关于高等数学期末复习资料归纳大全

合集下载

《高等数学》(下)期末考试考前复习提纲

《高等数学》(下)期末考试考前复习提纲

《高等数学》下册期末考试考前复习提纲第一部分 空间解析几何与向量代数一、向量代数 1、向量的概念 (1)向量的定义有大小有方向的线段a(自由向量) (2)向量的表示1)),,(z y x a a a a =, 为向量的直角坐标表示2)0a a a=,其中a 为向量的模(大小),222zy x a a a a ++= 0a 为a的单位向量,0(cos ,cos ,cos )(,,)y x z a a a a a a aαβγ==,)cos ,cos ,(cos γβα为a的方向余弦,1cos cos cos 222=++γβα注:若有两点:111222(,,),(,,)A x y z B x y z ,则向量AB 为 212121{(),(),()}A B x x y y z z =--- 2、向量的运算 (1)线性运算),,(z z y y x x b a b a b a b a +++=+),,(z y x a a a a λλλλ=(2)数量积(标积,点积) 1)cos ,,a b a b a b ϕϕ⋅≡≡(0)ϕπ≤≤2)z z y y x x b a b a b a b a ++=⋅特例:当b a ⊥时,0=⋅b a(两向量垂直的判据)(3)向量积(矢积,叉积)1)0sin c b a c b a ϕ=≡⨯,b a ,与c为右手螺旋关系2)()()()xy z y z z yz x x z x y y x xy zij ka b a a a i a b a b j a b a b k a b a b b b b ⨯==-+-+-特例:当b a//时,0=⨯b a ,或z y x z y x z z y y x x b b b a a a b a b a b a ::::=↔==(两向量平行的判据)3、两点的间距公式212212212)()()(z z y y x x d -+-+-=4、平面π外一点0000(,,)P x y z 到平面π的距离公式:Dd =平面π的点法式方程为: 0Ax By Cz D +++= 二、空间解析几何1、空间曲面与空间曲线 (1)方程曲面方程 0),,(=z y x F (三元方程)曲线方程 ⎩⎨⎧==0),,(0),,(21z y x F z y x F 或)(),(),(t z z t y y t x x ===(2)常见的曲面与曲线1) 柱面—— 一直线l (母线)沿着一平面曲线C (准线)作平行于一定直线L 的移动所得的曲面 母线z //轴的柱面: 0),(=y x F母线y //轴的柱面: 0),(=x z F 母线x //轴的柱面: 0),(=z y F2) 旋转面—— 一平面曲线(母线)绕着同一平面内的定直线(转轴)旋转一周所得的曲面例(,)00z y f y z x =⎧⎨=⎩绕z 不变,旋转曲面0),(22=+±z y x f 3)空间螺旋线t k z a y a x ωθθθθ====,,c o s ,s i n4)二次曲面(三元二次方程) )(a 椭球面1222222=++cz b y a x椭球面与平行于坐标面平面的交线:→⎪⎩⎪⎨⎧==++12222221z z c z b y a x ⎪⎪⎩⎪⎪⎨⎧==-+-12122222122221)()(z z z c c b yz c c a x ; →⎪⎩⎪⎨⎧==++12222221y y c z b y a x ⎪⎪⎩⎪⎪⎨⎧==-+-12122222122221)()(y y y b b c z y b b a x ; →⎪⎩⎪⎨⎧==++12222221x x c z b y a x ⎪⎪⎩⎪⎪⎨⎧==-+-12122222122221)()(x x x a a c z x a a b y 分别为在1z z =,1y y =与1x x =平面内的椭圆。

