小学奥数行程专题50道详解(二)

合集下载

六年级奥数行程问题汇总

六年级奥数行程问题汇总

行程问题(一)专题简析:行程问题的三个基本量是距离、速度和时间。

其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。

行程问题的主要数量关系是:距离=速度×时间。

它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。

(3)同向而行:速度慢的在前,快的在后。

追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。

追及距离=速度差×时间。

解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。

例题1两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。

甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米。

甲车行完全程用了多少小时?解答本题的关键是正确理解“已知甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米”。

这句话的实质就是:“乙48分钟行了24千米”。

可以先求乙的速度,然后根据路程求时间。

也可以先求出全程165千米是24千米的多少倍,再求甲行完全程要用多少小时。

解法一:乙车速度:24÷48×60=30(千米/小时)甲行完全程的时间:165÷30—=4.7(小时)解法二:48×(165÷24)—48=282(分钟)=4.7(小时)答:甲车行完全程用了4.7小时。

挑战自我1、甲、乙两地之间的距离是420千米。

两辆汽车同时从甲地开往乙地。

第一辆每小时行42千米,第二辆汽车每小时行28千米。

第一辆汽车到乙地立即返回。

两辆汽车从开出到相遇共用多少小时?2、A、B两地相距900千米,甲车由A地到B地需15小时,乙车由B地到A地需10小时。

两车同时从两地开出,相遇时甲车距B地还有多少千米?3、甲、乙两辆汽车早上8点钟分别从A、B两城同时相向而行。

小学奥数行程问题50道详解

小学奥数行程问题50道详解

行程问题50道详解一1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9- (3+4)二2千米.2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67. 5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75) X2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=2704- (67. 5-60)=36分钟,所以路程二36X (60+75)=4860 米.3、A, B两地相距540千米.甲、乙两车往返行驶于A, B两地之间,都是到达一地之后立即返回,乙车较甲车快.设两辆车同时从A地出发后第一次和第二次相遇都在途中P地.那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程. 所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份.第二次相遇,乙正好走了1份到B地,又返回走了1份.这样根据总结:2个全程里乙走了(540一3)X 4=180X4二720 千米,乙总共走了720X3二2160 千米.4、小明每天早晨6: 50从家岀发,7: 20到校,老师要求他明天提早6分钟到校.如果小明明天早晨还是6: 50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校.问:小明家到学校多远?(第六届《小数报》数学竞赛初赛题第1题)解:原来花时间是30分钟,后来提前6分钟,就是路上要花时间为24分钟. 这时每分钟必须多走25米所以总共多走了24X25二600米而这和30分钟时间里,后6分钟走的路程是一样的,所以原来每分钟走600三6二100米.总路程就是=100X30=3000 米.5、小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3. 