温州事业单位专家指导:行程问题题型全汇总

合集下载

公考行程题型归纳

公考行程题型归纳

公考行程题型归纳一、行程问题概述行程问题是公务员考试中的重要题型之一,主要考查考生对运动学知识的理解和应用能力。

行程问题涉及到的知识点包括路程、速度、时间等,通过不同的组合和变化,形成多种复杂的题型。

二、基础行程模型基础行程模型是行程问题的基本模型,包括直线行程和曲线行程两种。

直线行程模型涉及到的知识点包括速度、时间和距离之间的关系,即速度=距离/时间。

曲线行程模型涉及到圆周运动和匀速圆周运动等知识点。

三、相对速度问题相对速度问题是行程问题中的难点之一,主要考查考生对相对速度概念的理解和应用能力。

在相对速度问题中,需要考虑两个物体之间的相对速度,即一个物体相对于另一个物体的速度。

这种题型需要考生对速度的合成和分解有深入的理解。

四、相遇与追及问题相遇与追及问题是行程问题中的常见题型之一,主要考查考生对运动学规律的理解和应用能力。

在相遇与追及问题中,两个物体在同一直线上运动,一个物体追赶另一个物体,或者两个物体在某一地点相遇。

这种题型需要考生对追及和相遇的条件有深入的理解。

五、环形跑道问题环形跑道问题是行程问题中的另一种常见题型,主要考查考生对环形运动规律的理解和应用能力。

在环形跑道问题中,两个或多个物体在圆形跑道上运动,它们可能迎面相遇,也可能背向而行。

这种题型需要考生对环形跑道的运动规律有深入的理解。

六、多次往返问题多次往返问题是行程问题中的一种复杂题型,主要考查考生对往返运动规律的理解和应用能力。

在多次往返问题中,两个物体在同一直线上运动,一个物体从起点出发,经过多次往返运动后回到起点。

这种题型需要考生对往返运动的规律有深入的理解。

七、火车过桥问题火车过桥问题是行程问题中的另一种特殊题型,主要考查考生对火车过桥运动规律的理解和应用能力。

在火车过桥问题中,火车从桥的一端驶向另一端,同时桥上的路灯或其他物体也在移动。

这种题型需要考生对火车过桥的运动规律有深入的理解。

八、时间与距离计算时间与距离计算是行程问题的核心知识点之一,主要考查考生对时间和距离计算方法的理解和应用能力。

2018年国考备考指导:行程问题的常见题型

2018年国考备考指导:行程问题的常见题型

2018年国考备考指导:行程问题的常见题型公务员,是指在各级政府机关中,行使国家行政职权,执行国家公务的人员。

根据《国家公务员暂行条例》,我国的国家公务员是指各级国家行政机关中除工勤人员以外的工作人员。

行政职业能力测验主要测查与公务员职业密切相关的、适合通过客观化纸笔测验方式进行考查的基本素质和能力要素,包括言语理解与表达、数量关系、判断推理、资料分析和常识判断等部分。

2018年国家公务员考试即将到来,以下是国考的行测技巧和知识点。

一、基础知识(一)行程问题的基本关系式路程=速度×时间(二)正反比关系定义若A B=固定值,则A与B成反比关系若,则A与B成正比关系(三)正反比在行程问题中的具体运用时间一定:路程与速度成正比关系速度一定:路程与时间成正比关系路程一定:速度与时间成反比关系二、模拟练习例题1:甲乙二人都是从M地向P地行驶,已知甲乙二人速度之比为6:5的关系,问甲乙二人行走MP长度所用的时间之比为多少?中公解析:根据当路程一定的时候,速度与时间成反比关系,速度之比为6:5,则时间之比为5:6的关系.(路程一定,速度和时间成反比)例题2:甲乙丙三人都是从M地向P地行驶,已知甲乙丙三人速度之比为1:2:3的关系,问甲乙丙三人行走MP长度所用的时间之比为多少?中公解析:根据当路程一定的时候,速度与时间成反比关系,速度之比为1:2:3,则时间之比为。

(路程一定可以设为1。

路程除以速度等于时间)例3:两名运动员进行110米栏赛跑,结果甲领先乙11米到达终点。

同样乙与丙进行110栏赛跑,结果乙领先丙11米到达终点。

如果让甲与丙进行110米栏赛跑,那么甲到终点时,丙跑了多少米?A.88B.89C.90D.91中公解析:此题需要进行比例的统一,甲乙的速度比为110:(110-11),乙丙的速度比为110:(110-11),所以进行比例的统一得到甲乙丙速度比为100:90:81。

