北师大版九年级下册数学:二次函数
合集下载
2-1 二次函数(课件)九年级数学下册(北师大版)

(4)y=x-2+x;
(5)y=3(x-2)(x-5); 解:二次函数有:(2)(5)
(6)y=x2+ 1 .
x2
y=-5x2的二次项系数为5,一次项系数和常数项为0;
y=3(x-2)(x-5)=3x2-21x+30
二次项系数为3,一次项系数为-21,常数项为30.
例题欣赏 ☞
例2. y m 3 xm27.
想一想
探索&交流
问题2:正方体六个面是全等的正方形,设正方体棱长为 x,表面 积为 y,则 y 关于x 的关系式为 y=6x2 .
此式表示了正方体表面积y与正方 体棱长x之间的关系,对于x的每一 个值,y都有唯一的一个对应值, 即y是x的函数.
探索&交流
问题3:某水产养殖户用长40m的围网,在水库中围一块矩形的水面, 投放鱼苗.你能列出矩形水面的面积关于矩形水面的边长的关系式 吗? 设围成的矩形水面的一边长为x m,那么,矩形水面的另一边长应 为(20-x)m.若它的面积是S m2,则有
(1)问题中有那些变量?其中哪些是自变量?哪些是因变量?
增种的棵树和平均每棵树结的橙子个数是变量.
增种的棵树是自变量,平均每棵树结的橙子个数是因变量.
探索&交流
(2)假设果园增种x棵橙子树,那么果园共有多少棵橙子树? 这时平均每棵树结多少个橙子?
果园共有(100+x)棵树,平均每棵树结(600-5x)个橙子.
一般地,若两个自变量x,y之间的对应关系可以表示成 y=ax²+bx+c(a,b,c是常数,a≠ 0)的形式,则称y是x的二次函数.
a为二次项系数,ax2叫做二次项; b为一次项系数,bx叫做一次项; c为常数项.
详解 二次函数的特殊形式: 1.只含二次项,即y=ax2(b=0,c=0); 2.不含一次项,即y=ax2+c(b=0,c≠0); 3.不含常数项,即y=ax2+bx(b≠0,c=0).
北师大版九年级数学下册《二次函数——二次函数的图象与性质》教学PPT课件(4篇)

5
这两种呢?有没有其他形式的二次
3
函数?
4Байду номын сангаас
2
1
–4
–3
–2
–1
O
–1
–2
–3
–4
–5
–6
–7
–8
–9
–10
1
2
3
4
x
y =-x2
新知讲解
在画有y
=x2直角坐标系中,画出
=
,y
=2x2的图象.
①列表; ②描点; ③连线.
10
y
y=2x2
9
x
··· -2 -1
y =x2
8
0
1
2
···
7
6
D.抛物线y=-3x2向上平移1个单位得到
新知讲解
在同一坐标系中,画出二次函数 = − ,y=− + ,
y=−
− 的图象,并分别指出它们的开口方向,对称轴和顶
点坐标,指明抛物线y=− + 通过怎样的平移可得到抛物线
=
−
-4
− .
如图所示
关于y轴对称,对称轴方程是直线x=0
顶点坐标是原点(0,0)
当x=0时,y最小值=0
当x=0时,y最大值=0
在对称轴左侧递减
在对称轴右侧递增
在对称轴左侧递增
在对称轴右侧递减
典例精析
已知二次函数y=x2.求:
(1)当x=5时,y的值;
(2)当y=4时,x的值;
(3)当x为何值时,y随x的增大而增大?
北师大版九年级数学下册第3课时二次函数y=a(x-h)2的图象与性质课件

想一想:抛物线 y = ax2 还可以怎样平移,平移 后会得到新的抛物线吗?
1 二次函数 y = a(x - h)2 的图象和性质
例1 画出二次函数 y = 2(x - 1)2 的图象,并分别指出它
们的开口方向、对称轴和顶点.