5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?解:画示意图如下.第二次相遇两人己共同走了甲、乙两村距离的3倍,因此张走了3.5X3 = 10. 5 (千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是10.5-2 = 8.5 (千米).每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时, 两人己共同走了两村距离(3+2 + 2)倍的行程.其中张走了3.5X7=24.5 (千米),24. 5二8. 5 + 8. 5 + 7. 5 (千米).就知道第四次相遇处,离乙村8. 5-7. 5=1 (千米).答:第四次相遇地点离乙村1千米.行程专题50道详解二6、小王的步行速度是4. 8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10. 8千米/小时,从乙地到甲地去. 他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?解:画一张示意图:王张李I -------------------- 1---------------------- 1 ---------------- 1甲 B 入乙,图中A点是小张与小李相遇的地点,图中再设置一个B点,它是张、李两人相遇时小王到达的地点.5分钟后小王与小李相遇,也就是5分钟的时间,小王和小李共同走了B与A之间这段距离,它等于(4.8 f 10.8)= (千米)这段距离也是出发后小张比小王多走的距离,小王与小张的速度差是(5. 4-4. 8)千米/小时•小张比小王多走这段距离,需要的时间是1.34- (5. 4-4.8) X60=130 (分钟).这也是从出发到张、李相遇时已花费的时间.小李的速度10. 8千米/小时是小张速度5. 4千米/小时的2倍.因此小李从A到甲地需要1304-2=65 (分钟).从乙地到甲地需要的时间是130+65=195 (分钟)=3 小时15 分.答:小李从乙地到甲地需要3小时15分.7、快车和慢车分别从A, B两地同时开出,相向而行.经过5小时两车相遇.已知慢车从B到A用了12. 5小时,慢车到A停留半小时后返回.快车到B停留1小时后返回.问:两车从第一次相遇到再相遇共需多少时间?解:画一张示意图:设C点是第一次相遇处.慢车从B到C用了5小时,从C到A用了12. 5-5=7. 5 (小时).我们把慢车半小时行程作为1个单位.B到C10个单位,C到A15个单位. 慢车每小时走2个单位,快车每小时走3个单位.有了上而〃取单位〃准备后,下面很易计算了.慢车从C到A,再加停留半小时,共8小时.此时快车在何处呢?去掉它在B 停留1小时.快车行驶7小时,共行驶3X7=21 (单位).从B到C再往前一个单位到D 点.离A点15-1 = 14 (单位).现在慢车从A,快车从D,同时出发共同行走14单位,相遇所需时间是14=(2 + 3) =2.8 (小时).慢车从C到A返回行驶至与快车相遇共用了7. 5 + 0. 5 + 2. 8 = 10. 8(小时).答:从第一相遇到再相遇共需10小时48分.8、一辆车从甲地开往乙地.如果车速提高20%,可以比原定时间提前一小时到达;如果以原速行驶120千米后,再将速度提高25%,则可提前40分钟到达. 那么甲、乙两地相距多少千米?解:设原速度是1.原时间=学,鹿耐间=学+ 2珈就得出,沁20%后,所用时间缩短1 _ 5到扇取圆的 1 + 20%_?这是具体地反映::距离固定,时间与速度成反比2 _ 片Cl-t> =6(小时)•□用原速行驶需要6J1 _ 4□同样道理,车遠提高25%,所用时间缩短到原来的1 + 25%_5\.换一句话说,缩短了]现在要充分利用这个;5 5如果一开始就加速25%,可少时间-360X | = 72 (分钟).现在只少了40分钟,72-40= 32 (分钟)•说明有一段路程耒加逮而没有少这个匸2分钟,它应是这的!因此这段路所用时间是32-|=160〔分钟).段路程所用时间 5 J真巧,$20760=160(分钟),120X (1+1)= 270 (千米)・原速的行程与加速的行程所用时间一样•因此全程长• 4 4答’甲、乙两地相距2®.壬米*9.—辆汽车从甲地开往乙地,如果车速提高20%,可以提前1小时到达。

