大学物理实验教案2-单摆

合集下载

大学物理实验报告-单摆测重力加速度

大学物理实验报告-单摆测重力加速度

西安交通大学物理仿真实验报告——利用单摆测重力加速度班级:姓名:学号:西安交通大学模拟仿真实验实验报告实验日期:2014年6月1日 老师签字:_____ 同组者:无 审批日期:_____ 实验名称:利用单摆测量重力加速度仿真实验 一、实验简介单摆实验是个经典实验,许多著名的物理学家都对单摆实验进行过细致的研究。

本实验的目的是学习进行简单设计性实验的基本方法,根据已知条件和测量精度的要求,学会应用误差均分原则选用适当的仪器和测量方法,学习累积放大法的原理和应用,分析基本误差的来源及进行修正的方法。

二、实验原理用一根绝对挠性且长度不变、质量可忽略不计的线悬挂一个质点,在重力作用下在铅垂平面内作周期运动,就成为单摆。

单摆在摆角小于5°(现在一般认为是小于10°)的条件下振动时,可近似认为是简谐运动。

而在实际情况下,一根不可伸长的细线,下端悬挂一个小球。

当细线质量比小球的质量小很多,而且小球的直径又比细线的长度小很多时,此种装置近似为单摆。

单摆带动是满足下列公式:进而可以推出:g LT π2=224T L g π=式中L为单摆长度(单摆长度是指上端悬挂点到球重心之间的距离);g为重力加速度。

如果测量得出周期T、单摆长度L,利用上面式子可计算出当地的重力加速度g。

三、实验内容1. 用误差均分原理设计单摆装置,测量重力加速度g.设计要求:(1)根据误差均分原理,自行设计试验方案,合理选择测量仪器和方法.(2)写出详细的推导过程,试验步骤.(3)用自制的单摆装置测量重力加速度g,测量精度要求△g/g< 1%.可提供的器材及参数:游标卡尺,米尺,千分尺,电子秒表,支架,细线(尼龙线),钢球,摆幅测量标尺(提供硬白纸板自制),天平(公用).假设摆长l≈70.00cm;摆球直径D≈2.00cm;摆动周期T≈1.700s;米尺精度△米≈0.05cm;卡尺精度△卡≈0.002cm;千分尺精度△千≈0.001cm;秒表精度△秒≈0.01s;根据统计分析,实验人员开或停秒表反应时间为0.1s左右,所以实验人员开,停秒表总的反应时间近似为△人≈0.2s.2. 对重力加速度g的测量结果进行误差分析和数据处理,检验实验结果是否达到设计要求.3. 研究单摆周期与摆长,摆角,悬线的质量和弹性系数,空气阻力等因素的关系,试分析各项误差的大小.四、实验仪器单摆仪,摆幅测量标尺,钢球,游标卡尺(图1-图4)单摆仪(1)摆幅测量标尺(2)钢球(3)游标卡尺(4)五、实验操作1. 用米尺测量摆线长度+小球直径为92.62m(图5);2. 用游标卡尺测量小球直径结果(图6)图(5)图(6)3. 把摆线偏移中心不超过5度,释放单摆,开始计时,单摆摆过50个周期后停止计时,记录所用时间;T =95.75 s/50 =1.915 s图(7)六、数据处理及误差分析(1)数据处理:1)周期的计算:T = 95.75s/50 = 1.967s2)摆长的计算:钢球直径的测量数据如下表:则⎺d =1.687cm,△⎺d=0.024cm.所以有效摆长为:L =92.62cm -1.687/2cm=91.78cm,3)重力加速度的计算:因为:T=2π√Lg= 9.88m/s2所以:g=4π2LT2查资料可知,西安地区的重力加速度约为9.79 m/s2则相对误差是E=△g/g=0.9⎺%<1%,符合实验要求。

大学物理实验报告-单摆测重力加速度 (2)

大学物理实验报告-单摆测重力加速度 (2)

