太阳能、光伏发电与控制技术
太阳能光伏发电系统的输出电压与频率控制

太阳能光伏发电系统的输出电压与频率控制随着环境保护意识的提高和对可再生能源的需求增加,太阳能光伏发电系统在能源行业中占据了重要地位。
光伏发电系统的输出电压与频率控制是确保系统能稳定运行的关键要素之一。
本文将探讨太阳能光伏发电系统输出电压与频率控制的相关问题。
一、太阳能光伏发电系统概述太阳能光伏发电系统是通过将太阳光转化为电能的一种清洁能源发电系统。
该系统由光伏电池板、逆变器以及并网逆变器等组成。
光伏电池板将太阳光转化为直流电能,而逆变器则将直流电转换为交流电以满足市电的要求。
二、太阳能光伏发电系统输出电压控制太阳能光伏发电系统的输出电压控制是确保系统稳定运行的重要环节。
在正常工作情况下,光伏电池板输出的直流电电压应该与逆变器的输入电压匹配,通常为标称值。
然而,由于光照条件、温度变化以及负荷变化等因素的影响,导致光伏电池板的输出电压会发生波动。
为了保持逆变器正常运行,需要对该波动进行控制。
1.最大功率点跟踪(MPPT)最大功率点跟踪(MPPT)是一种用于控制太阳能光伏发电系统输出电压的方法。
它通过调整光伏电池板的工作点,使其工作在最大功率点附近,以提高系统的转换效率。
MPPT控制器根据当前的光照条件和温度等参数,实时监测光伏电池板的输出功率,并调整电压以使输出功率最大化。
2.电压稳定控制除了MPPT功能外,太阳能光伏发电系统还需要具备电压稳定控制功能。
当系统运行异常或负荷变动较大时,逆变器需要能够自动调整输出电压以保持稳定。
这可以通过闭环反馈控制的方式实现,监测输出电压并作出相应调整以达到所需的稳定电压。
三、太阳能光伏发电系统频率控制除了输出电压控制外,太阳能光伏发电系统还需要对输出频率进行控制。
频率控制是确保太阳能光伏发电系统与市电网络正常并网运行的关键。
1.同步与并网控制太阳能光伏发电系统在并网运行时需要与市电网络保持同步。
频率控制器可以监测市电网络的频率,通过调整逆变器的输出频率,使其与市电的频率保持一致。
太阳能光伏发电系统原理与应用技术

太阳能光伏发电系统原理与应用技术一、引言在当今社会,能源问题日益成为人们关注的焦点。
传统的化石能源日益枯竭,同时也给地球环境带来了严重的污染。
寻找一种清洁、可再生的能源就成为了当务之急。
太阳能作为一种非常丰富的可再生能源,其应用前景广阔。
太阳能光伏发电系统作为太阳能利用的一种主要方式,在能源领域也备受关注。
本文将就太阳能光伏发电系统的原理与应用技术展开探讨。
二、太阳能光伏发电系统原理1. 太阳能光伏发电系统的基本构成太阳能光伏发电系统主要包括太阳能电池板、光伏逆变器、储能设备和配电系统等组成部分。
其中,太阳能电池板是太阳能光伏发电系统的核心部件,其作用是将太阳能转换为直流电能;光伏逆变器则是将直流电能转换为交流电能供电使用;而储能设备则可以将多余的电能储存起来,以应对没有太阳能供应的时候。
2. 太阳能电池板的工作原理太阳能电池板利用光能来产生电能,其主要工作原理是光生电效应。
当太阳光照射到太阳能电池板上时,光子会被太阳能电池板的半导体材料吸收,并激发出电子和空穴对。
这些电子和空穴对在电场的作用下,分别向两端移动,形成电流,从而产生了电能。
三、太阳能光伏发电系统应用技术1. 多晶硅和单晶硅太阳能电池随着技术的不断发展,太阳能电池的制备工艺也得到了极大的改进。
目前市场上主要的太阳能电池为多晶硅和单晶硅太阳能电池。
多晶硅太阳能电池通过将多晶硅棒切割成薄片来实现,而单晶硅太阳能电池则是利用单晶硅棒来生产。