五年级奥数-行程问题2

五年级奥数-行程问题2

行程问题(二)专题简析:本周的主要问题是“追及问题”。

追及问题一般是指两个物体同方向运动,由于各自的速度不同,后者追上前者的问题。

追及问题的基本数量关系是:速度差×追及时间=追及路程解答追及问题,一定要懂得运动快的物体之所以能追上运动慢的物体,是因为两者之间存在着速度差。

抓住“追及的路程必须用速度差来追”这一道理,结合题中运动物体的地点、运动方向等特点进行具体分析,并借助线段图来理解题意,就可以正确解题。

例1.中巴车每小时行60千米,小轿车每小时行84千米。

两车同时从相距60千米的两地同方向开出,且中巴在前。

几小时后小轿车追上中巴车?变式训练1.一辆摩托车以每小时80千米的速度去追赶前面30千米处的卡车,卡车行驶的速度是每小时65千米。

摩托车多长时间能够追上?2.兄弟二人从100米跑道的起点和终点同时出发,沿同一方向跑步,弟弟在前,每分钟跑120米;哥哥在后,每分钟跑140米。

几分钟后哥哥追上弟弟?3.甲骑自行车从A地到B地,每小时行16千米。

1小时后,乙也骑自行车从A地到B地,每小时行20千米,结果两人同时到达B地。

A、B两地相距多少千米?例2.一辆汽车从甲地开往乙地,要行360千米。

开始按计划以每小时45千米的速度行驶,途中因汽车故障修车2小时。

因为要按时到达乙地,修好车后必须每小时多行30千米。

汽车是在离甲地多远处修车的?变式训练1.小王家离工厂3千米,他每天骑车以每分钟200米的速度上班,正好准时到工厂。

有一天,他出发几分钟后,因遇熟人停车2分钟,为了准时到厂,后面的路必须每分钟多行100米。

小王是在离工厂多远处遇到熟人的?2.一辆汽车从甲地开往乙地,若每小时行36千米,8小时能到达。

这辆汽车以每小时36千米的速度行驶一段时间后,因排队加油用去了15分钟。

为了能在8小时内到达乙地,加油后每小时必须多行7.2千米。

加油站离乙地多少千米?3.汽车以每小时30千米的速度从甲地出发,6小时后能到达乙地。

2024年小学五年级行程问题奥数题及答案

2024年小学五年级行程问题奥数题及答案
行程问题答案:
观察可知,老母牛一开始在火车的中心的左端。在相遇过程中,火车走了:2个桥长-1英尺;母牛走了:0.5个桥长-5英尺;在追及过程中:火车走了:3个桥长-0.25英尺;母牛走了:0.5个桥长+4.75英尺。则在相遇和追及过程中:火车共走了5个桥长-1.25英尺;同样的时间,母牛走了1个桥长-0.25英尺。所以火车的速度是母牛狂奔时的5倍。母牛的速度为90÷5=18英里/小时。又根据2个桥长-1英尺=2.5个桥长-25英尺所以0.5个桥长=24英尺。1个桥长=48英尺。
答案
1.解答:假设AB两地之间的距离为480÷2=240 (千米),那么总时间=480÷48=10 (小时),回来时的速度为240÷(10-240÷4)=60 (千米/时)。
2.解答:设赵伯伯每天上山的路程为12千米,那么下山走的路程也是12千米,上山时间为12÷3=4 小时,下山时间为12÷6=2 小时,上山、下山的平均速度为:12×2÷(4+2)=4 (千米/时),由于赵伯伯在平路上的速度也是4 千米/时,所以,在每天锻炼中,赵伯伯的平均速度为 4千米/时,每天锻炼3 小时,共行走了4×3=12 (千米)=12000 (米)。
答案解析:
第一次提前20分钟是因为张工程师自己走了一段路,从而导致汽车不需要走那段路的来回,所以汽车开那段路的来回应该是20分钟,走一个单程是10分钟,而汽车每天8点到张工程师家里,所以那天早上汽车是7点50接到工程师的,张工程师走了50分钟,这段路如果是汽车开需要10分钟,所以汽车速度和张工程师步行速度比为5:1,第二次,实际上相当于张工程师提前半小时出发,时间按5:1的比例分配,则张工程师走了25分钟时遇到司机,此时提前(30-25)x2=10(分钟)。
2024年小学五年级行程问题奥数题及答案

六年级奥数专题 行程综合二(学生版)

六年级奥数专题 行程综合二(学生版)

学科培优 数学 “行程综合二” 学生姓名授课日期 教师姓名授课时长 知识定位 通常我们所接触的行程问题可以称作为“参考系速度为0”的行程问题,例如当我们研究甲乙两人在一段公路上行走相遇时,这里的参考系便是公路,而公路本身是没有速度的,所以我们只需要考虑人本身的速度即可。

但是在流水行船问题中,我们的参考系将不再是速度为0的参考系,因为水本身也是在流动的,所以这里我们必须考虑水流速度对船只速度的影响.重难点在于1.流水行船中的相遇与追击2.火车问题知识梳理知识点:行程综合(二)流水问题:顺水速度=船速+水速, 逆水速度=船速-水速. ( 其中为船在静水中的速度,为水流的速度)由上可得:船速=(顺水速度+逆水速度)÷2;水速=(顺水速度-逆水速度)÷2.流水行船中的相遇与追击:水船顺V V V +=水船逆V V V -=船V 水V(1)两只船在河流中相遇问题.当甲、乙两船(甲在上游、乙在下游)在江河里相向开出,它们单位时间靠拢的路程等于甲、乙两船速度和.这是因为:甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速.这就是说,两船在水中的相遇问题与静水中的及两车在陆地上的相遇问题一样,与水速没有关系.(2)同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,也只与路程差和船速有关,与水速无关.这是因为:甲船顺水速度-乙船顺水速度=(甲船速+水速)-(乙船速+水速)=甲船速-乙船速.也有:甲船逆水速度-乙船逆水速度=(甲船速-水速)-(乙船速-水速)=甲船速-乙船速.这说明水中追及问题与在静水中追及问题一样.由上述讨论知,解流水行船问题,更多地是把它转化为已学过的相遇和追及问题来解答火车问题⑴火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和.⑵火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和.⑶火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度.对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行.例题精讲【试题来源】【题目】两港相距 120 千米,甲船往返两港需 60 小时,逆流航行比顺流航行多用了 20 小时.乙船的静水速度是甲船的静水速度的 3 倍,那么乙船往返两港需要多少小时?【试题来源】【题目】一艘轮船顺流航行 120 千米,逆流航行 80 千米共用 16 时;顺流航行 60 千米,逆流航行 120 千米也用 16 时。