解:列表如下:
x
−4 −3 −2 −1 0 1 2 3 4
2x2
32 18 8 2
yO
x
-4 -2
24
(1) 顶点都是最_高___点,函数都
-2
有最_大___值,都为__y_=__0__;y 1 x 1 2 -4
(2)
y
函数的增减性: 1 x 1 2 当 x<-1
时,y
2
随
x
y
增大而增大
1 2
x
12
2
当 x>-1 时,y 随 x 增大而减小
y 1 x 12
2
当 x<1 时,y 随 x 增大而增大 当 x>1 时,y 随 x 增大而减小
2(x - 1)2 50 32 18 8
02 20
8 18 32 0 8 18
你能发现 2(x - 1)2 与 2x2 的值有什么关系?
描点、连线,如图所示: 根据图象回答下列问题:
(1) 图象的形状都是 抛物线 ;
(2) 图形的开口方向 向上 ;
(3) 从左到右对称轴分别是都 是 x = 0,x = 1 ;
(4) 从左到右顶点坐标分别是 _(_0_,__0_)_,__(_1_,__0_)___;
y = 2x2
y = 2(x - 1)2
(5) 顶点都是最_低___点,函数都有 y = 2x2 最__小__值,都为__y_=__0__; (6) 函数 y = 2(x - 1)2 的增减性 :
北师大版数学九年级下册课件二次函数

x/棵 1 2 3 4 5 6 7 8 9 10 11 12 13 14
6 6 66 6 6 6 6 6 6 6 6 6 6 0 0 00 0 0 0 0 0 0 0 0 0 0 y/个 0 1 2 3 3 4 4 4 4 5 4 4 4 4 9 8 52 7 2 5 8 9 0 9 8 5 2 5 0 50 5 0 5 0 5 0 5 0 5 0 答:种10棵橙子树,果园橙子的总产量最多.
新知探究
做一做:银行的储蓄利率是随时间的变化而变化的,也就是说,利率是一个变量. 在我国,利率的调整是由中国人民银行根据国民经济发展的情况而决定的.
银行储蓄利率表
2012-7-6
项
目
利率
三个月
2.85
整
半年
3.05
存
一年
3.25
整
二年
3.75
取
三年
4.25
五年
4.75
零存整取
一年
2.85
整存零取
三年
解:S=a( -a)=a(30-a)=30a-a²=-a²+30a . 是函数关系且为二次函数关系.
新知探究
3.已知函数y=(m2+m) xm2-2m+2 (1)当函数是二次函数时,求m的值.
是二次函数的条件是m2-2m+2=2且m2+m≠0. (2)当函数是一次函数时,求m的值.
是一次函数的条件是m2-2m+2=1且m2+m≠0.
九年级数学北师版·下册
第二章 二次函数
2.1 二次函数
教学目标
1.探索并归纳二次函数的定义.(重点) 2.能够表示简单变量之间的二次函数关系.(难点)
新课导入
6 6 66 6 6 6 6 6 6 6 6 6 6 0 0 00 0 0 0 0 0 0 0 0 0 0 y/个 0 1 2 3 3 4 4 4 4 5 4 4 4 4 9 8 52 7 2 5 8 9 0 9 8 5 2 5 0 50 5 0 5 0 5 0 5 0 5 0 答:种10棵橙子树,果园橙子的总产量最多.
新知探究
做一做:银行的储蓄利率是随时间的变化而变化的,也就是说,利率是一个变量. 在我国,利率的调整是由中国人民银行根据国民经济发展的情况而决定的.
银行储蓄利率表
2012-7-6
项
目
利率
三个月
2.85
整
半年
3.05
存
一年
3.25
整
二年
3.75
取
三年
4.25
五年
4.75
零存整取
一年
2.85
整存零取
三年
解:S=a( -a)=a(30-a)=30a-a²=-a²+30a . 是函数关系且为二次函数关系.
新知探究
3.已知函数y=(m2+m) xm2-2m+2 (1)当函数是二次函数时,求m的值.
是二次函数的条件是m2-2m+2=2且m2+m≠0. (2)当函数是一次函数时,求m的值.
是一次函数的条件是m2-2m+2=1且m2+m≠0.