这两种太阳能电池在光伏发电系统中应用广泛,且具有较高的转换效率和稳定性。
2. 太阳能光伏发电系统的并网技术随着太阳能光伏发电技术的不断发展,其并网技术也愈加成熟。
并网技术是指太阳能光伏发电系统将发电效果集中于电网内,以供应城市和居民的用电需求。
通过并网技术,太阳能光伏发电系统可以将多余的电能输送到电网中,从而实现供需平衡和能源优化利用。
3. 太阳能光伏发电系统的智能化管理随着物联网和大数据技术的发展,太阳能光伏发电系统的智能化管理也成为了发展趋势。
太阳能光伏发电技术的研究和应用

太阳能光伏发电技术的研究和应用随着科技的不断进步,太阳能光伏发电技术已经成为了全球能源领域的一个重要组成部分。
太阳能光伏发电技术利用太阳能的能源将其转化成电能,这是一个高效、可持续的能源利用方式。
近年来,太阳能光伏发电技术的研究和应用一直是全球科学家和工程师们追求的目标,下面我们来了解一下太阳能光伏发电技术的研究和应用。
一、太阳能光伏发电技术的原理1.太阳能光伏发电技术基本原理太阳能光伏发电技术就是利用太阳光通过光伏电池将光能转化成电能的一种技术。
太阳光通过光伏电池后激发出一定的电子,形成电流,从而实现能量的转换并输出电力。
2.太阳能光伏电池的基本结构太阳能光伏电池由n型半导体和p型半导体组成,这些半导体中夹杂着一定的氧化物或者硅粉等杂质,从而形成电子空穴对,在太阳光的照射下,电子空穴对得以分离而产生电流。
3.太阳能光伏电池的分类根据半导体类别和PN结的制备方法,太阳能光伏电池可以分为硅晶电池、非晶硅电池、铜铟镓硒电池等多种类型。
二、太阳能光伏发电技术的应用1.太阳能光伏发电技术在家庭用电中的应用太阳能光伏发电技术可以为家庭提供电力,特别是在一些偏远地区,太阳能光伏发电技术可以成为唯一的电力供应方式。
2.太阳能光伏发电技术在大型能源系统中的应用太阳能光伏发电技术在大型能源系统中也有着广泛的应用,如电网并网发电、农业扶贫光伏发电等。
三、太阳能光伏发电技术的研究1.太阳能光伏发电技术在能源存储方面的研究随着能源需求增长,储能技术的研究也成为了太阳能光伏发电技术的关键研究方向。
目前,科学家们正在探索太阳能光伏发电技术与其他储能技术集成的途径,如电池、压缩空气等。
2.太阳能光伏发电技术在生产过程中的研究科学家们正在探索太阳能光伏发电技术在生产过程中的环保性、经济性等多方面,以实现生产成本的降低,进一步提高技术的使用率和应用范围。
四、太阳能光伏发电技术的未来太阳能光伏发电技术是一种可持续的能源利用方式,未来大概率成为能源的主要来源之一。
《太阳能光伏发电技术》课件——5.控制器

48V系统
56.4~58V
57.6V
6、蓄电池充电保护的关断恢复电压(HVR)
蓄电池过充后,停止充电,进行放电,再次恢复充电的电压。
12V系统 13.1~13.4V
24V系统 26.2~26.8V
48V系统 52.4~53.6V
典型值
13.2V
26.4V
52.8V
二、光伏控制器的技术参数
7、蓄电池的过放电保护电压(LVD)
其他功能
1、防止太阳能电池板或电池方阵、蓄电池极性接反;
2、防止负载、控制器、逆变器和其他设备内部短路;
3、防止雷击引起的击穿保护;
4、温度补偿功能;
5、显示光伏发电系统的各种工作状态。
蓄电池电压
负载状态
辅助电源状态
温度环境状态
电池方阵工作状态 故障告警
二、光伏控制器的工作原理
开关1:充电开关
开关2:放电开关
并联型
用于
较高功率系统
用于
小型、低功率系统
脉宽调制型
智能型
多路控制型 最大功率跟踪行
一、控制器的分类
3、按照应用场景和功能分类:
二、光伏控制器的技术参数
1、系统电压
即额定工作电压,指光伏发电系统的直流工作电压。
12V
24V
48V
110V
220V
500V
2、最大充电电流
指光伏组件或阵列阵输出的最大电流。
5.1控制器的功能及原理
控制器的功能及原理
光能 负载供电
发电量不足 用电量较大
电能
储存
储能装置
一、控制器的功能
基本功能
将光伏组件或者光伏阵列产生的直流电提供给蓄电池充电; 同时防止蓄电池过充电或过放电。
光伏发电对电力系统的影响及管控措施

光伏发电对电力系统的影响及管控措施摘要:太阳能光伏并网发电作为新能源,具备取之不尽用之不竭的特征。
太阳能光伏发电有利于解决传统能源过度消耗现象,还可以节约土地资源、改善居民的生活质量。
在简述太阳能光伏并网发电的基础上,阐述了光伏发电对电力系统的影响及管控措施。
关键词:太阳能光伏;并网发电技术1光伏发电对电力系统的影响光伏发电作为一种可再生能源形式,对电力系统产生了一系列影响。
以下是光伏发电对电力系统的主要影响:发电容量变动:光伏发电的输出容量随着日照强度和天气条件的变化而发生波动。
这种波动性会对电力系统的负荷平衡和电网稳定性产生影响。
当光伏发电容量突然减少(如云遮挡)时,电力系统需要通过其他发电源或储能设备来填补缺口。
功率波动:光伏发电的输出功率在短时间内可能发生剧烈变化。
这种功率波动对电网的频率和电压稳定性具有一定影响。
为了应对光伏发电功率的波动,电力系统需要具备快速响应的调节能力,如发电机组的快速启动和负荷响应。
电网保护:光伏发电改变了电力系统中的电流和电压传递特性,可能对电网保护系统产生影响。
光伏发电的接入可能导致电流倒流、过电压等问题,因此需要对保护设备进行调整和优化,以确保电力系统的安全运行。
输电损耗:光伏发电一般分布在较远的地方,输电过程中可能会导致一定的输电损耗。
因此,在电力系统规划和运行中,需要考虑输电线路的布局和容量,合理安排光伏电站的接入点,以降低输电损耗。
电网规划和运营:光伏发电的大规模接入需要进行电网规划和运营的调整。
这包括评估光伏发电的潜力和接入可行性,合理安排变电站和输电线路的建设,优化电力系统的配置和运行方式,以最大限度地利用光伏发电的潜力。
2电网系统管控新能源电力对电网影响的技术2.1预测与调度技术通过利用大数据和先进的预测算法来预测新能源发电的波动性和不确定性,并进行电网调度,是提高电网对新能源电力的管控能力的重要手段之一。
新能源发电,例如光伏和风能,具有间断性和波动性,其产生的电力受到日照、风速等自然条件的影响。
太阳能控制器工作原理--光伏发电技术实验二

太阳能控制器工作原理--光伏发电技术实验二太阳能控制器工作原理实验一、实验目的(1)了解太阳能充电控制器的工作原理;(2)认识太阳能电池板是如何给蓄电池充电;(3)掌握太阳能充电控制器的工作模式;二、实验仪器1、太阳能电池板2、光源3、HBSC5I 太阳能充电控制器4、蓄电池5、电压表6、电流表7、连接线8、LED 灯三、实验原理太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。
在温差较大的地方,合格的控制器还应具备温度补偿的功能。
1. 太阳能控制器原理图3 太阳能工作原理图主要是通过MCU 电脑主控器来对整个充电控制器来进行控制。
它可以实时的监测光电池电压和蓄电池电压,以及工作环境的温度。
然后再发出MOSFET 功率开关管的PWM 驱动信号,对开关管的通断实施控制。
它可以实现防止过充、过放、短路过载保护、反接保护、雷电保护以及温度补偿功能。