奥数行程问题归纳总结及部分例题及答案

奥数行程问题归纳总结及部分例题及答案

奥数行程:多人行程的要点及解题技巧行程问题是小学奥数中难度系数比较高的一个模块,在小升初考试和各大奥数杯赛中都能见到行程问题的身影。

行程问题中包括:火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程等等。

每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量是:路程(s)、速度(v)、时间(t)三个关系:1.简单行程:路程=速度×时间2.相遇问题:路程和=速度和×时间3.追击问题:路程差=速度差×时间牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的。

如“多人行程问题”,实际最常见的是“三人行程”例:有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。

甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。

在途中,甲和乙相遇后3分钟和丙相遇。

问:这个花圃的周长是多少米?分析:这个三人行程的问题由两个相遇、一个追击组成,题目中所给的条件只有三个人的速度,以及一个“3分钟”的时间。

第一个相遇:在3分钟的时间里,甲、丙的路程和为(40+36)×3=228(米)第一个追击:这228米是由于在开始到甲、乙相遇的时间里,乙、丙两人的速度差造成的,是逆向的追击过程,可求出甲、乙相遇的时间为228÷(38-36)=114(分钟)第二个相遇:在114分钟里,甲、乙二人一起走完了全程所以花圃周长为(40+38)×114=8892(米)我们把这样一个抽象的三人行程问题分解为三个简单的问题,使解题思路更加清晰。

总之,行程问题是重点,也是难点,更是锻炼思维的好工具。

只要理解好“三个量”之间的“三个关系”,解决行程问题并非难事!奥数行程:多人行程例题及答案(一)行程问题是小学奥数中难度系数比较高的一个模块,在小升初考试和各大奥数杯赛中都能见到行程问题的身影。

六年级下册数学试题-奥数专题:行程问题(2)相遇问题(含答案)全国通用

六年级下册数学试题-奥数专题:行程问题(2)相遇问题(含答案)全国通用

行程问题之相遇问题【题目1】两列货车从相距450 千米的两个城市相向开出,甲车每小时行40 千米,乙车每小时比甲车多行1/4,出发几小时后两车相遇?【解答】本题是计算相遇时间,知道计算方法——相遇时间=总路程÷速度和。

【解法一】乙车的速度是40×(1+1/4)=50 千米/小时,甲乙两车的速度和是40 +50=90 千米/小时,相遇的时间是450÷90=5 小时。

【解法二】甲车行了450÷(1+1+1/4)=200 千米,相遇的时间是200÷40=5 小时。

【解法三】甲车行完450÷40=45/4 小时,相遇时间是45/4÷(1+1+1/4)=5 小时。

【解法四】甲乙两车的速度比是1:(1+1/4)=4:5,乙车行的路程是450×=200 米,相遇时间是200÷40=5 小时。

4 4 + 5【题目2】甲乙两列客车同时由相距600 千米的两地相对出发,经过8 小时后相遇。

已知甲车的速度是乙车速度的2/3,乙车每小时行多少千米?【解答】本题让学生明确——速度和=总路程÷相遇时间。

【解法一】根据题意只要求出速度和就可以求得乙车的速度。

则有两车速度和是600÷8=75 千米/时,把乙车速度看作单位1,甲车速度是2/3,那么速度和就是乙车的1+2/3=5/3,则乙车的速度是75÷5/3=45 千米/时。

