Δx ]上的平均变化率有怎样的变化趋势?解:(1)∵Δy =f (1+Δx )-f (1)=(1+Δx )2-12=(Δx )2+2Δx ,∴Δy Δx=(Δx )2+2Δx Δx =Δx +2.①当Δx =2时,Δy Δx=Δx +2=4;②当Δx =1时,ΔyΔx =Δx +2=3;③当Δx =0.1时,Δy Δx =Δx +2=2.1;④当Δx =0.01时,ΔyΔx=Δx +2=2.01.(2)当|Δx |越来越小时,函数f (x )在区间[1,1+Δx ]上的平均变化率逐渐变小,并接近于2. 2:在高台跳水运动中,运动员相对于水面的高度h(单位:米)与起跳后的时间t (单位秒)存在函数关系h(t)=-4.9t2+6.5t+10 请计算: 解二 深入学习3两工厂经过治理,污水的排放量(W )与时间(t )的关系如图2所示,试指出哪一个厂治污效果较好?图2【分析】 比较相同时间Δt 内,两厂污水排放量的平均变化率的大小便知结果.【解】 在t 0处,虽然W 1(t 0)=W 2(t 0),但W 1(t 0-Δt )-W 1(t 0)Δt ≥W 2(t 0-Δt )-W 2(t 0)Δt,所以说,在单位时间里,工厂甲比工厂乙的平均治污率大,因此工厂甲比工厂乙略好一筹.第三环节:互助学习 第四环节:展示学习第五环节:精讲学习 求平均变化率的主要步骤:(1)先计算函数值的改变量Δy =f (x 2)-f (x 1)(2)再计算自变量的改变量Δx =x 2-x 1.( 3)得平均变化率Δy Δx =f (x 2)-f (x 1)x 2-x 100.52:t t v ≤≤≤≤和1时的平均速度00.5(0.5)(0)4.05(/)0.502(2)(1)8.2(/)21t h h v m s t h h v m s ≤≤-==-≤≤-==--在这段时间里,在1这段时间里,1.△x 是一个整体符号,而不是△与x 相乘;式子中△x 、△ y 的值可正、可负,但△x 值不能为0,△y 的值可以为0;因此,平均变化率可正,可负,也可为零;2.若函数f(x)为常函数时,△y=0 3.变式x x f x x f ∆-∆+=)()(111212)()(x x x f x f x y --=∆∆。

高中数学第二章变化率与导数1.1变化的快慢与变化率(第一课时)教案新人教版选修2

高中数学第二章变化率与导数1.1变化的快慢与变化率(第一课时)教案新人教版选修2

第二章变化率与导数1.1变化的快慢与变化率(第一课时)一、学习目标:1、理解函数平均变化率的概念;2、会求确定函数在某个区间上的平均变化率,并能根据函数的平均变化率判断函数在某区间上变化的快慢.二、学习重点:从变化率的角度重新认识平均速度的意义,知道函数平均变化率就是函数在某区间上变化快慢的数量描述.三、学习难点:对平均变化率的数学意义的认识。

四、学法指导:通过具体问题,感受在现实世界和实际生活中存在着大量的变化率问题,体会平均变化率的实际意义。

五、知识链接:速度、平均速度、瞬时速度。

六、学习内容:一、微积分的发展简史:十七世纪,有许多科学问题需要解决,这些问题归结起来,大约有四种主要类型的问题:第一类是研究运动物体的即时速度的问题。

第二类问题是求曲线的切线的问题。

第三类问题是求函数的最大值和最小值问题。

第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。

十七世纪下半叶,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作。

牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。

牛顿在1671年写了《流数法和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合。

他把连续变量叫做流动量,把这些流动量的导数叫做流数。

牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。

1684年,德国的莱布尼茨他发表了现在世界上认为是最早的微积分文献,这篇文章有一个很长而且很古怪的名字《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》,其中含有现代的微分符号和基本微分法则。