化简得到1:0.9:0.81.也就是所甲跑完了全程,丙仅跑了全程的0.81。

数量关系之行程问题答题技巧

数量关系之行程问题答题技巧

数量关系之行程问题答题技巧资料来源:中政行测在线备考平台行程问题的重点在于三个量:路程、速度、时间,考来考去总是这三个点,那命题人如何增加难度呢?一是改变考查形式,比如直接求速度变成间接求解,二是增加因素,比如流水对船速的影响、车身长对路程的影响,等等。

但归根究底还是考一个公式:路程=速度*时间,命题就围绕这个公式展开,一般都是已知一个或多个运动过程,每个运动过程包含三个量:路程、速度、时间,与此同时,不同的运动过程间这三个量必然存在某个共通点,比如路程相同,或者相同时间。

因此,行程问题的基本解题思路就是:分析题干中的每一个运动过程,结合问题看未知量、找出已知量,如果有多个运动过程,找出彼此之间共通点,从一点延伸到面,列出数学表达式,思路一目了然。

1、行程问题之相遇问题答题技巧相遇问题是行程问题的一种考查形式,指两人(或两车等)从两地出发相向而行的行程问题,是研究“速度”、“相遇时间”和“两地距离”三者之间的数量关系的应用题。

三个量中比较难理解一点就是相遇时间,两人同时出发、同时到达某一点。

很明显,运动时间相同,这个时间就称为“相遇时间”,做题时要谨记这个等量关系,是隐含的已知条件。

尤其,近年来考题难度有所增加,单一的相遇问题很少考,综合题比较多,因此,做题时一定要思路清晰,抓准核心,当题中涉及相遇问题时,谨记“相遇时间相同”这一点,利用等量关系巧妙求解未知量,化未知为已知,结合其他已知条件解出最终答案。

2、行程问题之追击问题答题技巧追及问题指的是两人(物)在行进过程中同向而行,快行者从后面追上慢行者的行程问题。

它考虑的是两人(物)在相同时间内所行的路程差。

命题人一般会从三个角度命题,直线运动中有两个:“同地不同时出发型”和“同时不同地出发型”;还有一个是环形运动中的“同时同地出发型”,这里要注意一点,它的路程差是一个隐含的已知条件,与追上次数有关。

第一次追上,路程差是一个周长,第N次追上,路程差是n个周长,做题时如果不明白这一点,很难理清思路。

行程问题 九大题型 与 五大方法 附行程问题典型例题

行程问题 九大题型 与 五大方法  附行程问题典型例题

行程问题“九大题型”与“五大方法”。

很多学生对行程问题的题型不太清楚,对行程问题的常用解法也不了解,那么我给大家归纳一下。

1、九大题型:⑴简单相遇追及问题;⑵多人相遇追及问题;⑶多次相遇追及问题;⑷变速变道问题;⑸火车过桥问题;⑹流水行船问题;⑺发车问题;⑻接送问题;⑼时钟问题。

2、五大方法:⑴公式法:包括行程基本公式、相遇公式、追及公式、流水行程公式、火车过桥公式,这种方法看似简单,其实也有很多技巧,使用公式不仅包括公式的原形,也包括公式的各种变形形式,而且有时条件不是直接给出的,这就需要对公式非常熟悉,可以推知需要的条件。

⑵图示法:在一些复杂的行程问题中,为了明确过程,常用示意图作为辅助工具。

示意图包括线段图、折线图,还包括列表。

图图示法即画出行程的大概过程,重点在折返、相遇、追及的地点。

另外在多次相遇、追及问题中,画图分析往往也是最有效的解题方法。

ps:画图的习惯一定要培养起来,图形是最有利于我们分析运动过程的,可以说图画对了,意味着题也差不过做对了30%!⑶比例法:行程问题中有很多比例关系,在只知道和差、比例时,用比例法可求得具体数值。