九年级数学北师版·下册
第二章 二次函数
2.1 二次函数
教学目标
1.探索并归纳二次函数的定义.(重点) 2.能够表示简单变量之间的二次函数关系.(难点)
新课导入
2.2.2 二次函数的图象与性质(课件)九年级数学下册课件(北师大版)

的值和函数解析式 m+1>0 ①
解: 依题意有: m2+m=2 ②
解②得:m1=-2, m2=1
由①得:m>-1
∴ m=1 此时,二次函数为: y=2x2.
随堂练习
1.若二次函数y=axa2-2 的图象开口向下,则a 的值为( )
A.2
B. -2
C.4
D. -4
2.已知二次函数y=(2-a)xa2-14,在其图象对称轴的左侧,y
问题1. 抛物线y=2x2+1,y=2x2-1的开口方向、对称轴和顶点各是什么
?
二次函数 开口 方向
顶点 坐标
对称轴
10 8
y =2x2 向上 (0,0) y轴
6
y =2x2+ 1
向上 (0,1)
y轴
4 2
y=2x2-1 向上 (0,-1) y轴 -4 -2 -2
y = 2x2+1 y = 2x2-1
开口方向 对称轴 顶点
a>0,开口向上, a<0,开口向下
y轴
原点(0,0)
(0,c)
增减性
a>0时,在对称轴左侧递 a>0时,在对称轴左侧递减, 减,在对称轴右侧递增; 在对称轴右侧递增;a<0时, a<0时,在对称轴左侧递 在对称轴左侧递增,在对 增,在对称轴右侧递减 称轴右侧递减
最值 最大(小)值是0 最大(小)值是c
(1)比较a,b,c,d 的大小; (2)说明a与c,b与d的数量关系.
解:(1)由抛物线的开口方向, 知a > 0,b > 0,c < 0,d < 0. 由抛物线的开口大小,知|a| > |b|,|c| > |d|, 因此a > b,c < d.∴ a > b > d > c. (2)∵①与③,②与④分别关于x 轴对称, ∴①与③,②与④的开口大小相同,方向相反. ∴ a+c=0,b+d=0.
解: 依题意有: m2+m=2 ②
解②得:m1=-2, m2=1
由①得:m>-1
∴ m=1 此时,二次函数为: y=2x2.
随堂练习
1.若二次函数y=axa2-2 的图象开口向下,则a 的值为( )
A.2
B. -2
C.4
D. -4
2.已知二次函数y=(2-a)xa2-14,在其图象对称轴的左侧,y
问题1. 抛物线y=2x2+1,y=2x2-1的开口方向、对称轴和顶点各是什么
?
二次函数 开口 方向
顶点 坐标
对称轴
10 8
y =2x2 向上 (0,0) y轴
6
y =2x2+ 1
向上 (0,1)
y轴
4 2
y=2x2-1 向上 (0,-1) y轴 -4 -2 -2
y = 2x2+1 y = 2x2-1
开口方向 对称轴 顶点
a>0,开口向上, a<0,开口向下
y轴
原点(0,0)
(0,c)
增减性
a>0时,在对称轴左侧递 a>0时,在对称轴左侧递减, 减,在对称轴右侧递增; 在对称轴右侧递增;a<0时, a<0时,在对称轴左侧递 在对称轴左侧递增,在对 增,在对称轴右侧递减 称轴右侧递减
最值 最大(小)值是0 最大(小)值是c
(1)比较a,b,c,d 的大小; (2)说明a与c,b与d的数量关系.
解:(1)由抛物线的开口方向, 知a > 0,b > 0,c < 0,d < 0. 由抛物线的开口大小,知|a| > |b|,|c| > |d|, 因此a > b,c < d.∴ a > b > d > c. (2)∵①与③,②与④分别关于x 轴对称, ∴①与③,②与④的开口大小相同,方向相反. ∴ a+c=0,b+d=0.
北师大版九年级数学下册课件:二次函数的图像与性质

A.abc>0 B.a+b+c<0C.b<a+c D.4a+2b+c>0
例15.若二次函数y=ax2+bx+c 的x与y的部分对应值如下表,则当x=1时,y的值为
例16.已知二次函数 ,函数y与自变量x的部分对应值如下表所示,下列说法错误的是( )
例17.已知抛物线 经过点 和(-a, y1 ),则y1的值是_________.