2. 太阳能充电控制器使用说明充电及超压指示:当系统连接正常,且有阳光照射到光电池板时,充电指示灯为绿色常亮,表示系统充电电路正常;当充电指示灯出现绿色闪烁时,说明系统过电压,蓄电池开路,检查蓄电池是否连接可靠,或充电电路损坏。
充电过程使用了PWM 方式,如果发生过放动作,充电先要达到提升充电电压并保持10分钟,而后降到直充电压保持10分钟,以激活蓄电池,避免硫化结晶,最后降到浮充电压。
如果没有发生过放,将不会有提升充电方式,以防止蓄电池失水。
这些自动控制过程将使蓄电池达到最佳充电效果并保证或延长其使用寿命。
蓄电池状态指示:蓄电池电压在正常范围时,状态指示灯为绿色常亮;充满后状态指示灯为绿色慢闪;当电池电压降到欠压时状态指示灯变为橙黄色;当蓄电池电压继续降低到过放电压时,状态指示灯变为红色,此时控制器将直接关闭输出,提醒用户及时补充电能。
当电池电压恢复到正常工作范围内时,将自动使输出开通,状态指示灯变为绿色。
负载指示:当负载开通时,负载指示灯常亮。
新能源发电系统控制技术发展现状与未来趋势分析

新能源发电系统控制技术发展现状与未来趋势分析随着人类对能源问题的关注日益加深,新能源发电系统作为替代传统能源的重要方向,其控制技术的发展备受关注。
本文将分析新能源发电系统控制技术的现状和未来趋势。
一、新能源发电系统的现状目前,新能源发电系统主要包括太阳能、风能、水能和生物能等多种形式。
在控制技术方面,太阳能发电系统的光伏逆变器控制、风能发电系统的变桨角和电网互联控制、水能发电系统的水头控制以及生物能发电系统的发酵和燃烧控制等都是关键环节。
太阳能发电系统的控制技术主要涉及到光伏逆变器的工作状态调节和电网互联控制。
目前,光伏逆变器控制技术已经非常成熟,通过对电流和电压的精确控制,使得光伏发电系统能够最大程度地将太阳能转化为电能。
而电网互联控制技术则是将光伏发电系统与电网进行有序连接,保证了电能的供应连续性和稳定性。
风能发电系统的控制技术主要解决的问题是变桨角和电网互联控制。
变桨角控制是指根据风速和转速的变化调整桨叶的转动角度,以实现最佳转速和功率输出。
电网互联控制则是实现风能发电系统与电网的平稳连接和功率的稳定输出。
水能发电系统的控制技术主要包括水头控制和电网稳定性控制。
水头控制是通过调节水轮机的引水量和运行速度,以实现对电能输出的控制。
电网稳定性控制则是调节水能发电系统与电网之间的功率匹配,确保系统的可靠性和稳定性。
生物能发电系统的控制技术主要解决的问题是发酵和燃烧控制。
发酵控制是通过对有机物质进行合理控制,使其充分分解产生可燃气体。
燃烧控制则是通过对可燃气体的供给和燃烧过程进行控制,实现对生物能发电系统的稳定运行。
二、新能源发电系统控制技术的未来趋势随着新能源发电系统规模的不断扩大和应用领域的拓展,其控制技术面临着新的挑战和需求。
未来新能源发电系统控制技术的发展将朝着以下几个方向展开:1. 智能化控制:随着人工智能和物联网技术的不断发展,新能源发电系统控制技术将趋向于智能化。
通过数据采集和分析,系统可以实现自动化运行和优化控制,提高系统的效率和稳定性。
光伏发电项目质量控制计划

光伏发电项目质量控制计划
一、前言
太阳能光伏发电是继核电、风电之后比较流行的新能源发电技术,其发电效率较高、发电成本较低,在全球新能源发电市场,太阳能光伏发电处于绝对技术优势地位,可取代传统燃油和核燃料发电技术,使发电过程更加“绿色”“安全”“环保”。
但是,太阳能光伏发电是一项复杂而又技术含量较高的科技项目,出现技术性故障也是很正常的,一旦发生技术性故障,不仅会影响发电系统的正常运行,还可能引发运行不良、安全事故等,严重时可能造成人身伤害,所以太阳能光伏发电项目要求质量控制必不可少。