更重要的是,在一些较复杂的题目中,有些条件(如路程、速度、时间等)往往是不确定的,在没有具体数值的情况下,只能用比例解题。

ps:运用比例知识解决复杂的行程问题经常考,而且要考都不简单。

⑷分段法:在非匀速即分段变速的行程问题中,公式不能直接适用。

这时通常把不匀速的运动分为匀速的几段,在每一段中用匀速问题的方法去分析,然后再把结果结合起来。

⑸方程法:在关系复杂、条件分散的题目中,直接用公式或比例都很难求解时,设条件关系最多的未知量为未知数,抓住重要的等量关系列方程常常可以顺利求解。

ps:方程法尤其适用于在重要的考试中,可以节省很多时间。

行程问题公式目录基本概念行程问题是研究物体运动的。

基本公式路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题确定行程过程中的位置路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间= 速度和相遇时间×速度和=相遇路程相遇问题(直线)甲的路程-乙的路程=总路程相遇问题(环形)甲的路程+乙的路程=环形周长追及问题追及时间=路程差÷速度差速度差=路程差÷追及时间追及时间×速度差=路程差追及问题(直线)距离差=追者路程-被追者路程=速度差X追及时间追及问题(环形)快的路程-慢的路程=曲线的周长流水问题顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速:(顺水速度-逆水速度)÷2船速:(顺水速度+逆水速度)÷2解题关键船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题。

公考行程问题技巧

公考行程问题技巧

公考行程问题技巧说起公考行程问题的技巧,我有一些心得想分享。

我刚开始备考公务员的时候,一遇到行程问题就头疼得不行。

就像走进了一个迷宫,绕来绕去找不到出口。

首先呢,咱们来说说最基本的公式:路程= 速度×时间,这个就像是做饭的基本食材一样,缺了它可不行。

比如说,有一道题是这样的,一辆汽车以每小时60千米的速度行驶了3小时,问行驶了多远?这就是直接套用公式的简单例子,这时候路程就等于60×3 = 180千米。

这种简单题就像是走路碰到一块小石头,轻松就能跨过去。

那要是复杂一点的呢?假如是相向而行或者相背而行的问题,这就像两个人面对面走路或者背对背走路。

两个人相向而行时,他们之间的距离减少的速度就是两人速度之和;相背而行时,距离增加的速度就是两人速度之和。

比如说,A、B两人,A的速度是每小时5千米,B的速度是每小时3千米,他们相向而行,一开始相距20千米,问多久能相遇?这时候就可以把A和B想象成两个合作的小蚂蚁,它们共同完成20千米的路程,二者速度和是5 + 3 = 8千米/小时,根据公式时间= 路程÷速度,那就是20÷8 = 小时就能相遇啦。

对于那些追击问题,就好比是两个人在赛跑,一个人在前面跑,一个人在后面追。

后面人的速度比前面人快,快出来的那部分速度就是用来缩短他们之间距离的关键。

比如说,甲速度是每小时8千米,乙速度是每小时6千米,乙先出发1小时,甲再出发追乙,甲追乙就是他们的距离在不断缩小,乙先走1小时就先走了6×1 = 6千米,甲每小时比乙多走8 - 6 = 2千米,那甲追上乙就需要6÷2 = 3小时。

对了,还有个事儿要说。

在解行程问题的时候,画图是个特别好的方法。

就像给你一堆乱线,你把它整理好画出来就清楚多了。

有时候单纯看题脑袋里乱糟糟的,但把图画出来,速度、路程和时间的关系就一目了然了。

但是,我得承认,这个画图法虽然好用,但也有局限性。

行程问题7大经典题型总结

行程问题7大经典题型总结

行程问题7大经典题型归纳总结拓展简单地将行程问题分类:(1)直线上的相遇、追及问题(含多次往返类型的相遇、追及)(2)火车过人、过桥和错车问题(3)多个对象间的行程问题(4)环形问题与时钟问题(5)流水、行船问题(6)变速问题一些习惯性的解题方法:(1)利用设数法、设份数处理(2)利用速度变化情况进行分段处理(3)利用和差倍分以及比例关系,将形程过程进行对比分拆(4)利用方程法求解1. 直线上的相遇与追及直线上的相遇、追及是行程问题中最基本的两类问题,这两类问题的解决可以说是绝大多数行程问题解决的基础例题1. 甲、乙两辆汽车同时从东西两地相向开出,甲每小时行56千米,乙每小时行48千米,两车在离两地中点32千米处相遇。

问:东西两地间的距离是多少千米?例题2. 两名游泳运动员在长为30米的游泳池里来回游泳,甲的速度是每秒游1米,乙的速度是每秒游0.6米,他们同时分别从游泳池的两端出发,来回共游了5分钟。