《高等数学》(上)期末复习知识要点

《高等数学》(上)期末复习知识要点

1、 四则运算法则与复合运算法则(换元法);2、 初等函数的连续性(代入法): 00lim ()()x x f x f x →=;3、 两个重要极限:1)0sin lim1x x x→=,【特征:0sin lim 1→=】2)1lim(1)x x e x →∞+=(或1lim(1)n n e n→∞+=,10lim(1)x x x e →+=);【特征:1lim(1)e →∞+= 】4、 存在准则:1)夹逼准则,2)单调有界准则;5、 洛必达法则:未定式00或∞∞(其它类型未定式:000,,,1,0∞⋅∞∞−∞∞必须转化); 6、 等价无穷小量替换:只适用于乘除,加减不适用.(当0x →时,21cos 2x x −∼, sin (tan ,arctan ,arcsin ,1,ln(1)),x x x x x e x x −+∼(1)1a x x α+−∼(α为常数)等等)7、 无穷小的性质:有界量与无穷小的乘积、有限个无穷小的和与乘积均为无穷小等 8、 泰勒公式(麦克劳林公式); 9、 微分中值定理;10、 定积分或导数定义*: 1)*【定积分定义】、设()f x 在[,]a b 上可积,则1lim ()()nb a n i b a b af a i f x dx n n→∞=−−+⋅=∑∫; 2)【导数定义】设()f x 在点a 处可导,则0()()()()lim()lim ()x ah f x f a f a h f a f a f a x a h→→−+−′′==−或.1、 函数()f x 在点0x 处连续000lim ()()lim ()lim ()()x x x x x x f x f x f x f x f x +−→→→⇔=⇔==;2、 间断点:1)第一类间断点:可去,跳跃;2)第二类间断点:无穷,振荡等.3、 连续函数的运算性质:连续函数的加减乘除仍为连续函数;连续函数的复合函数仍为连续函数 4、 初等函数的连续性:一切初等函数在其定义区间内处处连续 5、 闭区间上连续函数的性质:1)有界性;2)最大值最小值定理;3)零点定理【闭上连续两端异号零点在开内】;4)介值定理及其推论一、 极限及其求法:二、 函数的连续性《高等数学》(上)期末复习要点1、 定义: 1)0000000()()()()()limlimx x x f x f x f x x f x f x x x x →∆→−+∆−′==−∆; 2)0000000()()()()()lim lim x x x f x f x f x x f x f x x x x +++→∆→−+∆−′==−∆3)0000000()()()()()lim lim x x x f x f x f x x f x f x x x x−−−→∆→−+∆−′==−∆4)000()()()f x f x A f x A +−′′′==⇔= 2、 求导法则:【必须牢记18个基本导数公式】 1) 显函数()y f x =:I、四则运算法则: ()[()()],[()()],[],[()]()u x u x v x u x v x ku x v x ′′′′±⋅; II、复合函数的求导法则:设(),()y f u u g x ==都可导,则[()]y f g x =的导数为(){[()]}()()[()]()u g x d f g x f u g x f g x g x dx =′′′′=⋅=⋅,或dy dy du dx du dx=⋅ III、反函数的求导法则:1dy dx dxdy= IV、对数求导法则(特别适用于幂指函数):()y f x =,ln ||ln |()|y f x == (化简),y y′⇒= 2) 参数方程:()()x x t y y t =⎧⎨=⎩,()dy dydxg t dtdt dx == ,22()()d y dg t dg t dxdt dtdx dx=== , 其它阶同理可求.3) 隐函数:(,)0F x y =(方程两边对x 求导,注意y 为x 的函数)10x y dyF F dx′′⇒⋅+⋅= 3、 高阶导数:234(4)()234(),(),(),,()n n n d y d y d y d y f x f x f x f x dx dx dx dx′′′′′==== 等4、 微分()dy f x dx ′=5、 关系:可微与可导等价;可导必连续,反之未必.三、 导数与微分1、 曲线的切线与法线方程:00()y y k x x −=−,0()k f x ′=切,01/()k f x ′=−法;2、 微分中值定理:首先必须验证定理的条件是否满足,然后根据定理下结论!1)Rolle 定理:()0()f a b ξξ′=<<;2)Lagrange 中值定理:()()()()()f b f a f b a a b ξξ′−=−<<;估计函数值之差3)Cauchy 中值定理:()()()()()()()f b f a f a bg b g a g ξξξ′−=<<′−;4)Taylor 中值定理:()(1)100000()()()()()()!(1)!k n nkn k f x f f x x x x x x x k n ξξ++==−+−+∑在与之间 3、 洛必达法则:00()()limlim ()()f x f x org x g x ∞∞′′,其它型未定式必须转化 4、 泰勒公式:熟悉5个常见带Peano 型余项的Maclaurin 公式5、 函数的单调性【一阶导符号判定】、极值、最值及其函数图形的凹凸性【二阶导符号判定】、拐点和渐近线 6、 不等式的证明:1)单调性;2)中值定理;3)凹凸性;4)最值 7、 方程根的存在性及唯一性:1)零点定理;2)Rolle 定理;3)单调性;4)极值最值等等 8、 恒等式的证明:若在区间I 上()0f x ′≡,则在区间I 上()f x C ≡2π1、 基本性质:线性,对积分区间的可加性,保号性(特别课后Ex.7:用连续性与不恒等于去等号),定积分中值定理【()()()()baf x dx f b a a b ξξ=−<<∫】,定积分的奇偶对称性、周期性.2、()()f x dx F x C =+∫与Newton-Leibniz 公式:()()bba af x dx F x =∫,(()()F x f x ′=)3、 换元法:1)第一类(凑微分法);2)第二类:三角代换,倒代换等4、 分部积分法:1)三指动,幂不动;2)幂动,反对不动;3)凑同类所求便再现.5、 积分上限函数的导数:()()x a d f t dt f x dx =∫, ()()[()]()g x a d f t dt f g x g x dx′=⋅∫, 其中()f x 连续,()g x 可导,a 为常数,积分中的表达式()f t 必须与x 无关6、 有理函数的积分【假分式用除法化为多项式加真分式,真分式因式分解化为部分分式】以及可化为有理函数的积分【①三角函数有理式的积分:万能代换tan()2xt = ()x ππ−<<;②简单根式:线性函数或分式函数的根式讨厌要换之,开方不同最小公倍数】7、 反常积分:无穷限的反常积分或瑕积分,广义Newton-Leibniz 公式,特别注意瑕点在积分区间内部的瑕积分四、 导数的应用sin n xdx 】五、积分:不定积分,定积分,反常积分【必须牢记24个基本积分公式以及I n =∫1、 平面图形的面积:1) 直角坐标,x y :a、 曲边梯形1{(,)|,0()}D x y a x b y f x =≤≤≤≤:()baA f x dx =∫;b、 上、下型{(,)|,()()}D x y a x b g x y f x =≤≤≤≤:[()()]baA f x g x dx =−∫;c、 左、右型{(,)|,()()}D x y c y d g y x f y =≤≤≤≤:[()()]dcA f y g y dy =−∫;d、 设曲边梯形1D 的曲边由参数方程:(),()x x t y y t ==给出,则()()()b aA f x dx y t x t dt βα′==⋅∫∫【先代公式后换元】2) 极坐标,ρθ(极坐标变换cos ,sin x y ρθρθ==): 设曲边扇形{(,)|,0()}D ρθαθβρρθ=≤≤≤≤,则21()2A d βαρθθ=∫ 2、 体积:CaseA、旋转体的体积:1) X-型或上下型{(,)|,0()}D x y a x b y f x =≤≤≤≤:I、绕x 轴 2()bx aV f x dx π=∫;II、绕y 轴 2()(0)by aV xf x dx a π=≥∫2) Y-型或左右型{(,)|,0()}D x y c y d x g y =≤≤≤≤: I、绕y 轴 2()dy cV g y dy π=∫;II、绕x 轴 2()(0)dx cV yg y dy c π=≥∫CaseB、平行截面面积为已知的立体{(,,)|,(,)}x x y z a x b y z D Ω=≤≤∈,若()x AreaD A x =,则()baV A x dx =∫3、 弧长:由不同方程,代不同公式 1)():()()x x t C t y y t αβ=⎧≤≤⎨=⎩,()s βααβ=<∫;2):(),C y f x a x b =≤≤,()as a b =<∫;3):(),C ρρθαθβ=≤≤,()s βαθαβ=<∫六、 定积分的应用【有公式代就代公式,否则用元素法】 (一) 一阶微分方程:(,,)0F x y y ′=,(,)y f x y ′=或(.)(,)0M x y dx N x y dy +=1、 可分离变量:()()f x dx g y dy =,积分之可得通解2、 齐次:()dy ydx xϕ=,令y u x =,可将原方程化为关于,x u 的可分离变量3、 线性:()()dyP x y Q x dx+=,通解为()()[()]P x dx P x dx y e Q x e dx C −∫∫=+∫;或利用常数变易法或利用积分因之法:()()P x dxx e µ∫=4、 伯努利:()()(0,1)n dyP x y Q x y n dx+=≠,令1n z y −=,可将原方程化为关于,x z 的线性. (二) 可降阶的高阶微分方程: I 、()()n yf x =【右端只含x 】:连续积分之;II 、(,)y f x y ′′′=【不显含y 】:令,y p ′=则dpy dx′′=,可将原方程化为关于,x p 的一阶. III 、(,)y f y y ′′′=【不显含x 】:令y p ′=,则dpy p dy′′=,可将原方程化为关于,y p 的一阶 (三) 概念与理论1、 概念:阶,解(特解,通解),初始条件,初值问题,积分曲线2、 线性微分方程的解的结构:1)齐次:()()0y P x y Q x y ′′′++=,通解:1122()()y C y x C y x =+,其中12(),()y x y x 为该方程线性无关的两个解. 2)非齐次:()()()y P x y Q x y f x ′′′++= 通解:()*()y Y x y x =+,其中()Y x 为对应的齐次方程的通解,*()y x 为原方程的一个特解. 3)设12*(),*()y x y x 分别为1()()()y P x y Q x y f x ′′′++= 与2()()()y P x y Q x y f x ′′′++=的特解,则12**()*()y y x y x =+为12()()()()y P x y Q x y f x f x ′′′++=+的特解.七、 微分方程附录I——基本求导公式:1221(1)()0(2)();(3)();(4)(ln ||);1(5)()ln ;(6)(log );(01)ln (7)(sin )cos ;(8)(cos )sin ;(9)(tan )sec ;(10)(cot )csc ;(11)(sec )sec tan ;(12)x x x x a C C x x e e x xa a a x a a x ax x x x x x x x x x x αααα−′′′′====′′==>≠′′′′==−==−′=,为常数;,为常数常数且(csc )csc cot ;(13)(arcsin )(14)(arccos )(17)(sh )ch ;(18)(ch )sh .x x x x x x x x x ′′=−=′=′′==附录II——基本积分公式:122(1)1(2)1;(3)ln ||;1(4);(5)01;ln (6)sin cos ;(7)cos sin ;(8)sec tan ;(9)csc cot ;(10)sec tan sec x x x xkdx kx C k x x dx C dx x C x a e dx e C a dx C a a a xdx x C xdx x C xdx x C xdx x C x xdx x C αααα+=+=+≠−=++=+=+>≠=−+=+=+=−+=+∫∫∫∫∫∫∫∫∫∫,为常数;,常数,常数且;(11)csccot csc;(12)tan ln |cos |;(13)cot ln |sin |;(14)sec ln |sec tan |;(15)csc ln |csc cot |;(16);(18)x xdx x C xdx x C xdx x C xdx x x C xdx x x C C =−+=−+=+=++=−+∫∫∫∫∫2200;(20)(21)ln(;(22)ln ||;(23)sh ch ;(24)ch sh .1331,2422sin cos n n n C x C x C xdx x C xdx x C n n n nI xdx xdx πππ=+=++=+=+−−⋅⋅⋅⋅⋅⎛⎞−===⎜⎟⎝⎠∫∫∫∫∫ 1342,253n n n n n n ⎧⎪⎪⎨−−⎪⋅⋅⋅⋅⎪−⎩ 为正偶数;为大于1的正奇数.。