1686年,莱布尼茨发表了第一篇积分学的文献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∴ y (1 x)2 (1 x) 2 3 x
x
x
例2. 求 y x2 在 x x0 附近的平均变化率。
解: y
(x0
x)2
x02 ,所以
y x
( x0
x)2 x
x0 2
x0 2
2x0x x2 x
x02
2 x0 x
h
气球的平均膨胀率为 r(1) r(0) 0.62(dm / L) 1 0
⑵ 当 V 从 1 增加到 2 时,气球半径增加了 r(2) r(1) 0.16(dm)
气球的平均膨胀率为 r(2) r(1) 0.16(dm / L) 2 1
可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.
⑴运动员在这段时间内使静止的吗?
⑵你认为用平均速度描述运动员的运动状态有什么问题吗?
探究过程:如图是函数 h(t)= -4.9t2+6.5t+10 的图像,结合图形可知, h( 65) h(0) , 49
h( 65) h(0)
所以 v 49
0(s / m) ,
65 0
49
虽然运动员在 0 t 65 这段时间里的平均速度为 0(s / m) ,但实际情况是运动员仍然运 49
x1+ x 代替 x2,同样 f y f (x2 ) f (x1) )
3. 则平均变化率为 y f f (x2 ) f (x1 ) f (x1 x) f (x1 )
x x
x2 x1
x
思考:观察函数 f(x)的图象
平均变化率 f f (x2 ) f (x1) 表示什么?
y
x
x2 x1
o
t
思考:当空气容量从 V1 增加到 V2 时,气球的平均膨胀率是多少? r(V2 ) r(V1 ) V2 V1
问题 2 高台跳水 在高台跳水运动中,运动员相对于水面的高度 h(单位:m)与起跳后的时间 t(单位:s)
存在函数关系 h(t)= -4.9t2+6.5t+10.如何用运动员在某些时间段内的平均速 v 度粗略地描
气球的体积 V(单位:L)与半径 r(单位:dm)之间的函数关系是V (r) 4 r 3 3
如果将半径 r 表示为体积 V 的函数,那么 r(V ) 3 3V 4
分析: r(V ) 3 3V , 4
⑴ 当 V 从 0 增加到 1 时,气球半径增加了 r(1) r(0) 0.62(dm)
课题:
§1.1.1 变化率问题
教学目标:
1. 理解平均变化率的概念; 2.了解平均变化率的几何意义; 3.会求函数在某点处附近的平均变化率
教学重点: 教学难点:
平均变化率的概念、函数在某点处附近的平均变化率; :平均变化率的概念.
教学过程与设计:
详细过程一.创设情景 为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究, 产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:
四.课堂练习
1.质点运动规律为 s t 2 3 ,则在时间 (3 , 3 t) 中相应的平均速度为

2.物体按照 s(t)=3t2+t+4 的规律作直线运动,求在 4s 附近的平均变化率2.5 3t 3.过曲线 y=f(x)=x3 上两点 P(1,1)和 Q (1+Δx,1+Δy)作曲线的割线,求出当Δx=0.1 时
割线的斜率. 五.回顾总结 1.平均变化率的概念 2.函数在某点处附近的平均变化率 六.布置作业
f(x2)
y=f(x)
直线 AB 的斜率
△ y =f(x2)-f(x1)
f(x1) △ x= x2-x1
O
x1
x2
x
三.典例分析
例 1 . 已 知 函 数 f(x)= x2 x 的 图 象 上 的 一 点 A(1, 2) 及 临 近 一 点
B(1 x, 2 y) ,则 y

x
解: 2 y (1 x)2 (1 x) ,
动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态.
(二)平均变化率概念:
1.上述问题中的变化率可用式子 化率
f (x2 ) f (x1 ) 表示, 称为函数 f(x)从 x1 到 x2 的平均变 x2 x1
2.若设 x x2 x1, f f (x2 ) f (x1) (这里 x 看作是对于 x1 的一个“增量”可用
一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线; 三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。 导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、 最有效的工具。 导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. 二.新课讲授 (一)问题提出 问题 1 气球膨胀率 我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的 半径增加越来越慢.从数学角度,如何描述这种现象呢?
述其运动状态?
思考计算: 0 t 0.5和1 t 2 的平均速度 v
在 0 t 0.5这段时间里, v h(0.5) h(0) 4.05(m / s) ; 0.5 0
在1 t 2 这段时间里, v h(2) h(1) 8.2(m / s) 2 1
探究:计算运动员在 0 t 65 这段时间里的平均速度,并思考以下问题: 49
相关文档
最新文档