C
分析:用数形结合的思想解决问题.视察图象,在 y 轴的左侧 y 随 x 的增大而减小,所以 y3<y2<y1.
也可以用特殊值法计算得到答案.
3.1. y=x2 +1与y=-x2 -1的图像与性质
1.向上向下平移2. 顶点坐标(0,1),(0.-1)
3.2. y=ax2 +c与y=-x2 +c的图像与性质
A.
例12.如图,四个二次函数的图象中,分别对应的是:① ;② ;③ ;④ , 则的大小关系为
13.如图,抛物线 的对称轴是直线x=1,且经过点P(3,0),a-b+c的值为————
例14.如图,坐标系中抛物线是函数y=ax2+bx+c的图象,则下列式子能成立的是( )
例18.将抛物线 的解析式向上平移3个单位长度,在向右平移1个单位长度后,得到的抛物线的解析式是 .
例19.如果二次函数y=(-2k+4)x2-3x+1的图象开口向上,那么常数k的取值范围是________
k<2
例20.已知函数y=(k﹣2)xk²﹣4k+5+2x是关于x的二次函数.求:(1)满足条件的k的值;(2)当k为何值时,抛物线有最高点?求出这个最高点,这时,x为何值时,y随x的增大而增大?
K=1或k=3
例21.已知抛物线y= +mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.
例15.若二次函数y=ax2+bx+c 的x与y的部分对应值如下表,则当x=1时,y的值为
例16.已知二次函数 ,函数y与自变量x的部分对应值如下表所示,下列说法错误的是( )
例17.已知抛物线 经过点 和(-a, y1 ),则y1的值是_________.
C
分析:用数形结合的思想解决问题.视察图象,在 y 轴的左侧 y 随 x 的增大而减小,所以 y3<y2<y1.
也可以用特殊值法计算得到答案.
3.1. y=x2 +1与y=-x2 -1的图像与性质
1.向上向下平移2. 顶点坐标(0,1),(0.-1)
3.2. y=ax2 +c与y=-x2 +c的图像与性质
A.
例12.如图,四个二次函数的图象中,分别对应的是:① ;② ;③ ;④ , 则的大小关系为
13.如图,抛物线 的对称轴是直线x=1,且经过点P(3,0),a-b+c的值为————
例14.如图,坐标系中抛物线是函数y=ax2+bx+c的图象,则下列式子能成立的是( )
例18.将抛物线 的解析式向上平移3个单位长度,在向右平移1个单位长度后,得到的抛物线的解析式是 .
例19.如果二次函数y=(-2k+4)x2-3x+1的图象开口向上,那么常数k的取值范围是________
k<2
例20.已知函数y=(k﹣2)xk²﹣4k+5+2x是关于x的二次函数.求:(1)满足条件的k的值;(2)当k为何值时,抛物线有最高点?求出这个最高点,这时,x为何值时,y随x的增大而增大?
K=1或k=3
例21.已知抛物线y= +mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.
北师大版九年级数学下册课件 2.3 第1课时 由两点确定二次函数的表达式

解:∵这个二次函数的图象的顶点坐标为(8,9),
∴可以设函数表达式为 y=a(x-8)2+9.
又∵它的图象经过点(0 ,1),可得 1=a(0-8)2+9.
1
解得 a .
8
1
2
y
(
x
8)
9.
∴所求的二次函数的表达式是
8
二、自主合作,探究新知
典型例题
例3:已知二次函数y=ax2 + bx的图象经过点(-2,8)和(-1,5),求这
时,通常需要 2 个独立的条件.确定反比例函数 =
(k≠0)关系式时,
通常需要 1 个条件.
思考: 如果确定二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的关系式时,
通常又需要几个条件?
二、自主合作,探究新知
探究:确定二次函数表达式
一名学生推铅球时,铅球行进高度y(m)与水平距离x(m)之间的关系如图所
道图象上一个点的坐标.
(2)形如y=a(x-h)2,y=ax2+c和y=ax2+bx的二次函数,有两个未知系
数,所以需要知道图象上两个点的坐标.