二、太阳能光伏发电项目质量控制的方案
1、项目文件管理
太阳能光伏发电项目文件包括合同、方案、设计图纸、供货清单等,项目实施过程中需要实施管理,必要时需做好落实情况,防止项目文件出现漏洞,保证项目质量。
2、材料质量控制
太阳能光伏发电项目所需要的设备、材料,都是外购的,必须按照国家有关品质标准开展质量检验,确保每件材料都符合要求,再收入库,以确保投运时无质量问题。
3、安装调试及质量控制
太阳能光伏发电设备安装调试是要进行质量控制的,安装、调试要按照设计图纸。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20
美国最大的光伏发电站-1
第4章 太阳能、光伏发电与控制技术
21
美国最大的光伏发电站-2
第4章 太阳能、光伏发电与控制技术
22
第4章 太阳能、光伏发电与控制技术
23
第4章 太阳能、光伏发电与控制技术
24
第4章 太阳能、光伏发电与控制技术
25
第4章 太阳能、光伏发电与控制技术
26
第4章 太阳能、光伏发电与控制技术
第4章 太阳能、光伏发电与控制技术
9
4.2.2 太阳能的技术应用
1.太阳能采集 ※ (1)平板集热器 ※ (2)真空管集热器 ※ (3)聚光集热器
第4章 太阳能、光伏发电与控制技术
10
2.太阳能的转换
2.太阳能的转换 ※ ( 1)太阳能――热能转换 ※ (2)太阳能――电能转换 ※ (3)太阳能――氢能转换 ※ (4)太阳能――生物质能转换 ※ (5)太阳能--机械能转换
不同地区太阳平均辐射强度
地区
热带、沙漠 温带 阳光较少地区(北欧)
太阳平均辐射强度
kWh/(m2·d) 5-6 3-5 2-3
W/m2 210-250 130-210 80-130
第4章 太阳能、光伏发电与控制技术
6
地球上的能流
图4-4 地球上的能流
第4章 太阳能、光伏发电与控制技术
7
4.2 太阳能的转换与应用
(2)充放电控制器、逆变器 本部分除了对蓄电池或其他中间 蓄能元件进行充放电控制外,一般还要按照负载电源的需求 进行逆变,使光伏阵列转换的电能经过变换后可以供一般的 用电设备使用。
(3)蓄电池、蓄能元件及辅助发电设备 蓄电池或其他蓄能元 件如超导、超级电容器等是将太阳能电池阵列转换后的电能 储存起来,以使无光照时也能够连续并且稳定的输出电能, 满足用电负载的需求。
太阳能必须即时转换成其他形式能量才能贮存 和利用,转换的方式主要有以下几种:
(1)太阳能――热能转换,并以热能形式贮存 (2)太阳能――电能转换,并以电能形式贮存 (3)太阳能――氢能转换,并以氢能形式贮存 (4)太阳能――生物质能转换,并贮存于生物 质 (5)太阳能--机械能转换,并以机械 能形式贮存
第4章 太阳能、光伏发电与控制技术
第4章 太阳能、光伏发电与控制技术
第4章 太阳能、光伏发电与控制技术
2
本章主要内容
4.1 太阳的辐射及太阳能简介 4.2 太阳能的转换与应用 4.3 太阳能电池与光伏发电原理 4.4 MPPT光伏变换与控制技术 4.5 光伏阵列并网逆变器的结构与控制策略 4.6 光伏发电的制约因素与经济技术评价
图4-8 太阳电池晶片
第4章 太阳能、光伏发电与控制技术
36
5. 太阳能晶片受光的物理过程
图4-9 太阳能晶片受光的物理过程
第4章 太阳能、光伏发电与控制技术
37
太阳能电池的分类
1. 单晶硅太阳能电池 2. 多晶硅太阳能电池 3. 非晶硅太阳能电池