大学物理仿真实验实验报告拉伸法钢丝测杨氏模量实验名称:拉伸法测金属丝的杨氏模量一、实验目的1、学会测量杨氏模量的一种方法;2、掌握光杠杆放大法测量微小长度的原理;3、学会用逐差法处理数据;二、实验原理任何物体(或材料)在外力作用下都会发生形变。

当形变不超过某一限度时,撤走外力则形变随之消失,为一可逆过程,这种形变称为弹性形变,这一极限称为弹性极限。

超过弹性极限,就会产生永久形变(亦称塑性形变),即撤去外力后形变仍然存在,为不可逆过程。

当外力进一步增大到某一点时,会突然发生很大的形变,该点称为屈服点,在达到屈服点后不久,材料可能发生断裂,在断裂点被拉断。

人们在研究材料的弹性性质时,希望有这样一些物理量,它们与试样的尺寸、形状和外加的力无关。

于是提出了应力F/S(即力与力所作用的面积之比)和应变ΔL/L(即长度或尺寸的变化与原来的长度或尺寸之比)之比的概念。

在胡克定律成立的范围内,应力和应变之比是一个常数,即/)/(=//((1)∆)FL=SLLLE∆FSE被称为材料的杨氏模量,它是表征材料性质的一个物理量,仅与材料的结构、化学成分及其加工制造方法有关。

某种材料发生一定应变所需要的力大,该材料的杨氏模量也就大。

杨氏模量的大小标志了材料的刚性。

通过式(1),在样品截面积S 上的作用应力为F ,测量引起的相对伸长量ΔL/L ,即可计算出材料的杨氏模量E 。

因一般伸长量ΔL 很小,故常采用光学放大法,将其放大,如用光杠杆测量ΔL 。

光杠杆是一个带有可旋转的平面镜的支架,平面镜的镜面与三个足尖决定的平面垂直,其后足即杠杆的支脚与被测物接触,见图1。

当杠杆支脚随被测物上升或下降微小距离ΔL 时,镜面法线转过一个θ角,而入射到望远镜的光线转过2θ角,如图2所示。

当θ很小时, l L /tan ∆=≈θθ(2)式中l 为支脚尖到刀口的垂直距离(也叫光杠杆的臂长)。

根据光的反射定律,反射角和入射角相等,故当镜面转动θ角时,反射光线转动2θ角,由图可Db=≈θθ22tan (3)式中D 为镜面到标尺的距离,b 为从望远镜中观察到的标尺移动的距离。

【免费下载】大学物理设计性实验报告单摆测重力加速度

【免费下载】大学物理设计性实验报告单摆测重力加速度

求出重力加速度的不确定度。
tA
6 1
6
(ti t)2
i 1
6 1
tB 仪 数字毫秒仪 0.001s
g g
l 2 2 t 2 l t
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