(3)形如y=a(x-h)2+k的二次函数,如果已知二次函数的顶点坐标,那
么再知道图象上的一个点的坐标就可以确定二次函数的表达式.
二、自主合作,探究新知
做一做:已知二次函数的图象与y轴交点的纵坐标为1,且经过点(2,5)
− + = ,
∴
+ + = −,
= −,
解得
= −,
∴该抛物线的解析式为y=x2-2x-3.
二次函数的图象与性质 北师大版九年级数学下册

射时所经过的路线,我们把
它叫做抛物线.
2.图象和x轴有交点吗?
如果有,交点坐标是什么?
有交点,交点坐标是(0,0).
3.当x<0时,随着x值的增大,y的值如何变化?当x
>0时呢?
当x<0时,y随x的增大而减小;当x>0时,y随x的增大而增大.
x<0
x>0
4.当x取什么值时,y的值最小?
最小值是什么?
m2 2
的开口向上,则m的值为(
D.1
【答案】A
【分析】根据二次函数的定义和性质解答即可.
m2 2
【详解】解:∵抛物线 y (m 1) x
的开口向上,
∴m2-2=2,m+1>0,
∴m=±2,m>-1,
∴m=2.
故选:A.
)
2.已知点(1,y1),(2,y2),(-3,y3)都在函数y=-2x2的图
的性质.
教学难点:建立二次函数表达式与图象之间的联系.
新知讲解
合作学习
【复习引入】
你还记得学习过哪些函数吗?
一次函数、反比例函数
怎么研究这些函数?
1.解析式
2.图象
3.性质
4.应用
画一个函数图象的基本步骤是什么?
描点法:
1.列表
2.描点
3.连线
简述描点法作图的一般步骤?
1)列表—表中给出一些自变量的值及其对应的函数值;
③当-1<x<2时,x=0时取最大值0,x=2时取最小值-4,因此-4<y≤0,
故该项错误;
④若(m,p)、(n,p)是该抛物线上两点,则两点关于直线x=0对称,因此
m+n=0,故该项正确.
故答案为:①②④.
6.根据下列条件分别求a的取值范围.
它叫做抛物线.
2.图象和x轴有交点吗?
如果有,交点坐标是什么?
有交点,交点坐标是(0,0).
3.当x<0时,随着x值的增大,y的值如何变化?当x
>0时呢?
当x<0时,y随x的增大而减小;当x>0时,y随x的增大而增大.
x<0
x>0
4.当x取什么值时,y的值最小?
最小值是什么?
m2 2
的开口向上,则m的值为(
D.1
【答案】A
【分析】根据二次函数的定义和性质解答即可.
m2 2
【详解】解:∵抛物线 y (m 1) x
的开口向上,
∴m2-2=2,m+1>0,
∴m=±2,m>-1,
∴m=2.
故选:A.
)
2.已知点(1,y1),(2,y2),(-3,y3)都在函数y=-2x2的图
的性质.
教学难点:建立二次函数表达式与图象之间的联系.
新知讲解
合作学习
【复习引入】
你还记得学习过哪些函数吗?
一次函数、反比例函数
怎么研究这些函数?
1.解析式
2.图象
3.性质
4.应用
画一个函数图象的基本步骤是什么?
描点法:
1.列表
2.描点
3.连线
简述描点法作图的一般步骤?
1)列表—表中给出一些自变量的值及其对应的函数值;
③当-1<x<2时,x=0时取最大值0,x=2时取最小值-4,因此-4<y≤0,
故该项错误;
④若(m,p)、(n,p)是该抛物线上两点,则两点关于直线x=0对称,因此
m+n=0,故该项正确.
故答案为:①②④.
6.根据下列条件分别求a的取值范围.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B(-4,y2 )是它的
图象上两点,则 y1与
y2的大小关系是 ( C )
y1
A. y1 < y2
B. y1 = y2 C. y1 > y2
y2
D.不能确定
(二)由函数表达式到函数图象 如何画出函数y=x2-2x-3的图象? 如何做到快速、准确? 五点定位法 怎样求出这五个点的坐标?