第4章 太阳能、光伏发电与控制技术
38
4.3.2 太பைடு நூலகம்能光伏发电原理
27
第4章 太阳能、光伏发电与控制技术
28
第4章 太阳能、光伏发电与控制技术
29
第4章 太阳能、光伏发电与控制技术
30
4.3 太阳能电池与光伏 发电原理
4.3.1 太阳能电池
太阳能光伏发电的最基本元件是太阳电池 (片),有单晶硅、多晶硅、非晶硅和薄膜电 池等种类。单晶和多晶电池用量最大,非晶电 池用于一些小系统和计算器辅助电源等。
第4章 太阳能、光伏发电与控制技术
31
太阳能电池原理
太阳能电池的原理是基于半导体的光伏效 应,将太阳辐射直接转换为电能。
所谓光电效应,就是指物体在吸收光能后, 其内部能传导电流的载流子分布状态和浓度发 生变化,由此产生出电流和电动势的效应。在 气体、液体和固体中均可产生这种效应,而半 导体光伏效应的效率最高。
第4章 太阳能、光伏发电与控制技术
11
3.太阳能贮存
※ (1)热能贮热 ※ (2)电能贮存 ※ (3)氢能贮存 ※ (4)机械能贮存
第4章 太阳能、光伏发电与控制技术
12
4.太阳能传输
※ (1)直接传输 ※ (2)间接传输
第4章 太阳能、光伏发电与控制技术
13
5. 太阳能的利用
※ (1)太阳辐射的热能利用 ※ (2)太阳能光热利用 ※ (3)太阳能热发电 ※ (4)太阳能综合利用 ※ (5)太阳能光伏发电技术
第4章 太阳能、光伏发电与控制技术
32
1. 半导体的内部结构
图4-5 一般的半导体结构
第4章 太阳能、光伏发电与控制技术
33
2. P型半导体的结构
图4-6 P型半导体
第4章 太阳能、光伏发电与控制技术
34
3. N型半导体的结构
图4-7 N型半导体
第4章 太阳能、光伏发电与控制技术
35
4. 太阳能电池晶片的组成
第4章 太阳能、光伏发电与控制技术
8
4.2.1 太阳能应用的发展史
第一阶段(1900~1920年) 第二阶段(1920~1945年) 第三阶段(1945~1965年) 第四阶段(1965~1973年) 第五阶段(1973~1980年) 第六阶段(1980~1992年) 第七阶段(1992~2005年)
1. 太阳能电池阵列 2. 逆变器 3. 用电设备 4. 进户计量仪表
第4章 太阳能、光伏发电与控制技术
39
1. 太阳能光伏发电系统的结构
图4-10 典型的光伏发电系统
第4章 太阳能、光伏发电与控制技术
40
2 .系统组成
(1)太阳能电池组件:由太阳能电池(也称光伏电池)按照系 统的需要串联或并联而组成的矩阵或方阵,在太阳光照射下 将太阳能转换成电能,它是光伏发电的核心部件。
第4章 太阳能、光伏发电与控制技术
14
太阳能的利用
第4章 太阳能、光伏发电与控制技术
15
第4章 太阳能、光伏发电与控制技术
16
第4章 太阳能、光伏发电与控制技术
17
第4章 太阳能、光伏发电与控制技术
18
尚德大型太阳能发电幕墙
第4章 太阳能、光伏发电与控制技术
19
第4章 太阳能、光伏发电与控制技术
第4章 太阳能、光伏发电与控制技术
3
4.1太阳的辐射及太阳能简介
4.1.1太阳简介
图4-1 太阳的结构
第4章 太阳能、光伏发电与控制技术
4
太阳活动
图4-2 地球绕太阳运行示意图
第4章 太阳能、光伏发电与控制技术
5
4.1.2 太阳辐射
地面辐射的时空变化特点是:① 全年以赤道获得的辐射最 多,极地最少。这种热量不均匀分布,必然导致地表各纬度的 气温产生差异,在地球表面出现热带、温带和寒带气候;② 太 阳辐射夏天大冬天小,它导致夏季温度高而冬季温度低。