大学物理单摆实验报告

大学物理单摆实验报告

大学物理单摆实验报告引言在大学物理课程中,单摆实验是一项非常经典的实验项目。

通过研究单摆的运动规律,我们可以更好地理解和应用牛顿力学原理。

本实验旨在通过测量单摆的周期和摆长,来研究重力对摆动的影响,并验证单摆运动的理论公式。

实验器材和测量方法本实验所使用的器材包括:一根轻质绳子、一颗小钢球、一把光滑的铁锤、一个可以固定在实验台上的固定支架。

在实验时,我们首先将绳子固定在支架上,然后将钢球系在绳子的另一端,使其形成一个单摆系统。

为了减小气阻的影响,我们尽量保持钢球在运动过程中的位移小且速度较慢。

实验过程和数据处理在进行实验之前,我们首先测量了绳子的长度(摆长)为0.5m,并记录下来。

然后,我们将钢球从静止状态释放,开始记录钢球的振动时间和振动的周期。

通过重复以上操作,我们取得了多组数据。

为了消除人为误差,我们需要对实验数据进行处理。

首先,我们计算了每一次摆动的周期T,公式为T = t/n,其中t表示总时间,n表示总摆动次数。

然后,我们计算了摆长L与周期T的平方的关系,即L = T^2/4π^2。

最后,我们使用Matlab等工具对这些数据进行拟合曲线的绘制和拟合参数的计算。

实验结果和讨论根据我们的实验数据处理结果,我们得到了摆长L与周期T的平方的关系曲线,并拟合出了直线。

根据拟合直线的斜率和截距,我们可以计算出实际的重力加速度g和摆长L之间的关系。

通过比较实验测得的g值与理论值(9.8m/s^2)进行对比,我们可以评估实验的准确性和误差大小。

如果实验数据与理论值接近,说明实验结果可靠;反之,说明存在一定的误差。

同时,我们还可以通过计算误差范围和相对误差来更准确地评估实验结果的可靠性。

在讨论实验结果时,我们还可以进一步分析实验中的误差来源。

例如,气阻、摆长的测量误差、系统摩擦等都可能对实验结果产生影响。

通过分析这些误差来源,我们可以提出相应的改进措施,以提高实验的准确性和精度。

结论通过本实验的进行,我们成功地研究了单摆的运动规律,并验证了理论公式。

单摆完整版课件

单摆完整版课件

单摆完整版课件一、教学内容本节课我们将探讨物理中的单摆运动。

教学内容主要依据教材《物理学》第十二章第三节“单摆”部分。

详细内容包括:单摆的定义、单摆的周期公式、单摆的物理原理以及在实践中的应用。

二、教学目标1. 理解单摆的定义,掌握单摆的周期公式。

2. 能够运用单摆的物理原理解决实际问题,如测定重力加速度等。

3. 培养学生的实验操作能力、观察能力及数据分析能力。

三、教学难点与重点难点:单摆周期公式的推导及运用。

重点:单摆的定义、单摆的物理原理及实验操作。

四、教具与学具准备教具:单摆实验装置、演示用摆球、计时器、尺子。

学具:每组一套单摆实验装置、计时器、尺子。

五、教学过程1. 实践情景引入(1)向学生展示单摆实验装置,引导学生观察摆球在运动过程中的特点。

(2)提问:摆球在运动过程中,哪些物理量保持不变?哪些物理量会发生变化?2. 教学内容讲解(1)讲解单摆的定义,引导学生了解单摆的构成。

(2)推导单摆的周期公式,解释公式中各个参数的含义。

(3)讲解单摆的物理原理,引导学生理解摆动过程中能量转换的原理。

3. 例题讲解(1)例题1:一个摆长为1米的单摆,其周期是多少?(2)例题2:测定当地的重力加速度。

4. 随堂练习(1)练习1:计算摆长为0.8米的单摆的周期。

(2)练习2:根据实验数据,计算当地的重力加速度。

5. 实验操作(1)分组进行单摆实验,要求学生准确测量摆长、周期等数据。

(2)指导学生进行数据处理,得出实验结果。

六、板书设计1. 单摆的定义2. 单摆的周期公式3. 单摆的物理原理4. 例题及解答5. 实验数据处理方法七、作业设计1. 作业题目:(1)计算摆长为1.2米的单摆的周期。

(2)根据实验数据,计算当地的重力加速度。

2. 答案:(1)T = 2π√(L/g) = 2π√(1.2/9.8) ≈ 2.0秒(2)g = 4π²L/T² = 4π²×1.2/(2.0)² ≈ 9.6 m/s²八、课后反思及拓展延伸1. 反思:本节课学生掌握了单摆的基本概念和实验操作,但在数据处理方面仍存在一定困难,需要加强练习。

单摆实验报告,大学

单摆实验报告,大学

单摆实验报告,大学篇一:单摆实验报告单摆一、实验目的1. 验证单摆的振动周期的平方与摆长成正比,测定本地重力加速度的值2. 从摆动N次的时间和周期的数据关系,体会积累放大法测量周期的优点二、实验仪器单摆秒表(0.01s)游标卡尺(0.02mm) 米尺(0.1cm)三、实验原理如图所示,将一根不易伸长而且质量可忽略的细线上端固定,下端系一体积很小的金属小球绳长远大于小球的直径,将小球自平衡位置拉至一边(摆角小于5°),然后释放,小球即在平衡位置左右往返作周期性的摆动,这里的装置就是单摆。