高数期末必考知识点总结大一

高数期末必考知识点总结大一

高数期末必考知识点总结大一高数期末必考知识点总结高等数学是大一学生必须学习的一门重要课程,它在培养学生的数学思维、分析问题和解决问题的能力方面起着重要的作用。

期末考试是对学生整个学期所学知识的总结和检验,因此掌握必考的知识点至关重要。

本文将对高数期末必考的知识点进行总结和梳理,以帮助大家更好地备考。

一、函数与极限1. 函数的基本概念和性质:定义域、值域、奇偶性等。

2. 极限的定义与性质:极限存在准则、无穷大与无穷小、夹逼定理等。

3. 重要极限的求解方法:基本初等函数的极限、无穷小的比较、洛必达法则等。

二、导数与微分1. 导数的定义与性质:导数的几何意义、导数的四则运算、高阶导数等。

2. 基本初等函数的导数:常数函数、幂函数、指数函数、对数函数等。

3. 隐函数与反函数的导数:隐函数求导、反函数的导数等。

4. 微分的定义与性质:微分的几何意义、微分中值定理等。

三、不定积分与定积分1. 不定积分的定义与基本性质:不定积分的线性性质、换元积分法等。

2. 基本初等函数的不定积分:幂函数的不定积分、三角函数的不定积分等。

3. 定积分的定义与性质:定积分的几何意义、定积分的性质等。

4. 定积分的计算方法:换元法、分部积分法、定积分的性质等。

四、微分方程1. 微分方程的基本概念:微分方程的定义、阶数、解的概念等。

2. 一阶微分方程:可分离变量的微分方程、齐次线性微分方程等。

3. 高阶线性微分方程:齐次线性微分方程、非齐次线性微分方程等。

4. 常微分方程的初值问题:初值问题的存在唯一性、解的连续性。

五、级数1. 数项级数的概念与性质:数项级数的定义、级数的收敛与发散、级数的性质等。

2. 常见级数的判别法:比较判别法、比值判别法、根值判别法等。

3. 幂级数:幂级数的收敛半径、收敛域的判定、幂级数的和函数等。

综上所述,高数期末必考的知识点主要包括函数与极限、导数与微分、不定积分与定积分、微分方程以及级数等。

在备考期末考试时,同学们要重点复习这些知识点,并通过大量的练习题来巩固和提高自己的理论水平和解题能力。

高数知识点复习资料

高数知识点复习资料
2 lim x 1 2 x 1 2 x 1
x 1
tan x s)
2 x 1 2 x 1 2 x1 2 2 lim 1 2 x 1 2 x 1
x3 x 3 x 2 9 【求解示例】解:因为 x 3 ,从而可得 x 3 ,所以原 x 3 x 3 1 1 式 lim 2 lim lim x 3 x 9 x 3 x 3 x 3 x 3 x 3 6
【题型示例】求值 lim (其中 x 3 为函数 f x
1 第二个重要极限: lim1 e x x
(一般地, lim f x lim f x 0 )
g x
x
1.由 xn a 化简得 n g , 2.即对 0 , N g ,当 n N 时,始终 有不等式 xn a 成立, ∴ limxn a
e 2 x1 2 x 1 e1 e
第五节 函数的连续性 ○函数连续的定义
x x0 x x0
2 x2 lim
lim f x lim f x f x0
○间断点的分类
跳越间断点(不等) 第一类间断点(左右极 限存在) 可去间断点(相等) 第二类间断点 ) 无穷间断点(极限为 (特别地,可去间断点能在分式中约去相应公因式)
x2 a2 1