如果不计转向的时间,那么在这段时间内两人共相遇多少次?2. 火车过人、过桥与错车问题在火车问题中,速度和时间并没有什么需要特殊处理的地方,特殊的地方是路程。

因为此时的路程不仅与火车前进的距离有关,还与火车长、隧道长、桥长这些物体长度相关下面教你一招——以静制动法解决火车过桥问题。

呵呵~~这种类型的题目,看起来复杂,眼花缭乱,其实我们可以以静制动,只看火车头或火车尾在整个行程中的路程。

而当有多个变量(火车过人、两辆火车齐头并进,齐尾并进等)时可以把其中一个变量看做静止,只需要研究另一个变量的行程以及二者的速度和或速度差,就可以轻松求解、屡试不爽。

例题3. 一列客车通过250米长的隧道用25秒,通过210米长的隧道用23秒。

已知在客车的前方有一列行驶方向与它相同的货车,车身长为320米,速度每秒17米。

求列车与货车从相遇到离开所用的时间。

例题4. 某解放军队伍长450米,以每秒1.5米的速度行进。

一战士以每秒3米的速度从排尾到排头并立即返回排尾,那么这需要多少时间?(这道题超级经典~)例题5 有2列火车同时同方向齐头行进,12秒钟后快车超过慢车,已知快车每秒行驶18米,慢车每秒行10米,求快车车身长度多少米?如果这两列火车车尾相齐,同时同方向行进,则9秒钟后快车超过慢车,那么慢车车身长度是多少米。

公务员考试行测技巧:数量关系之行程问题汇总

公务员考试行测技巧:数量关系之行程问题汇总

公务员考试行测技巧:数量关系之行程问题汇总近年来国考行测数量关系中的行程问题层出不穷、花样百出,例如相遇追及、队伍行程、流水行船、往返相遇等等一系列行程问题,让许多考生很是头疼。

不要怕,今天拯救你,给大家汇总了数量关系当中的行程问题的公式,通过归纳、整理、例题让各位各位考生更加清晰的掌握这些公式,从而解决实际问题。

行程问题(1)火车过桥核心公式:路程=桥长+车长(火车过桥过的不是桥,而是桥长+车长)(2) 相遇追及问题公式:相遇距离=(速度1+速度2)×相遇时间追及距离=(速度1-速度2)×追及时间(3)队伍行进问题公式:队首→队尾:队伍长度=(人速+队伍速度)×时间;队尾→队首:队伍长度=(人速-队伍速度)×时间(4)流水行船问题公式:顺速=船速+水速,逆速=船速-水速(5)往返相遇问题公式:两岸型两次相遇:S=3S1-S2,(第一次相遇距离A为S1,第二次相遇距离B为S2)单岸型两次相遇:S=(3S1+S2)/2,(第一次相遇距离A为S1,第二次相遇距离A为S2)左右点出发:第N次迎面相遇,路程和=(2N-1)×全程;第N 次追上相遇,路程差=(2N-1)×全程同一点出发:第N次迎面相遇,路程和=2N×全程;第N次追上相遇,路程差=2N×全程以上就是数量关系之行程问题的汇总,接下来给大家分享一道例题,来帮助大家巩固!【真题演练】小张和小王两人错过末班公交车,小王以60米/分钟的速度步行回家,与此同时小张以80米/分钟的速度沿反方向回家。

3分钟后小张发现小王的身份证在自己包里,于是立即调头以180米/分钟的速度跑步追小王,但每跑1分钟休息1分钟,那么从两人分开到小张追上小王需要多长时间?(追上时,小王还没到家)A.14分钟B.20分钟C.17分钟D.11分钟【正确答案】A【解析】根据题意,两人分开3分钟后相距(80 + 60)x3 = 420米,此时小张开始追小王,每2分钟追180 - 60 x 2 = 60米,经过5次(10分钟)追赶,可以追上60 x 5 = 300米,最后还剩420 - 300= 120米,只需120/(180 - 60) = 1分钟,则追赶总时间为10 + 1 = 11分钟。