粗略感知图象的位置——二次函数的系数a、b、c 及b2-4ac对抛物线位置的影响
y=-x2+2x+3
(五)二次函数与方程、不等式的关系 探究问题:这个函数图象被x轴分成了几部分? 你能把每一部分的函数y和自变量x的取值范围表 示出来吗?
y=-x2+2x+3
利用二次函数图象求解方程或不等式
Y=-x2+2x+3
在X轴上的点 -yx=20+2x+3=0 x=-1或x=3
在X轴上方的点 -yx>2+20x+3>0 -1<x<3
A(-1,0),B(3,0), C(0,3),D(1,4)
你能确定这个函 数的表达式吗?
(四)抛物线的平移规律
三、四练 1、如图,把此抛物线绕顶点旋转180°则旋转 后的抛物线的函数表达式为 y=x2-2x+;5 2、若把此抛物线向左平移1个单位,向下平移 4个单位,则它对应的函数表达式为y=-x2 。
图象
最值 当x= 性
时,y最值=
当x=h时,y最值=k
质
a>0,在对称轴的右侧,y随着x的增大而增大;
增减性
在对称轴的左侧,y随着x的增大而减小。
a<0,在对称轴的右侧,y随着x的增大而减小; 在对称轴的左侧,y随着x的增大而增大。
一练
1. 抛物线y= 4(x+2)2+5的对称轴是_直__线__x_=-2
函数表达式与函数图象 函数与方程、不等式 形成一种意识:建立函数模型来解决实际问题。
端午节前夕,三位同学到某超 市调研一种进价为80元的粽子 礼盒的销售情况,请根据小梅
提供的信息,解答小慧和小杰 提出的问题.(价格取正整数)
在X轴下方的点 -yx<2+02x+3<0 x<-1或x>3
五练:利用函数图象,完成下列问题
y=-x2+2x+3
1.-x2+2x+3=0的解是x1=-1,x2=3; 2.-x2+2x+3=3的解是 x1=0,x2=2;
3.关于x的一元二次方程
-x2+2x+3=k有解,则k的取值范
Hale Waihona Puke 围是;几何画板链接
例题:如图,在直线BC上方的抛物线上存在一点 P,过点P作x轴的垂线交直线BC于点Q,是否存在 适当的点P,使得PQ最大?如果存在,求出点P的 坐标,如果不存在,说明理由。
几何画板链接
一个核心——数形结合(用数表达、用形释义) 两个基本点——图象特征、函数性质 三个转化——一般式、顶点式和交点式
4.你能求出不等式 -x2+2x+3 >-x+3 的解集吗?
六练:巩固练习,促进方法内化 若一元二次方程ax2+bx+c=0的系数满足 a+b+c<0,a-b+c=2,则该方程( A )
(A)必有两个不相等的实数根; (B)必有两个相等的实数根; (C)没有实数根; (D)无法确定.
几何画板链接
(七)二次函数的应用——建模问题
(一)二次函数的图象及其性质
表达式 一般式y=ax2+bx+c(a≠0) 顶点式y=a(x-h)2+k (a≠0)
对称轴
直线X=
直线X=h
顶点 图 象 开 方向
口 大小 由
(h,k) 由a>0,开口向上,a<0,开口向下
的大小来决定;即 越大,开口越小。
表达式 一般式y=ax2+bx+c(a≠0) 顶点式y=a(x-h)2+k (a≠0)
2. y= x2-4的图象与y轴的交点坐标是( D ) A(2,0) B(-2,0) C(0,4) D(0,-4) 3.已知抛物线 y=a(x-4)2-3
的部分图象,图象与x轴的另一
个交点的坐标是( C ) A(5,0) B(6,0) C(7,0) D(8,0)
4. 二次函数 图象如图,
若点A(-3,y1 ),
二次函数的系数对它的图象有什么影响?
二练
1.已知二次函数 y ax2 bx c
的图象如图,则abc > 0.
2.二次函数 y ax2 bx c的
图象如图所示,则下列关于a、b
、c的关系判断正确的是( D )
A.ab<0 B. bc<0 C.a+b+c>0 D.a-b十c<0
(三)由函数图象到函数表达式的确定 ——待定系数法