(或:过 y f x 图像上点 a, f a 处的切线与法线 方程) 【求解示例】 1. y f x , y |x a f a 2.切线方程: y f a f a x a 法线方程: y f a

大学高等数学最全复习内容汇总

大学高等数学最全复习内容汇总

例(P128) 3 ; (P130) 5、6
3、弹性函数 在点 x0 处的弹性为
Ey Ex x x0
f ( x0 )
x0 f ( x0 )
函数y=f(x)在点x0处的弹性反映了当自变量变化1%时, 函数y变化的百分数为 Ey %.
Ex x x0
例(P79) 3,2(思考题)
5、导数的计算 (1)(u v) u v;
(2)(u
(4)设
v) uv
y f (u),
uv;
u
(3) u
( x),v
uv uv v2
,(v
0).
y'x y'u u'x 或
例 ( P43) 2 (4) (5)
dy dy du dx du dx
6、高阶导数 y ( y), y ( y)
x1 x
y x x ( ln x 1 ) 2x x
9、微分 (1)点微分
dy x x0 y x x0 x或 df ( x0 ) f '( x0 )x
(2)函数微分 dy ydx或 df ( x) f ( x)dx
( P51) 例2 ( P54) 1、2
10、微分的应用
(1) y x x0 dy x x0 f ( x0 ) x.
0
(3) lim f ( x) A (或), 则 lim f ( x) lim f ( x) A(或).
xa g( x)
xa g( x) xa g( x)
0 型

0 1 , 或 0 0 1.
0
转换求商的极限.
1 1 通分 0 0 .
00
00
00、1、0 型
00 1
3、积分上限函数及其导数

高等数学全面复习资料

高等数学全面复习资料

一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。

集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。

比如“身材较高的人”不能构成集合,因为它的元素不是确定的。

我们通常用大字拉丁字母A 、B 、C 、……表示集合,用小写拉丁字母a 、b 、c ……表示集合中的元素。

如果a 是集合A 中的元素,就说a 属于A ,记作:a ∈A ,否则就说a 不属于A ,记作:a A 。

⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。

记作N ⑵、所有正整数组成的集合叫做正整数集。

记作N +或N +。

⑶、全体整数组成的集合叫做整数集。

记作Z 。

⑷、全体有理数组成的集合叫做有理数集。

记作Q 。

⑸、全体实数组成的集合叫做实数集。

记作R 。

集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。

集合间的基本关系⑴、子集:一般地,对于两个集合A 、B ,如果集合A 中的任意一个元素都是集合B 的元素,我们就说A 、B 有包含关系,称集合A 为集合B 的子集,记作A B (或B A )。