公考行程问题经典例题

公考行程问题经典例题

公考行程问题经典例题大家都知道,公考的行程问题可真是一个大坑,特别是对于那些初次接触的人来说,简直就像是打破了“无敌”神话。

你有没有过这种经历?早晨一睁眼,脑袋里全是要做的事情,整个人恍若隔世似的,完全不清楚该从哪里开始。

于是,脑袋一热,就决定抓起行程表,一通乱填,搞得自己最后不仅没节奏,反倒更糊涂了。

来来来,咱们一起聊聊这些行程问题,看看怎么能少走点弯路。

行程问题嘛,顾名思义,就是按照给定的条件,安排一系列的活动,最后算出来每一个活动的具体开始和结束时间。

但听起来简单,做起来就有点“坑”。

比如,有这么一道经典题目:你得为一名公务员考试的考生安排几场面试,每场面试之间至少有1小时的空隙,而且不同面试的顺序是固定的。

怎么样?是不是看着就有点眼花缭乱了?这可不仅仅是计算问题,还是大脑的一场运动。

怎么安排才最合理,能让每一场面试都准时开始并结束,不掉链子,才能给考生最好的体验,免得等候过长或者错过了什么。

咱们从最基础的情况讲起,假设一开始给你一堆活动,每个活动都有开始和结束时间,目标是安排它们,确保所有活动按顺序进行,也就是最简单的排程问题。

这时候有一个重点:你得搞清楚时间的“界限”。

什么意思?就是说,一旦你把时间界限搞清楚了,安排起活动来简直就像炒菜一样,一气呵成,根本不拖泥带水。

比方说,给定几个活动,每个活动的时间限制不一样,你得先找出那个最早可以开始的活动,然后再按照顺序安排后面的活动,不能打乱它们的顺序,否则一切白费。

所以啊,最重要的一步,便是弄清楚每个活动的开始时间和结束时间。

接下来咱们得说说“空档”的问题。

很多题目里,都会提到各个活动之间必须有间隔,比如说必须至少有1小时的空隙。

这样一来,你就得时刻记得计算活动结束后的间隔时间,尤其是那些“紧巴巴”的安排,差之毫厘,失之千里。

想象一下,活动A刚好结束了,你是不是应该给活动B留下足够的空档?这时候,眼睛一大亮,你才突然发现,空档的时间可以调剂着用来整理心情,喝点水,调整一下状态,毕竟考生也不是机器,需要一些喘息的空间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

温州事业单位专家指导:行程问题题型全汇总
中公教育黄思林老师:行程问题是考过行测的人最怕遇到的,因为行程问题变化形式非常多,题型也多种多样,要完全做对不是一件容易的事。

针对此问题,中公教育专家们总结出了行程问题里面会考到的大部分题型,希望能帮助到广大考生。

一、相遇问题
1.一次相遇
例1.甲、乙二人同时从相距54千米的A、B两地同时相向而行,甲的速度为4千米/时,乙的速度为5千米/时。

问:假设甲乙相遇地点为C,则CB相距多少千米?这一段路程和甲乙第一次相遇时乙走过的路程是什么关系?
中公解析:CB为30千米,即为到第一次相遇时乙走过的路程。

甲再一次回到C点是从B到的C,故甲走过的路程实际上是一个全程加上CB,即54+30=84(千米);甲乙再一次相遇的时候,两人走过的路程和为3倍的全程,每个人所走过的路程也是他第一次相遇时走过的路程的3倍,则甲走过的路程是24×3=72(千米)(甲第一次相遇时走过的路程为4×6=24千米)。

2.多次相遇
例2.甲从A地、乙从B地同时以均匀的速度相向而行,第一次相遇离A地6千米,继续前进,到达对方起点后立即返回,在离B地3千米处第二次相遇,则AB两地相距多少千米?
中公解析:根据“多次相遇中的2倍关系”原理,可知甲从第一次相遇之后到第二次相遇走了6×2=12千米,在整个时间段内甲走了6+12=18千米。

因为甲是到达B地之后返回,相遇地点距离B
地3千米,因此AB两地间的距离是18-3=15千米。

3.环行相遇问题
例题3.甲、乙两人同时从A点背向出发,沿400米环形跑道行走,甲每分钟走80米,乙每分钟走50米,两人至少经过多少分钟才能在A点相遇?【2011-事业单位】
A.10
B.12
C.13
D.40
中公解析:甲、乙要在A点相遇,则甲、乙行走的路程必是400的整数倍,而甲乙的速度和是130米/分钟,设所需时间为t,则有130t必然是400的倍数,排除A、B、C三项,选择D。

若正面求解:甲走一圈需400÷80=5分钟;乙走一圈需400÷50=8分钟,取5和8的最小公倍数,即40分钟。

二、追及问题
1.两者追及问题
例4.高速公路上行驶的汽车A的速度是100公里每小时,汽车B的速度是每小时120公里,此刻汽车A在汽车B前方80公里处,汽车A中途加油停车10分钟后继续向前行驶。