设摆点O为极点,通过O且与地面垂直的直线为极轴,逆时针方向为角位移?的正方向。

由于作用于小球的重力和绳子张力的合力必沿着轨道的切线方向且指向平衡位置,其大小f?mgsin 设摆长为L,根据牛顿第二定律,并注意到加速度d2?的切向方向分量a??l?2 ,即得单摆的动力学方程dtd2?ml2??mgsin?dt结果得d2?g2????? 2ldt由上式可知单摆作简谐振动,其振动周期 T?2??2?2?lg或 g?4?l T利用上式测得重力加速度g ,可采取两种方法:第一,选取某给定的摆长L,利用多次测量对应的振动周期T,算出平均值,然后求出g ;第二,选取若干个摆长li,测出各对应的周期Ti,作出Ti2?li图线,它是一条直线,由该直线的斜率K 可求得重力加速度。

四、实验内容和步骤(1)仪器的调整1.调节立柱,使它沿着铅直方向,衡量标准是单摆悬线、反射镜上的竖直刻线及单摆悬线的像三者重合。

2.为使标尺的角度值能真正表示单摆的摆角,移动标尺,使其中心与单摆悬点间的距离y满足下式y??AB???180????5??AB式中为标尺的角度数,可取,而是标尺上与此5°相对应的弧长,可用米尺量度。

(2)利用给定摆长的单摆测定重力加速度1.适当选择单摆长度,测出摆长。

注意,摆长等于悬线长度和摆球半径之和。

2.用于使摆球离开平衡位置(?﹤5°),然后令它在一个圆弧上摆动,待摆动稳定后,测出连续摆动50次的时间t ,重复4次。

单摆实验教案.doc

单摆实验教案.doc

实验:探究单摆周期与摆长的关系合肥八中物理组汪国安一、教学目标1、知识与技能:(1)探究摆长对单摆周期的影响及其定量关系(2)理解单摆周期与摆长的定量关系(3)学会借助计算机处理实验数据2、过程和方法:体验用计算机辅助系统进行科学探究的过程,学会科学探究的基本思想和基本方法3、情感、态度和价值观:科学研究的浓厚兴趣,培养科学探究能力,培养团队合作精神二、教学重点与难点重点:实验探究单摆周期与摆长的定量关系难点:精确测量摆长三、教学结构教学内容教师活动 学生活动 提出问题:单摆的周期可能和哪些物理量有关?用各种不同摆长,不同质量,不 同振幅的单摆作演示,提出问 题。

观察实验并根据观察到的现 象作出猜测 研究方案讨论引导学生先着重研究摆长对周 期的影响 实验方案设计(控制变量法) 学生通过实验探讨:单摆的周期和摆长有怎么样的关系实验:测量多组摆长和周期 数据 实验数据分析:曲线拟合用拟合方法处理实验数据 用改变参量方法处理数据 得出结论:单摆的周期与摆长的平方根成正比总结探究的思路和方法 探讨单摆周期与其他物理量之间关系提出问题:如何研究小球质量、 振幅、摆角等因素对单摆周期的 影响? 设计实验方案:周期与小球 质量,周期与振幅之间关系 学生通过实验研究周期与质量和振幅关系指导实验 学生分成三大组,分组实验 总结实验结论:周期与小球质量和振幅无关 总结实验结论,提出单摆等时性四、教学过程(一) 情景导入,提出问题复习单摆理想模型,分析描述单摆作简谐振动的条件。

(二) 观察实验,做出猜测1. 两摆的振幅不同2. 两摆的质量不同3. 两摆的摆长不同(三) 设计方案与讨论1:利用米尺和游标卡尺分别测量出细线长度和小球的半径,算出摆长。