⑵相等:如何集合A 是集合B 的子集,且集合B 是集合A 的子集,此时集合A 中的元素与集合B 中的元素完全一样,因此集合A 与集合B 相等,记作A =B 。

⑶、真子集:如何集合A 是集合B 的子集,但存在一个元素属于B 但不属于A ,我们称集合A 是集合B 的真子集。

⑷、空集:我们把不含任何元素的集合叫做空集。

记作 ,并规定,空集是任何集合的子集。

⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。

即A A②、对于集合A 、B 、C ,如果A 是B 的子集,B 是C 的子集,则A 是C 的子集。

③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。

(完整版)高等数学复习资料大全

(完整版)高等数学复习资料大全

《高等数学复习》教程第一讲函数、连续与极限一、理论要求1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期)几类常见函数(复合、分段、反、隐、初等函数)2.极限极限存在性与左右极限之间的关系夹逼定理和单调有界定理会用等价无穷小和罗必达法则求极限3.连续函数连续(左、右连续)与间断理解并会应用闭区间上连续函数的性质(最值、有界、介值)二、题型与解法A.极限的求法(1)用定义求(2)代入法(对连续函数,可用因式分解或有理化消除零因子)(3)变量替换法(4)两个重要极限法(5)用夹逼定理和单调有界定理求(6)等价无穷小量替换法(7)洛必达法则与Taylor级数法(8)其他(微积分性质,数列与级数的性质)1.612arctan lim )21ln(arctan lim3030-=-=+->->-xx x x x x x x (等价小量与洛必达) 2.已知2030)(6lim 0)(6sin limxx f x x xf x x x +=+>->-,求 解:20303')(6cos 6lim )(6sin limx xy x f x x x xf x x x ++=+>->- 72)0(''06)0(''32166'''''36cos 216lim6'''26sin 36lim 00=∴=+-=++-=++-=>->-y y xy y x x xy y x x x362722''lim 2'lim )(6lim0020====+>->->-y x y x x f x x x (洛必达)3.121)12(lim ->-+x xx x x (重要极限) 4.已知a 、b 为正常数,xx x x b a 30)2(lim +>-求 解:令]2ln )[ln(3ln ,)2(3-+=+=x x x x x b a xt b a t 2/300)()ln(23)ln ln (3limln lim ab t ab b b a a b a t xx x x x x =∴=++=>->-(变量替换) 5.)1ln(12)(cos lim x x x +>- 解:令)ln(cos )1ln(1ln ,)(cos 2)1ln(12x x t x t x +==+ 2/100212tan limln lim ->->-=∴-=-=e t x x t x x (变量替换)6.设)('x f 连续,0)0(',0)0(≠=f f ,求1)()(lim22=⎰⎰>-xx x dtt f xdtt f(洛必达与微积分性质)7.已知⎩⎨⎧=≠=-0,0,)ln(cos )(2x a x x x x f 在x=0连续,求a解:令2/1/)ln(cos lim 2-==>-x x a x (连续性的概念)三、补充习题(作业) 1.3cos 11lim-=---->-xx x e x x (洛必达)2.)1sin 1(lim 0xx ctgx x ->- (洛必达或Taylor ) 3.11lim 22=--->-⎰x xt x edte x (洛必达与微积分性质)第二讲 导数、微分及其应用一、理论要求 1.导数与微分导数与微分的概念、几何意义、物理意义会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导) 会求平面曲线的切线与法线方程2.微分中值定理 理解Roll 、Lagrange 、Cauchy 、Taylor 定理 会用定理证明相关问题3.应用会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图 会计算曲率(半径)二、题型与解法A.导数微分的计算 基本公式、四则、复合、高阶、隐函数、参数方程求导1.⎩⎨⎧=+-==52arctan )(2te ty y t x x y y 由决定,求dx dy2.x y x y x x y y sin )ln()(32+=+=由决定,求1|0==x dxdy解:两边微分得x=0时y x y y ==cos ',将x=0代入等式得y=1 3.y x x y y xy+==2)(由决定,则dx dy x )12(ln |0-==B.曲线切法线问题4.求对数螺线)2/,2/πθρρπθe e (),在(==处切线的直角坐标方程。

高等数学复习资料大全

高等数学复习资料大全

高等数学复习资料大全高等数学复习资料大全一、函数的极限1、函数极限的定义:当函数f(x)在x趋近于某一值时,函数值无限接近于某一确定的数值A,则称A为函数f(x)在x趋近于这一值时的极限。