那么从两车相距80公里处开始,汽车B至少要多长时间可以追上汽车A?
A.2小时
B.3小时10分
C.3小时50分
D.4小时10分
中公解析:汽车AB间的追及距离为80公里,当A车加油停车时两者的速度差为120公里每小时,
当A车行驶时两者速度差为120-100=20公里每小时。

A车加油的10分钟B车追上120×=20公里。

剩下80-20=60公里,B车追上用时为60÷20=3小时。

故汽车B至少要3小时10分钟可以追上汽车A。

备考:相遇问题里面有多次相遇,那么追及里面的多次追及有没有,如果有是怎么样的情况?
1.环形追及问题
例5.甲乙分别在环形跑道的直径上同时同向出发,环形跑道周长为60米,甲得速度为60米/分,乙的速度为70米/分,那么乙要多少分钟才能第二次追上甲?
中公解析:甲乙为追及问题,甲乙的速度差为10米/分,环形周长为60米,所以第一次追上的追及路程为30米,所以用了3分钟,第二次追上甲追及路程为一个环形跑道的周长,即需要用6分钟,那么总共用了9分钟。

三、流水行船问题
例6.一客船往返于A、B两地,已知A、B相距36千米,客船一往一返分别需要2小时和3小时,假设水流速度保持不变,求水流速度及船速分别是多少千米/小时?
A.5,13
B.4,14
C.3,15
D.2,16
中公解析:设水速为x千米/小时,船的静水速度是y千米/小时,则有下面两个方程:,
,解得:x=3,y=15
备考:商场里面的扶梯问题;人在风中行走…等也属于流水行船问题。

四、牛吃草问题
例7.有一牧场长满牧草,每天牧草匀速生长,这片牧场可供10头牛吃20天,15头牛吃10天,问可供25头牛吃多少天?
A.8
B.6
C.5
D.4
中公解析:此题为典型的牛吃草问题。

设一头牛一天吃草量为1,牧草的生长速度为x,牧场可供25头牛吃t天。

根据题意可得(10-x)×20=(15-x)×10=(25-x)×t,由第一个等式解得x=5,代入x解得t=5天,故选择C。

备考:池塘抽水问题;森林砍树问题...也都属于牛吃草问题。

五、时钟问题
例8.四点半钟后,时针与分针第一次成直线的时刻为( )。

A.4点40分
B.4点45分
C.4点54 分
D.4点57分
中公解析:时针一小时走30度,每分钟走0.5度;分针1分钟走6度。

四点半时,时针与分针的夹角是45度,则第一次成直线需要(180-45)÷(6-0.5)=24又分,即4点54又分时第一次成直线。

备考:时钟问题里面还常常考一个钟坏了,经过多少时间,坏钟实际时间等。

六、接送问题
例9.AB两个连队同时分别从两个营地出发前往一个目的地进行演习,A连有卡车可以转载正好一个连的人员,为了让两个连队的士兵同时尽快到达目的地,A连士兵坐车出发一定时间后下车让卡车回去接B连的士兵,两营的士兵恰好同时到达目的地,已知营地与目的地之间的距离为32千米,士兵行军速度为8千米/小时,卡车行驶速度为40千米/小时,求两营士兵到达目的地一共要多少时间?
中公解析:由于卡车的速度为士兵行军速度的5倍,因此卡车折回时已走的路程是B连士兵遇到卡车时已走路程的3倍,而卡车折回所走的路程是B连士兵遇到卡车时已走路程的2倍,卡车接到B 连士兵后,还要行走3倍B连士兵遇到卡车时已走路程的才能追上A连士兵,此时他们已经到达了目的地,因此总路程相当于4倍B连士兵遇到卡车时已走路程,所以B连士兵遇到卡车时已走路程为8千米,而卡车的总行程为(3+2+3)×8=64,这一段路,卡车行驶了64/40=1.6小时,即1小时36分钟也是两营士兵到达目的地所花的时间。

备考:这是车速固定,人速不同的情况。

那么如果人速不同,或者车速不同的时候又应该怎么去中公解析?
中公教育黄思林老师:在此只是对行程问题的题型做了一个总括,属于概括性的东西。

有关行程问题更多详细精彩的讲解,考生们可以通过中公的精讲班和网校视频公开课进行深入了解。

本文来源:/。

相关文档
最新文档