2;让单摆做简谐运动,用秒表测出振动周期。

(课件出示注意事项)注意事项1.为减小误差,测量时间时从摆球经过平衡位置计时,此处摆球速度最大,计时误差相对较小。

2.为提高测量准确度,采取叠加测量,即测量30个周期时间,再除以次数,也可减小测量误差。

大学物理实验报告-单摆测重力加速度

大学物理实验报告-单摆测重力加速度

西安交通大学物理仿真实验报告——利用单摆测重力加速度班级:姓名:学号:西安交通大学模拟仿真实验实验报告实验日期:2014年6月1日老师签字:_____ 同组者:无审批日期:_____实验名称:利用单摆测量重力加速度仿真实验一、实验简介单摆实验是个经典实验,许多著名的物理学家都对单摆实验进行过细致的研究。

本实验的目的是学习进行简单设计性实验的基本方法,根据已知条件和测量精度的要求,学会应用误差均分原则选用适当的仪器和测量方法,学习累积放大法的原理和应用,分析基本误差的来源及进行修正的方法。

二、实验原理用一根绝对挠性且长度不变、质量可忽略不计的线悬挂一个质点,在重力作用下在铅垂平面内作周期运动,就成为单摆。

单摆在摆角小于5°(现在一般认为是小于10°)的条件下振动时,可近似认为是简谐运动。

而在实际情况下,一根不可伸长的细线,下端悬挂一个小球。

当细线质量比小球的质量小很多,而且小球的直径又比细线的长度小很多时,此种装置近似为单摆。

单摆带动是满足下列公式:g L T π2=进而可以推出:224T L g π=式中L 为单摆长度(单摆长度是指上端悬挂点到球重心之间的距离);g 为重力加速度。

如果测量得出周期T 、单摆长度L ,利用上面式子可计算出当地的重力加速度g 。

三、实验内容1.用误差均分原理设计单摆装置,测量重力加速度g. 设计要求:(1)根据误差均分原理,自行设计试验方案,合理选择测量仪器和方法.(2)写出详细的推导过程,试验步骤.(3)用自制的单摆装置测量重力加速度g,测量精度要求△g/g<1%.可提供的器材及参数:游标卡尺,米尺,千分尺,电子秒表,支架,细线(尼龙线),钢球,摆幅测量标尺(提供硬白纸板自制),天平(公用).假设摆长l≈70.00cm;摆球直径D≈2.00cm;摆动周期T≈1.700s;米尺精度△米≈0.05cm;卡尺精度△卡≈0.002cm;千分尺精度△千≈0.001cm;秒表精度△秒≈0.01s;根据统计分析,实验人员开或停秒表反应时间为0.1s左右,所以实验人员开,停秒表总的反应时间近似为△人≈0.2s.2. 对重力加速度g的测量结果进行误差分析和数据处理,检验实验结果是否达到设计要求.3. 研究单摆周期与摆长,摆角,悬线的质量和弹性系数,空气阻力等因素的关系,试分析各项误差的大小.四、实验仪器单摆仪,摆幅测量标尺,钢球,游标卡尺(图1-图4)单摆仪(1)摆幅测量标尺(2)钢球(3)游标卡尺(4)1. 用米尺测量摆线长度+小球直径为92.62m(图5);2. 用游标卡尺测量小球直径结果(图6)图(5)图(6)3. 把摆线偏移中心不超过5度,释放单摆,开始计时,单摆摆过50个周期后停止计时,记录所用时间;T=95.75s/50=1.915s图(7)六、数据处理及误差分析(1)数据处理:1)周期的计算:T=95.75s/50= 1.967s2)摆长的计算:所以有效摆长为:L =92.62cm-1.687/2cm91.78cm,3)重力加速度的计算:因为:所以:= 9.88查资料可知,西安地区的重力加速度约为9.79则相对误差是E=△g/g=0.9⎺%<1%,符合实验要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理实验教案
实验名称:单摆的研究 实验目的:
1.掌握用单摆测定重力加速度的方法。