【解法二】乙车需要8×(1+2/3)=40/3 小时行完全程,乙车的速度是600÷40/3=45 千米/时。

【解法三】乙车8 小时行了600÷(1+2/3)=360 千米,则乙车的速度是360÷8=45 千米/时。

【题目3】甲乙两列火车同时从A、B 两个城市对面开来,甲火车每小时行36 千米,乙火车每小时比甲火车多行2/9,开出4 小时后两车相遇。

求A、B 两地之间的距离是多少千米?【解答】本题要让学生知道——总路程=速度和×相遇时间。

小学六年级数学奥数行程问题20道详解(含答案)全国通用

小学六年级数学奥数行程问题20道详解(含答案)全国通用

行程问题50道详解一1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。

2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。

3、A,B两地相距540千米。

甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。

设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。

那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。

所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。

第二次相遇,乙正好走了1份到B地,又返回走了1份。

这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。

4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行程专题50道详解二
6、小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?
解:画一张示意图:
图中A点是小张与小李相遇的地点,图中再设置一个B点,它是张、李两人相遇时小王到达的地点.5分钟后小王与小李相遇,也就是5分钟的时间,小王和小李共同走了B与A之间这段距离,它等于
这段距离也是出发后小张比小王多走的距离,小王与小张的速度差是
(5.4-4.8)千米/小时.小张比小王多走这段距离,需要的时间是
1.3÷(5.4-4.8)×60=130(分钟).
这也是从出发到张、李相遇时已花费的时间.小李的速度10.8千米/小时是小张速度5.4千米/小时的2倍.因此小李从A到甲地需要
130÷2=65(分钟).
从乙地到甲地需要的时间是
130+65=195(分钟)=3小时15分.
答:小李从乙地到甲地需要3小时15分.
7、快车和慢车分别从A,B两地同时开出,相向而行.经过5小时两车相遇.已知慢车从B到A用了12.5小时,慢车到A停留半小时后返回.快车到B停留1小时后返回.问:两车从第一次相遇到再相遇共需多少时间?
解:画一张示意图:
设C点是第一次相遇处.慢车从B到C用了5小时,从C到A用了12.5-5=7.5(小时).我们把慢车半小时行程作为1个单位.B到C10个单位,C到A15个单位.慢车每小时走2个单位,快车每小时走3个单位.
有了上面"取单位"准备后,下面很易计算了.
慢车从C到A,再加停留半小时,共8小时.此时快车在何处呢?去掉它在B
停留1小时.快车行驶7 小时,共行驶3×7=21(单位).从B到C再往前一个单位到D点.离A点15-1=14(单位).
现在慢车从A,快车从D,同时出发共同行走14单位,相遇所需时间是14÷(2+3)=2.8(小时).
慢车从C到A返回行驶至与快车相遇共用了7.5+0.5+2.8=10.8(小时).
答:从第一相遇到再相遇共需10小时48分.
8、一辆车从甲地开往乙地.如果车速提高20%,可以比原定时间提前一小时到达;如果以原速行驶120千米后,再将速度提高25%,则可提前40分钟到达.那么甲、乙两地相距多少千米?
解:设原速度是1.
这是具体地反映:距离固定,时间与速度成反比.
时间比值:6:5
这样可以把原来时间看成6份,后来就是5份,这样就节省1份,节省1个小时.
原来时间就是=1×6=6小时.
同样道理,车速提高30%,速度比值:1:(1+30%)=1:1.3
时间比值:1.3:1
这样也节省了0.3份,节省1小时,可以推出行驶一段时间后那段路程的原时间为1.3÷0.3=13/3
所以前后的时间比值为(6-13/3):13/3=5:13.所以总共行驶了全程的5/(5+13)=5/18
10、甲、乙两车分别从A,B两地出发,相向而行,出发时,甲、乙的速度比是 5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B时,乙离A地还有10千米.那么A,B两地相距多少千米?
解:相遇后速度比值为[5×(1-20%)]:[4×(1+20%)]=5:6,假设全程为9份,甲走了5份,乙走了4份,之后速度发生变化,这样甲到达B地,甲又走了4份,根据速度变化后的比值,乙应该走了4×6÷5=24/5份,这样距A地还有5-24/5份,所以全程为10÷(1/5)×9=450千米.。

相关文档
最新文档