2、函数极限的性质:(1)唯一性:若极限存在,则唯一。

(2)局部有界性:在极限附近的函数值有界。

(3)局部保号性:在极限附近,函数值的符号保持不变。

(4)归结原则:若在某一区间内,f(x)恒等于A,则A为f(x)在该区间内的极限。

3、极限的四则运算:设、存在,则、也存在,且、、、。

4、复合函数的极限:设、存在,且g(x)在u=a处连续,则、存在,且、。

5、无穷小与无穷大:(1)无穷小:若当x趋近于某一值时,函数f(x)的极限为0,则称f(x)为当x趋近于这一值时的无穷小。

(2)无穷大:若当x趋近于某一值时,函数f(x)的绝对值无限增大,则称f(x)为当x趋近于这一值时的无穷大。

6、两个重要极限:(1)sin x / x = 1 (x趋近于0);(2)(1+k)^ x / kx = e^k (k为常数且k趋近于0)。

二、导数与微分1、导数的定义:设y=f(x),若增量 / 趋于0时,之间的比值也趋于0,则称f(x)在处可导,称此比值为f(x)在处的导数。

2、导数的几何意义:函数在某一点处的导数就是曲线在该点处的切线的斜率。

3、微分的定义:设y=f(x),若函数的增量可以表示为,其中A不依赖于,则称在处可微分,为f(x)在处的微分。

4、导数与微分的关系:若函数在某一点处可导,则在该点处必可微分;反之,若函数在某一点处可微分,则在该点处不一定可导。

5、导数的计算方法:(1)四则运算导数公式;(2)复合函数的导数;(3)隐函数求导法;(4)对数求导法;(5)高阶导数。

三、不定积分1、不定积分的定义:设f(x)是一个函数,是一个常数,则对f(x)进行积分所得的结果称为f(x)的不定积分,记为或。

2、不定积分的性质:(1)线性性质:和都存在,且;(2)恒等性质:都存在,且。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于高等数学期末复习资料归纳大全Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】《高等数学复习》教程第一讲函数、连续与极限一、理论要求1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期)几类常见函数(复合、分段、反、隐、初等函数)2.极限极限存在性与左右极限之间的关系夹逼定理和单调有界定理会用等价无穷小和罗必达法则求极限3.连续函数连续(左、右连续)与间断理解并会应用闭区间上连续函数的性质(最值、有界、介值)二、题型与解法A.极限的求法(1)用定义求(2)代入法(对连续函数,可用因式分解或有理化消除零因子)(3)变量替换法(4)两个重要极限法(5)用夹逼定理和单调有界定理求(6)等价无穷小量替换法(7)洛必达法则与Taylor级数法(8)其他(微积分性质,数列与级数的性质)1.612arctan lim )21ln(arctan lim3030-=-=+->->-x x x x x x x x (等价小量与洛必达)2.已知2030)(6lim0)(6sin limx x f x x xf x x x +=+>->-,求 解:20303')(6cos 6lim )(6sin lim x xy x f x x x xf x x x ++=+>->-362722''lim 2'lim )(6lim0020====+>->->-y x y x x f x x x (洛必达)3.121)12(lim ->-+x xx x x (重要极限)4.已知a 、b 为正常数,xx x x b a 30)2(lim +>-求解:令]2ln )[ln(3ln ,)2(3-+=+=x x x x x b a x t b a t2/300)()ln(23)ln ln (3lim ln lim ab t ab b b a a b a t xx x x x x =∴=++=>->-(变量替换)5.)1ln(12)(cos lim xx x +>-解:令)ln(cos )1ln(1ln ,)(cos 2)1ln(12x x t x t x +==+2/100212tan limln lim ->->-=∴-=-=e t x x t x x (变量替换)6.设)('x f 连续,0)0(',0)0(≠=f f ,求1)()(lim22=⎰⎰>-xx x dtt f xdtt f(洛必达与微积分性质)7.已知⎩⎨⎧=≠=-0,0,)ln(cos )(2x a x x x x f 在x=0连续,求a解:令2/1/)ln(cos lim 20-==>-x x a x (连续性的概念)三、补充习题(作业)1.3cos 11lim-=---->-xx x e x x (洛必达)2.)1sin 1(lim 0x x ctgx x ->- (洛必达或Taylor )3.11lim22=--->-⎰xx tx edtex(洛必达与微积分性质)第二讲导数、微分及其应用一、理论要求1.导数与微分导数与微分的概念、几何意义、物理意义会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导)会求平面曲线的切线与法线方程2.微分中值定理理解Roll、Lagrange、Cauchy、Taylor定理会用定理证明相关问题3.应用会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图会计算曲率(半径)二、题型与解法A.导数微分的计算基本公式、四则、复合、高阶、隐函数、参数方程求导1.⎩⎨⎧=+-==52arctan)(2tetyytxxyy由决定,求dxdy2.xyxyxxyy sin)ln()(32+=+=由决定,求1|==xdxdy解:两边微分得x=0时yxyy==cos',将x=0代入等式得y=13.yxxyy xy+==2)(由决定,则dxdyx)12(ln|-==B.曲线切法线问题4.求对数螺线)2/,2/πθρρπθee(),在(==处切线的直角坐标方程。

解:1|'),,0(|),(,sincos2/2/2/-==⎪⎩⎪⎨⎧====πθππθθθθθyeyxeyex(x)为周期为5的连续函数,它在x=1可导,在x=0的某邻域内满足f(1+sinx)-3f(1-sinx)=8x+o(x)。

求f(x)在(6,f(6))处的切线方程。

解:需求)1('),1()6('),6(ffff或,等式取x->0的极限有:f(1)=0C.导数应用问题6.已知xexfxxxfxxfy--=+=1)]('[2)('')(2满足对一切,)0(0)('0 0≠=xxf若,求),(yx点的性质。

解:令⎩⎨⎧<>>>===-,0,0)(''1xxxeexfxxxx代入,,故为极小值点。

7.23)1(-=xxy,求单调区间与极值、凹凸区间与拐点、渐进线。

解:定义域),1()1,(+∞-∞∈x8.求函数xexy arctan2/)1(+-=π的单调性与极值、渐进线。

解:11'arctan2/22-==⇒++=+xxexxxy x与驻点π,2)2(-=-=xyxey与渐:πD.幂级数展开问题9.⎰=-xxdttxdxd22sin)sin(或:2202sinsin)(sin xduudxdduudxdutx xx==-⇒=-⎰⎰10.求)0()1ln()()(2nfnxxxxf阶导数处的在=+=解:)(2)1(32()1ln(2213222---+--+⋅⋅⋅-+-=+n n n x o n x x x x x x x=)(2)1(321543n nn x o n x x x x +--+⋅⋅⋅-+-- 2!)1()0(1)(--=∴-n n f n n E.不等式的证明11.设)1,0(∈x ,211)1ln(112ln 1)1(ln )122<-+<-<++x x x x x ,求证( 证:1)令0)0(,)1(ln )1()(22=-++=g x x x x g2)令单调下降,得证。