2.研究单摆振动的周期和摆长的关系。

3.掌握米尺、游标卡尺、秒表的正确使用方法。

4.掌握根据测量精度要求选择合适的测量仪器和测量方法。

实验仪器:
单摆 秒表 米尺 游标卡尺
实验原理:
用一根不能伸长的轻线悬挂一小球,作幅角θ很小的摆动就是一个单摆。

设小球的质量为m ,其质心到摆的支点O 的距离为l (摆长)。

作用在小球上的切向力的大小为
θsin mg ,它总指向平衡点'O 。

当幅角θ0很小时,
则θθ≈sin ,切向力的大小为θm g ,按牛顿第二定律,质点的运动方程为
θmg ma -=切
θθ
mg dt d ml -=22 θθl g
dt
d -=2
2 这是一简谐运动方程,该简谐振动角频率ω的平方等于g ,由此得出
l
g T ==
πω2 g
l T π
2= 2
2
4l g T π= 单摆的振动周期T 和摆动的角度θ之间存在下列关系
222
2411321sin sin 22242T θθπ
⎤⎛⎫⎛⎫⎛⎫=+++⎥ ⎪ ⎪ ⎪
⎝⎭⎝⎭⎝⎭⎥⎦
对于幅角θ不超过50时,周期的实测值和小振动近似的结果的偏差就不会大于千分之一。

若按这误差要求用式g
l
T π
2=测量重力加速度,必须把单摆的幅角控制在50之内。

mg
θ
sin
实验时,测量一个周期的相对误差较大,一般是测量连续摆动n 个周期的时间t ,则n t T /=,因此
222
4t
l
n g π=
式中π和n 不考虑误差,因此g 的不确定度传递公式)(g u 为
()()2
2
2)(⎪⎭

⎝⎛+⎪⎭⎫ ⎝⎛=t t u l l u g g u
从上式可以看出,在()l u 、()t u 大体一定的情况下,增大l 和t 对测量g 有利。

实验内容:
(一)、测定重力加速度 1、 单摆调整
(1)实验时,将仪器放置桌边;
(2)调节摆角板高度(距上端50cm ),并使摆角板平面、镜面、单摆底座的前表面及桌子侧面平行;
(3)调整立柱铅直。

2、测量摆长
选取摆长1m 左右,用米尺测量摆线长l 6次,用游标卡尺测摆球直径d 6次,计算摆长L=l+d/2. 3、测量周期
测出连续摆动50次的总时间t ;共测6次。

4、计算重力加速度g 及其不确定度。

提示:(1)摆长应是摆线加上小球的半径。

(2)球的振幅小于摆长的十二分之一角度小于十五度
(3)握秒表的手和小球同步运动,测量不确定度可能小一些。

(4)当摆锤过平衡位置时,按表计时,测量的不确定度可能小一些。

(5)为了防止数错n 值,应在计时表开始按表时数零,以后每过一个周期,数1,2,……n 。

(二)、研究摆长与周期的关系
1、均匀地改变6次摆长L ,每次增加约10㎝,测出相应的连续摆动50次的总时间t ;
2、计算出摆长L 、周期T 和2
T ;
3、在直角坐标纸上绘制L T i -2
图线,验证简谐振动的周期与摆长的关系。

实验数据处理
1.摆长cm
)
073
.0
58967
.
87
(
)(±
=
±
=l
u
L
L
(1)摆长的平均值
2
L l=+=104.14167+2.402333/2=105.3428365cm
(2)摆长的不确定度
()
u l===0.06020 cm
()
u d===0.001341cm
()0.06020
u L===cm (3)摆长
()
L L u L
=±=(105.343±0.060)cm
2.50个周期时间t
()
222222
(0.01)(0.2)0.0401
1
())0.13162() ().50.13
t
s
u t s
t t u t s
∆=∆+∆=+=
==
=±=±
1030


3.重力加速度
222
2
222)50.44(3.1416)(.)9.789683457(/n L g t m s π⨯==⨯⨯=105342836510305500
2()9.7896834570.02562458(/)
u g m s === ()g g u g =±=(9.790±0.026)m/s ²。

相关文档
最新文档