,0)('),1,0(,1)1ln(1)(<∈-+=x h x x x x hF.中值定理问题12.设函数]11[)(,在-x f 具有三阶连续导数,且1)1(,0)1(==-f f ,0)0('=f ,求证:在(-1,1)上存在一点3)('''=ξξf ,使证:32)('''!31)0(''!21)0(')0()(x f x f x f f x f η+++=其中]1,1[),,0(-∈∈x x η将x=1,x=-1代入有)('''61)0(''21)0()1(1)('''61)0(''21)0()1(021ηηf f f f f f f f ++==-+=-=两式相减:6)(''')('''21=+ηηf f13.2e b a e <<<,求证:)(4ln ln 222a b e a b ->-证:)(')()(:ξf a b a f b f Lagrange =--令ξξln 2ln ln ,ln )(222=--=a b a b x x f令2222ln )()(0ln 1)(',ln )(e e t t t t t t >∴>∴<-==ξξϕξϕϕϕ)(4ln ln 222a b e a b ->- (关键:构造函数)三、补充习题(作业)1.23)0('',11ln)(2-=+-=y x x x f 求 2.曲线012)1,0(2cos 2sin =-+⎪⎩⎪⎨⎧==x y t e y te x tt处切线为在3.e x y x x e x y 1)0)(1ln(+=>+=的渐进线方程为 4.证明x>0时22)1(ln )1(-≥-x x x证:令3222)1(2)('''),(''),(',)1(ln )1()(x x x g x g x g x x x x g -=---=第三讲 不定积分与定积分 一、理论要求 1.不定积分 掌握不定积分的概念、性质(线性、与微分的关系)会求不定积分(基本公式、线性、凑微分、换元技巧、分部) 2.定积分理解定积分的概念与性质理解变上限定积分是其上限的函数及其导数求法 会求定积分、广义积分会用定积分求几何问题(长、面、体)会用定积分求物理问题(功、引力、压力)及函数平均值二、题型与解法 A.积分计算1.⎰⎰+-=--=-C x x dx x x dx 22arcsin)2(4)4(22.⎰⎰⎰+=+=+Cx e xdx e xdx e dx x e x x x xtan tan 2sec )1(tan 2222223.设x x x f )1ln()(ln +=,求⎰dx x f )(解:⎰⎰+=dx e e dx x f x x )1ln()( 4.⎰⎰∞∞>-∞+=+-+-=112122ln 214)11(lim |arctan 1arctan b b dx x x x x x dx x x πB.积分性质5.)(x f 连续,⎰=10)()(dt xt f x ϕ,且A x x f x =>-)(lim 0,求)(x ϕ并讨论)('x ϕ在0=x 的连续性。

解:xdy y f x xt y f x⎰=⇒===0)()(,0)0()0(ϕϕ⎰⎰---=-x x x t d t x f dx d dt t x tf dx d 02222022)()(2)(C.积分的应用三、补充习题(作业)1.⎰+---=Cxxxxdxxxcot2sinlncotsinsinln22.⎰+-+dxxxx136523.⎰dxxx arcsin第四讲向量代数、多元函数微分与空间解析几何一、理论要求1.向量代数理解向量的概念(单位向量、方向余弦、模)了解两个向量平行、垂直的条件向量计算的几何意义与坐标表示2.多元函数微分理解二元函数的几何意义、连续、极限概念,闭域性质理解偏导数、全微分概念能熟练求偏导数、全微分熟练掌握复合函数与隐函数求导法3.多元微分应用理解多元函数极值的求法,会用Lagrange乘数法求极值4.空间解析几何掌握曲线的切线与法平面、曲面的切平面与法线的求法会求平面、直线方程与点线距离、点面距离二、题型与解法A.求偏导、全微分1.)(xf有二阶连续偏导,)sin(yefz x=满足zezz xyyxx2''''=+,求)(xf解:uu ececufff-+=⇒=-21)(''2.yxzyxyxyfxz∂∂∂++=2)()(1,求ϕ3.决定由0),,(),()(),(=+===zyxFyxxfzxzzxyy,求dxdz/B.空间几何问题4.求azyx=++上任意点的切平面与三个坐标轴的截距之和。

相关文档
最新文档